Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003

Size: px
Start display at page:

Download "Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003"

Transcription

1 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić Timing Issues January

2 Synchronous Timing CLK In R Combinational 1 R Logic 2 C in C out Out 2

3 Timing Definitions 3

4 Latch Parameters D Q Clk Clk D PW m t hold T t su Q t c-q t d-q Delays can be different for rising and falling data transitions 4

5 Register Parameters D Q Clk Clk T D t hold t su Q t c-q Delays can be different for rising and falling data transitions 5

6 Clock Uncertainties 4 Power Supply Devices 2 3 Interconnect 6 Capacitive Load 1 Clock Generation 5 Temperature 7 Coupling to Adjacent Lines Sources of clock uncertainty 6

7 Clock Nonidealities Clock skew Spatial variation in temporally equivalent clock edges; deterministic + random, t SK Clock jitter Temporal variations in consecutive edges of the clock signal; modulation + random noise Cycle-to-cycle (short-term) t JS Long term t JL Variation of the pulse width Important for level sensitive clocking 7

8 Clock Skew and Jitter Clk t SK Clk t JS Both skew and jitter affect the effective cycle time Only skew affects the race margin 8

9 Clock Skew # of registers Earliest occurrence of Clk edge Nominal δ/2 Latest occurrence of Clk edge Nominal + δ /2 Insertion delay Max Clk skew Clk delay δ 9

10 Positive and Negative Skew In R1 D Q Combinational Logic R2 D Q Combinational Logic R3 D Q CLK t CLK1 t CLK2 t CLK3 delay (a) Positive skew delay In R1 D Q Combinational Logic R2 D Q Combinational Logic R3 D Q t CLK1 t CLK2 t CLK3 delay delay CLK (b) Negative skew 10

11 Positive Skew T CLK + δ CLK1 1 δ T CLK 3 CLK2 2 4 δ + t h Launching edge arrives before the receiving edge 11

12 Negative Skew T CLK + δ CLK1 1 T CLK 3 CLK2 2 δ 4 Receiving edge arrives before the launching edge 12

13 Timing Constraints In R1 D Q Combinational Logic R2 D Q CLK t CLK1 t CLK2 t c q t c q, cd t su, t hold t logic t logic, cd Minimum cycle time: T - δ = t c-q + t su + t logic Worst case is when receiving edge arrives early (positive δ) 13

14 Timing Constraints In R1 D Q Combinational Logic R2 D Q CLK t CLK1 t CLK2 t c q t c q, cd t su, t hold t logic t logic, cd Hold time constraint: t (c-q, cd) + t (logic, cd) > t hold + δ Worst case is when receiving edge arrives late Race between data and clock 14

15 Impact of Jitter 2 T CLK 5 CLK t ji tte r t jitter 6 In REGS CLK t c-q, t c-q, cd t su, t hold t jitter Combinational Logic t logic t logic, cd 15

16 Longest Logic Path in Edge-Triggered Systems Clk T Clk-Q T T LM T SU T JI + δ Latest point of launching Earliest arrival of next cycle 16

17 Clock Constraints in Edge-Triggered Systems If launching edge is late and receiving edge is early, the data will not be too late if: T c-q + T LM + T SU < T T JI,1 T JI,2 - δ Minimum cycle time is determined by the maximum delays through the logic T c-q + T LM + T SU + δ + 2 T JI < T Skew can be either positive or negative 17

18 Shortest Path Earliest point of launching Clk T Clk-Q T Lm Clk T H Nominal clock edge Data must not arrive before this time 18

19 Clock Constraints in Edge-Triggered Systems If launching edge is early and receiving edge is late: T c-q + T LM T JI,1 < T H + T JI,2 + δ Minimum logic delay T c-q + T LM < T H + 2T JI + δ 19

20 How to counter Clock Skew? Negative Skew REG φ REG. REG log Out In REG φ φ Positive Skew φ Clock Distribution Data and Clock Routing 20

21 Flip-Flop Flop Based Timing φ Logic delay Skew Flip-flop delay Flip -flop Logic T SU φ = 0 T Clk-Q φ = 1 Representation after M. Horowitz, VLSI Circuits

