ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Size: px
Start display at page:

Download "ESE 570: Digital Integrated Circuits and VLSI Fundamentals"

Transcription

1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection

2 Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino Logic! Charge Leakage! Charge Sharing! Domino Logic Design Considerations! Logic Comparisons 2

3 A Chip Example Penn ESE 570 Spring Khanna 3

4 Static CMOS TG D-LATCH 8 Transistors 8 Transistors **Transistor level implementation using transmission gates requires fewer transistors 4

5 Static CMOS TG D-LATCH CK D CK Q CK Q CK 5

6 Static CMOS TG D-LATCH When CK = 1 output Q = D, and tracks D until CK = 0, the D-Latch is referred to positive level triggered. When CK 1 to 0, the Q = D is captured, held (or stored) in the Latch. 6

7 CMOS D Edge Triggered Flip-Flop Negative D-Latch NMOS PMOS Positive D-Latch Positive Edge Triggered D Flip-Flop = Negative D-Latch + Positive D-Latch Negative Edge Triggered D Flip-Flop = Positive D-Latch + Negative D-Latch 7

8 Impact of Non-ideal Clock on D-Latch Operation CLK ideal CLK non-ideal CLK t CLK + τ D t NMOS PMOS CLK & CLK CLK & CLK + τ D 8

9 Two-Phase Clocked D-Latch (non-overlapping) ϕ 1 ϕ 1 ϕ 2 ϕ 2 t t ϕ 1 NMOS PMOS ϕ 1 ϕ 2 ϕ 2 9

10 Non-overlapping Clocks! Play with in Cadence " Will need for project Penn ESE 570 Spring Khanna 10

11 Sequential Logic Timing Considerations Penn ESE 570 Spring Khanna 11

12 Timing Metrics Penn ESE 570 Spring Khanna 12

13 System Timing Constraints Penn ESE 570 Spring Khanna 13

14 Bistable Elements! The cross-coupling of two inverters results in a bistable circuit (a circuit with two stable states)! Have to be able to change the stored! Two approaches used " cutting the feedback loop (mux based latch) " overpowering the feedback loop (as used in SRAMs) Penn ESE 570 Spring Khanna 14

15 Mux Based Latches! Change the stored value by cutting the feedback loop Penn ESE 570 Spring Khanna 15

16 Tx Gate Implementation of Mux Penn ESE 570 Spring Khanna 16

17 PassT Implementation of Mux Penn ESE 570 Spring Khanna 17

18 Controller/Controlled ET Flip Flop Controller Controlled Penn ESE 570 Spring Khanna 18

19 Controller/Controlled Implementation Controller Controlled Penn ESE 570 Spring Khanna 19

20 Controller/Controlled Implementation Controller Controlled Controller transparent Controlled hold Controller hold Controlled transparent Penn ESE 570 Spring Khanna 20

21 Timing Properties! Assume propagation delays are t pd_inv and t pd_tx, and that the inverter delay to derive!clk is 0! Set-up time - time before rising edge of clk that D must be valid " t su = 3 * t pd_inv + t pd_tx! Propagation delay - time for Q M to reach Q " t c-q = t pd_inv + t pd_tx! Hold time - time D must be stable after rising edge of clk " t hold = zero Penn ESE 570 Spring Khanna 21

22 Setup Time Simulation Penn ESE 570 Spring Khanna 22

23 Setup Time Simulation Penn ESE 570 Spring Khanna 23

24 System Timing Constraints Penn ESE 570 Spring Khanna 24

25 Dynamic Logic 25

26 Logic Comparison Overview DYNAMIC LOGIC GATES: valid logic level are not steady-state op points and depend on temporary storage of charge on parasitic node capacitances. Outputs are generated in response to input voltage levels and a clock. Requires periodic updating or refresh. 26

27 Logic Comparison Overview bit bit_b word N2 P1 P2 N4 A N1 N3 A_b WL C BL BL M1 C S DYNAMIC LOGIC GATES: valid logic level are not steady-state op points and depend on temporary storage of charge on parasitic node capacitances. Outputs are generated in response to input voltage levels and a clock. Requires periodic updating or refresh. 27