22 Flip-Flops Flops and Dynamic Logic Logic delay T SU T SU T Clk-Q φ = 0 T Clk-Q φ = 1 φ = 0 φ = 1 Logic delay Precharge Evaluate Evaluate Precharge Flip-flops are used only with static logic 22

23 Latch timing t D-Q D Q When data arrives to transparent latch Latch is a soft barrier Clk t Clk-Q When data arrives to closed latch Data has to be re-launched 23

24 Single-Phase Clock with Latches φ Latch Logic T skl T skl T skt T skt Clk PW P 24

25 Latch-Based Design L1 latch is transparent when φ = 0 φ L2 latch is transparent when φ = 1 L1 Latch Logic L2 Latch Logic 25

26 Slack-borrowing In L1 L2 L1 D Q CLB_A CLB_B D Q D Q a b c d e t pd,a t pd,b CLK1 CLK2 CLK1 T CLK CLK CLK2 slack passed to next stage t pd,a t DQ t pd,b t DQ a valid b valid c valid e valid d valid 26

27 Latch-Based Timing φ Static logic Skew L1 Latch Logic L2 Latch φ = 1 L2 latch L1 latch Logic Can tolerate skew! Long path φ = 0 Short path 27

28 Clock Distribution H-tree CLK Clock is distributed in a tree-like fashion 28

29 More realistic H-treeH [Restle98] 29

30 The Grid System Driver GCLK GCLK Driver Driver GCLK No rc-matching Large power Driver GCLK 30

31 Example: DEC Alpha Clock Frequency: 300 MHz Million Transistors Total Clock Load: 3.75 nf Power in Clock Distribution network : 20 W (out of 50) Uses Two Level Clock Distribution: Single 6-stage driver at center of chip Secondary buffers drive left and right side clock grid in Metal3 and Metal4 Total driver size: 58 cm! 31

32 21164 Clocking t rise = 0.35ns t cycle = 3.3ns Clock waveform final drivers pre-driver Location of clock driver on die t skew = 150ps 2 phase single wire clock, distributed globally 2 distributed driver channels Reduced RC delay/skew Improved thermal distribution 3.75nF clock load 58 cm final driver width Local inverters for latching Conditional clocks in caches to reduce power More complex race checking Device variation 32

33 Clock Drivers 33

34 Clock Skew in Alpha Processor 34

35 EV6 (Alpha 21264) Clocking 600 MHz 0.35 micron CMOS t cycle = 1.67ns t rise = 0.35ns Global clock waveform t skew = 50ps PLL 2 Phase, with multiple conditional buffered clocks 2.8 nf clock load 40 cm final driver width Local clocks can be gated off to save power Reduced load/skew Reduced thermal issues Multiple clocks complicate race checking 35

36 21264 Clocking 36

37 ps EV6 Clock Results ps GCLK Skew (at Vdd/2 Crossings) GCLK Rise Times (20% to 80% Extrapolated to 0% to 100%) 37

38 EV7 Clock Hierarchy Active Skew Management and Multiple Clock Domains NCLK (Mem Ctrl) + widely dispersed drivers DLL DLL DLL + DLLs compensate static and lowfrequency variation + divides design and verification effort L2L_CLK (L2 Cache) GCLK (CPU Core) PLL L2R_CLK (L2 Cache) - DLL design and verification is added work SYSCLK + tailored clocks 38

39 Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal 2) Ensures the correct ordering of events Truly asynchronous design 1) Completion is ensured by careful timing analysis 2) Ordering of events is implicit in logic Self-timed design 1) Completion ensured by completion signal 2) Ordering imposed by handshaking protocol 39

40 Synchronous Pipelined Datapath In D R1 Q Logic Block #1 D R2 Q Logic Block #2 D R3 Q Logic Block #3 D R4 Q CLK t pd,reg t pd1 t pd2 t pd3 40

41 Self-Timed Pipelined Datapath Req Req Req Req Ack HS Ack HS Ack HS ACK Start Done Start Done Start Done In R1 F1 R2 F2 R3 F3 Out t pf1 t pf2 t pf3 41

42 Completion Signal Generation In LOGIC NETWORK Out Start DELAY MODULE Done Using Delay Element (e.g. in memories) 42

43 Completion Signal Generation Using Redundant Signal Encoding 43

44 Completion Signal in DCVSL V DD V DD Start B0 B1 Done B0 B1 In1 In1 In2 In2 PDN PDN Start 44

45 Self-Timed Adder Start P 0 P 1 V DD P 2 P 3 C 0 C 1 C 2 C 3 C 4 C 4 Start C 4 V DD Done C 4 C 0 G 0 G 1 G 2 G 3 C 3 C 3 Start C 2 C 2 C 1 C 1 Start P 0 P 1 V DD P 2 P 3 C 0 C 1 C 2 C 3 C 4 C 4 Start (b) Completion signal C 0 K 0 K 1 K 2 K 3 Start (a) Differential carry generation 45

46 Completion Signal Using Current Sensing Inputs Start Input Register V DD Static CMOS Logic GND sense Current Sensor A Output Start A B t delay t overlap Min Delay Generator B Done Done Output t MDG t pd-nor valid 46

47 Hand-Shaking Protocol Req Ack Req 2 SENDER Data RECEIVER Ack 3 (a) Sender-receiver configuration Data 1 1 Two Phase Handshake cycle 1 cycle 2 Sender s action Receiver s action (b) Timing diagram 47

48 Event Logic The Muller-C C Element A B C F A B F n F n F n 1 (a) Schematic (b) Truth table V DD V DD V DD A B S R Q F A B B B F A F (a) Logic A B B (b) Majority Function (c) Dynamic 48

49 2-Phase Handshake Protocol Sender logic Data ready Data Receiver logic Data accepted C Req Ack Handshake logic Advantage : FAST - minimal # of signaling events (important for global interconnect) Disadvantage : edge - sensitive, has state 49

50 Example: Self-timed FIFO In R1 R2 R3 Out En Done Req i C C C Req 0 Ack i Ack o All 1s or 0s -> pipeline empty Alternating 1s and 0s -> pipeline full 50

51 2-Phase Protocol 51

52 Example From [Horowitz] 52

53 Example 53

54 Example 54

55 Example 55

56 4-Phase Handshake Protocol Req 2 4 Sender s action Receiver s action Ack 3 5 Data 1 1 Cycle 1 Cycle 2 Also known as RTZ Slower, but unambiguous 56

57 4-Phase Handshake Protocol Implementation using Muller-C elements Sender logic Data Receiver logic Data ready Data accepted C C S Req Ack Handshake logic 57

58 Self-Resetting Logic Precharged Logic Block (L1) completion detection (L1) Precharged Logic Block (L2) completion detection (L2) Precharged Logic Block (L3) completion detection (L3) V DD int out Post-charge logic A B C 58

59 Clock-Delayed Domino GND CLK1 CLK2 (to next stage) V DD Q1 (also D2) D1 Pulldown Network 59

60 Asynchronous-Synchronous Interface Asynchronous system f in Synchronous system f CLK Synchronization 60

61 Synchronizers and Arbiters Arbiter: Circuit to decide which of 2 events occurred first Synchronizer: Arbiter with clock φ as one of the inputs Problem: Circuit HAS to make a decision in limited time - which decision is not important Caveat: It is impossible to ensure correct operation But, we can decrease the error probability at the expense of delay 61

62 A Simple Synchronizer CLK D int I 1 Q CLK I 2 Data sampled on rising edge of the clock Latch will eventually resolve the signal value, but... this might take infinite time! 62

63 Synchronizer: Output Trajectories 2.0 V out time [ps] Single-pole model for a flip-flop 63

64 Mean Time to Failure 64

65 Example T f = 10 nsec = T T signal = 50 nsec t r = 1 nsec t = 310 psec V IH - V IL = 1 V (V DD = 5 V) N(T) = errors/sec MTF (T) = sec = 8.3 years MTF (0) = 2.5 μsec 65

66 Influence of Noise p(v) Uniform distribution around VM T logarithmic reduction 0 V IL V IH Initial Distribution Still Uniform Low amplitude noise does not influence synchronization behavior 66

67 Typical Synchronizers 2 phase clocking circuit φ2 Q φ1 Q φ2 φ1 Using delay line 67

68 Cascaded Synchronizers Reduce MTF In O 1 O 2 Out Sync Sync Sync φ 68

69 Arbiters Req1 Req2 Arbiter Ack1 Ack2 Req1 A B Ack2 (a) Schematic symbol Req2 Ack1 Req1 (b) Implementation Req2 V A T gap B metastable Ack1 t (c) Timing diagram 69

70 PLL-Based Synchronization Digital System Chip 1 Data Chip 2 Digital System f system = N x f crystal PLL Divider reference clock PLL Clock Buffer Crystal Oscillator f crystal, 200<Mhz 70

71 PLL Block Diagram Reference clock Phase detector Up Charge pump Loop filter v cont VCO Local clock Down Divide by N System Clock 71

72 Phase Detector Output before filtering ref local clock (a) Output ref local clock Output Output (Low pass filtered) (b) V DD Transfer characteristic phase error (deg) (c) 72

73 Phase-Frequency Detector Rst D Q UP B B A A Rst D Q DN B (a) schematic UP = 0 DN = 1 A UP = 0 DN = 0 B (b) state transition diagram UP = 1 DN = 0 A A A B UP DN B UP DN (c) Timing waveforms 73

74 PFD Response to Frequency A B UP DN 74

75 PFD Phase Transfer Characteristic Average (UP-DN) V DD 2 π 2π phase error (deg) 75

76 Charge Pump V DD UP To VCO Control Input DN 76

77 PLL Simulation Control Voltage (V) ref div vco ref Time ( μ s) div vco 77

78 Clock Generation using DLLs Delay-Locked Loop (Delay Line Based) f REF Phase Det U D Charge Pump Filter DL f O Phase-Locked Loop (VCO-Based) f REF U N PD D CP VCO Filter f O 78

79 Delay Locked Loop F REFΔPH Phase detect U D Charge pump C V CTRL VCDL (a) F O REF OUT UP DN (b) ΔPH V CTRL Delay (c) 79

80 DLL-Based Clock Distribution VCDL Digital Circuit CP/LF Phase Detector GLOBAL CLK VCDL Digital Circuit CP/LF Phase Detector 80

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VII Timing Issues in Digital Circuits (chapter 10 in textbook) GMU, ECE 680 Physical VLSI Design 1 Synchronous Timing (Fig. 10 1) CLK In R Combinational 1 R Logic 2

More information

The Linear-Feedback Shift Register

The Linear-Feedback Shift Register EECS 141 S02 Timing Project 2: A Random Number Generator R R R S 0 S 1 S 2 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 The Linear-Feedback Shift Register 1 Project Goal Design a 4-bit LFSR SPEED, SPEED,

More information

Xarxes de distribució del senyal de. interferència electromagnètica, consum, soroll de conmutació.

Xarxes de distribució del senyal de. interferència electromagnètica, consum, soroll de conmutació. Xarxes de distribució del senyal de rellotge. Clock skew, jitter, interferència electromagnètica, consum, soroll de conmutació. (transparències generades a partir de la presentació de Jan M. Rabaey, Anantha

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits

EE241 - Spring 2006 Advanced Digital Integrated Circuits EE241 - Spring 2006 Advanced Digital Integrated Circuits Lecture 20: Asynchronous & Synchronization Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis EE115C Winter 2017 Digital Electronic Circuits Lecture 19: Timing Analysis Outline Timing parameters Clock nonidealities (skew and jitter) Impact of Clk skew on timing Impact of Clk jitter on timing Flip-flop-

More information

Lecture 25. Dealing with Interconnect and Timing. Digital Integrated Circuits Interconnect

Lecture 25. Dealing with Interconnect and Timing. Digital Integrated Circuits Interconnect Lecture 25 Dealing with Interconnect and Timing Administrivia Projects will be graded by next week Project phase 3 will be announced next Tu.» Will be homework-like» Report will be combined poster Today

More information

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics Lecture 23 Dealing with Interconnect Impact of Interconnect Parasitics Reduce Reliability Affect Performance Classes of Parasitics Capacitive Resistive Inductive 1 INTERCONNECT Dealing with Capacitance

More information

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders EECS 427 Lecture 14: Timing Readings: 10.1-10.3 EECS 427 F09 Lecture 14 1 Reminders CA assignments Please submit CA6 by tomorrow noon CA7 is due in a week Seminar by Prof. Bora Nikolic SRAM variability

More information

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Mark McDermott Electrical and Computer Engineering The University of Texas at Austin 9/27/18 VLSI-1 Class Notes Why Clocking?

More information

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2007 Advanced Digital Integrated Circuits Lecture 25: Synchronization Timing Announcements Homework 5 due on 4/26 Final exam on May 8 in class Project presentations on May 3, 1-5pm 2 1 Project

More information

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements.

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. 1 2 Introduction Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. Defines the precise instants when the circuit is allowed to change

More information

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 27: Latches Timing Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday,

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

Issues on Timing and Clocking

Issues on Timing and Clocking ECE152B TC 1 Issues on Timing and Clocking X Combinational Logic Z... clock clock clock period ECE152B TC 2 Latch and Flip-Flop L CK CK 1 L1 1 L2 2 CK CK CK ECE152B TC 3 Clocking X Combinational Logic...

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory

Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 28: Latch-Based iming Conclusion Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm

More information

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M.

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience and IEEE Press, January 2003 Nov. 14,

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL LOGIC

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Naming Conventions In our text: a latch is level sensitive

More information

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning i Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages) EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 12: SRAM Design ECC Timing Announcements Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

More information

Designing Sequential Logic Circuits

Designing Sequential Logic Circuits igital Integrated Circuits (83-313) Lecture 5: esigning Sequential Logic Circuits Semester B, 2016-17 Lecturer: r. Adam Teman TAs: Itamar Levi, Robert Giterman 26 April 2017 isclaimer: This course was

More information

Clocking Issues: Distribution, Energy

Clocking Issues: Distribution, Energy EE M216A.:. Fall 2010 Lecture 12 Clocking Issues: istribution, Energy Prof. ejan Marković ee216a@gmail.com Clock istribution Goals: eliver clock to all memory elements with acceptable skew eliver clock

More information

Skew-Tolerant Circuit Design

Skew-Tolerant Circuit Design Skew-Tolerant Circuit Design David Harris David_Harris@hmc.edu December, 2000 Harvey Mudd College Claremont, CA Outline Introduction Skew-Tolerant Circuits Traditional Domino Circuits Skew-Tolerant Domino

More information

GMU, ECE 680 Physical VLSI Design

GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 1 EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 2 Topics Clocking Clock Parameters Latch Types Requirements for reliable clocking Pipelining Optimal pipelining

More information

Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering. Jungli, Taiwan

Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering. Jungli, Taiwan Chapter 7 Sequential Circuits Jin-Fu Li Advanced Reliable Systems (ARES) Lab. epartment of Electrical Engineering National Central University it Jungli, Taiwan Outline Latches & Registers Sequencing Timing

More information

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

More information

Y. Tsiatouhas. VLSI Systems and Computer Architecture Lab

Y. Tsiatouhas. VLSI Systems and Computer Architecture Lab CMOS INTEGRATE CIRCUIT ESIGN TECHNIUES University of Ioannina Memory Elements and other Circuits ept. of Computer Science and Engineering Y. Tsiatouhas CMOS Integrated Circuit esign Techniques Overview.

More information

Digital VLSI Design. Lecture 8: Clock Tree Synthesis

Digital VLSI Design. Lecture 8: Clock Tree Synthesis Digital VLSI Design Lecture 8: Clock Tree Synthesis Semester A, 2018-19 Lecturer: Dr. Adam Teman January 12, 2019 Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

Timing Analysis with Clock Skew

Timing Analysis with Clock Skew , Mark Horowitz 1, & Dean Liu 1 David_Harris@hmc.edu, {horowitz, dliu}@vlsi.stanford.edu March, 1999 Harvey Mudd College Claremont, CA 1 (with Stanford University, Stanford, CA) Outline Introduction Timing

More information

Motivation for CDR: Deserializer (1)

Motivation for CDR: Deserializer (1) Motivation for CDR: Deserializer (1) Input data 1:2 DMUX 1:2 DMUX channel 1:2 DMUX Input clock 2 2 If input data were accompanied by a well-synchronized clock, deserialization could be done directly. EECS

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

Chapter 10 SOLUTIONS

Chapter 10 SOLUTIONS Chapter Problem Set Chapter SOLUTIONS. [C, None, 9.] For the circuit in Figure., assume a unit delay through the Register and Logic blocks (i.e., t R = t L = ). Assume that the registers, which are positive

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 18 CMOS Sequential Circuits - 1 guntzel@inf.ufsc.br

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements:., Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University

More information

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI Chapter 13 Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS SET-RESET (SR) ARBITER LATCHES FLIP FLOPS EDGE TRIGGERED DFF FF TIMING Joseph A. Elias, Ph.D. Adjunct Professor, University

More information

Synchronizers, Arbiters, GALS and Metastability

Synchronizers, Arbiters, GALS and Metastability Synchronizers, Arbiters, GALS and Metastability David Kinniment University of Newcastle, UK Based on contributions from: Alex Bystrov, Keith Heron, Nikolaos Minas, Gordon Russell, Alex Yakovlev, and Jun

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Lecture 9: Sequential Logic Circuits. Reading: CH 7

Lecture 9: Sequential Logic Circuits. Reading: CH 7 Lecture 9: Sequential Logic Circuits Reading: CH 7 Sequential Logic FSM (Finite-state machine) Inputs Current State COMBINATIONAL LOGIC Registers Outputs = f(current, inputs) Next state 2 storage mechanisms

More information

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1>

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1> Chapter 3 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 3 Chapter 3 :: Topics Introduction Latches and Flip-Flops Synchronous Logic Design Finite

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

Implementation of Clock Network Based on Clock Mesh

Implementation of Clock Network Based on Clock Mesh International Conference on Information Technology and Management Innovation (ICITMI 2015) Implementation of Clock Network Based on Clock Mesh He Xin 1, a *, Huang Xu 2,b and Li Yujing 3,c 1 Sichuan Institute

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS 2 -> ESD PROTECTION CIRCUITS (INPUT PADS) -> ON-CHIP CLOCK GENERATION & DISTRIBUTION -> OUTPUT PADS -> ON-CHIP NOISE DUE TO PARASITIC INDUCTANCE -> SUPER BUFFER

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register Description: The NTE4035B is a 4 bit shift register in a 16 Lead DIP type package constructed with MOS P Channel an N Channel

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

Itanium TM Processor Clock Design

Itanium TM Processor Clock Design Itanium TM Processor Design Utpal Desai 1, Simon Tam, Robert Kim, Ji Zhang, Stefan Rusu Intel Corporation, M/S SC12-502, 2200 Mission College Blvd, Santa Clara, CA 95052 ABSTRACT The Itanium processor

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Lecture material adapted from R. Katz, G. Borriello, Contemporary Logic esign (second edition), Prentice-Hall/Pearson

More information

UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Last modified on April 14, 2004 by Brian Leibowitz (bsl@eecs.berkeley.edu) Jan Rabaey Homework

More information

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits Chapter 3 Chapter 3 :: Topics igital esign and Computer Architecture, 2 nd Edition avid Money Harris and Sarah L. Harris Introduction Latches and Flip Flops Synchronous Logic esign Finite State Machines

More information

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs Description: The NTE74HC173 is an high speed 3 State Quad D Type Flip Flop in a 16 Lead DIP type package that

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

EE371 - Advanced VLSI Circuit Design

EE371 - Advanced VLSI Circuit Design EE371 - Advanced VLSI Circuit Design Midterm Examination May 7, 2002 Name: No. Points Score 1. 18 2. 22 3. 30 TOTAL / 70 In recognition of and in the spirit of the Stanford University Honor Code, I certify

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7 1 Reminders CA assignments CA7 is due Thursday at noon ECE Graduate Symposium Poster session in ECE Atrium on Friday HW4 (detailed

More information

Stop Watch (System Controller Approach)

Stop Watch (System Controller Approach) Stop Watch (System Controller Approach) Problem Design a stop watch that can measure times taken for two events Inputs CLK = 6 Hz RESET: Asynchronously reset everything X: comes from push button First

More information

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output Description: The NTE74HC299 is an 8 bit shift/storage register with three state bus interface capability

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

ALU, Latches and Flip-Flops

ALU, Latches and Flip-Flops CSE14: Components and Design Techniques for Digital Systems ALU, Latches and Flip-Flops Tajana Simunic Rosing Where we are. Last time: ALUs Plan for today: ALU example, latches and flip flops Exam #1 grades

More information

Hold Time Illustrations

Hold Time Illustrations Hold Time Illustrations EE213-L09-Sequential Logic.1 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential Logic.2 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download:

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset Description: The NTE74HC109 is a dual J K flip flip with set and reset in a 16 Lead plastic DIP

More information

EE141- Spring 2007 Digital Integrated Circuits

EE141- Spring 2007 Digital Integrated Circuits EE141- Spring 27 igital Integrated Circuits Lecture 19 Sequential Circuits 1 Administrative Stuff Project Ph. 2 due Tu. 5pm 24 Cory box + email ee141- project@bwrc.eecs.berkeley.edu Hw 8 Posts this Fr.,

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

Next, we check the race condition to see if the circuit will work properly. Note that the minimum logic delay is a single sum.

Next, we check the race condition to see if the circuit will work properly. Note that the minimum logic delay is a single sum. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Last modified on May 1, 2003 by Dejan Markovic (dejan@eecs.berkeley.edu) Prof. Jan Rabaey EECS

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern integrated circuits

Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern integrated circuits Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern egrated circuits 3. Clock skew 3.1. Definitions For two sequentially adjacent registers, as shown in figure.1, C

More information

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 5. Sequential Logic 6.004x Computation Structures Part 1 igital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L5: Sequential Logic, Slide #1 Something We Can t Build (Yet) What if you were

More information

Models for representing sequential circuits

Models for representing sequential circuits Sequential Circuits Models for representing sequential circuits Finite-state machines (Moore and Mealy) Representation of memory (states) Changes in state (transitions) Design procedure State diagrams

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC0 74HC/HCT/HCU/HCMOS Logic Family Specificatio The IC0 74HC/HCT/HCU/HCMOS Logic Package Information The IC0 74HC/HCT/HCU/HCMOS

More information

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS

More information

Sequential Logic Design: Controllers

Sequential Logic Design: Controllers Sequential Logic Design: Controllers Controller Design, Flip Flop Timing Copyright (c) 2012 Sean Key Standard Controller Architecture Controller A circuit that implements a FSM is referred to as a controller

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC0 74C/CT/CU/CMOS Logic Family Specifications The IC0 74C/CT/CU/CMOS Logic Package Information The IC0 74C/CT/CU/CMOS

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC6 74HC/HCT/HCU/HCMOS ogic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007 EECS 150 - Components and Design Techniques for Digital Systems FSMs 9/11/2007 Sarah Bird Electrical Engineering and Computer Sciences University of California, Berkeley Slides borrowed from David Culler

More information

Design of CMOS Adaptive-Bandwidth PLL/DLLs

Design of CMOS Adaptive-Bandwidth PLL/DLLs Design of CMOS Adaptive-Bandwidth PLL/DLLs Jaeha Kim May 2004 At Samsung Electronics, Inc. Adaptive-Bandwidth PLL/DLL PLL/DLLs that scale their loop dynamics proportionally with the reference frequency

More information

Experiment 9 Sequential Circuits

Experiment 9 Sequential Circuits Introduction to Counters Experiment 9 Sequential Circuits The aim of this experiment is to familiarize you, frst with the basic sequential circuit device called a fip fop, and then, with the design and

More information

Synchronization and Arbitration in GALS

Synchronization and Arbitration in GALS Electronic Notes in Theoretical Computer Science 245 (2009) 85 101 www.elsevier.com/locate/entcs Synchronization and Arbitration in GALS David Kinniment 1,2 School of EECE Newcastle University Newcastle

More information