28 Comparison of Logic Implementations Y Ratioed 28

29 Comparison of Logic Implementations Y Ratioed 29

30 Comparison of Logic Implementations Y Ratioed 30

31 Comparison of Logic Implementations Y Ratioed V DD 1 more robust

32 Dynamic CMOS Precharge V DD CK A M p M e Z 32

33 Dynamic CMOS Precharge Z Z of C is complete 33

34 Dynamic (Clocked) Logic: Example CK = 0 => Z =? CK = 1 => Z =? 34

35 Comparison of Static and Dynamic Logic ADVANTAGES? DISADVANTAGES? 35

36 Comparison of Static and Dynamic Logic 36

37 Comparison of Static and Dynamic Logic 37

38 Cascaded Dynamic Logic 38

39 Cascaded Dynamic Logic 39

40 Cascaded Dynamic Logic 40

41 Cascaded Dynamic Logic 41

42 Domino Logic 42

43 Requirements! Single transition " Once transitioned, it is done # like domino falling! All inputs at 0 during precharge " Outputs pre-charged to 1 then inverted to 0 " I.e. Inputs are pre-charge to 0! Non-inverting gates 43

44 Cascaded Domino CMOS Logic Gates 44

45 Cascaded Domino CMOS Logic Gates propagating 45

46 Cascaded Domino CMOS Logic Gates propagating 46

47 Charge Leakage

48 CMOS Dynamic D Latch D Positive levelsensitive Q C x is usually a parasitic capacitance NMOS PMOS 48

49 Comparison CMOS Static & Dynamic D-Latch Static D-Latch ϕ 1 ϕ 1 Data bit stored in bistable-loop when ϕ 1 = 1 0 NMOS PMOS Dynamic D- Latch Data bit stored on C x when CK =

50 Latch circuit: NOTE: No crosscoupled inverters) Flip-Flop Latch 50

51 51

52 52

53 V y V T0n,M3 = 1.0 V; V y = V T0n = 1V (V GD > V T0p ) 53

54 V y V T0n,M3 = 1.0 V; V y = V T0n = 1V (V GD > V T0p ) 54

55 V y V T0n,M3 = 1.0 V; V y = V T0n = 1V (V GD > V T0p ) 55

56 V y V T0n,M3 = 1.0 V; V y = V T0n = 1V (V GD > V T0p ) i.e. V x can drop from V x-max = V DD V TMP to V x-min = 2.55 V due to charge leakage before V Q is effected (i.e. the output changes state). 56

57 Charge Storage and Leakage! Assume logic-high is stored onto V x during active phase (CK=1)! When CK=0, V in #0 57

58 Charge Storage and Leakage 58

59 Charge Storage and Leakage interconnect C ext C ext 59

60 Junction Capacitance C ext C ext I leakage = C x dv x dt 60

61 Junction Capacitance C ext C ext I leakage = C x dv x dt ESTIMATE V x-max to V x-min due to leakage. 61

62 Junction Capacitance C ext C ext I leakage = C x dv x dt ESTIMATE V x-max to V x-min due to leakage. min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) 62

63 Junction Capacitance C ext C ext I leakage = C x dv x dt ESTIMATE V x-max to V x-min due to leakage. min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) V x max = V DD V Tn,MP V x min = 2.55V C x min = C ext + C j,min = C ext + C j (V = V x max ) 63

64 Example V x-max. Assume V DD leakage-max V x max = V DD V Tn,MP V x min = 2.55V 64

65 Example C n+p+ = CJSW P n+p+ = ff/µm (18 µm + 6 µm + 2 µm) = 5.20 ff C n+p = CJ A n+p = ff/µm 2 (36 µm µm 2 ) = 4.56 ff 65

66 Example min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) C x min = C ext + C j,min = C ext + C j (V = V x max ) 66

67 Example min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) VDD = 5.0 V VT0 = 1.0 V PB = 0.88 V PBsw = 0.95 V I leakage,max = 0.85 pa C x min = C ext + C j,min = C ext + C j (V = V x max ) V x max = V DD V Tn,MP 4V V x min = 2.55V 67

68 Example min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) VDD = 5.0 V VT0 = 1.0 V PB = 0.88 V PBsw = 0.95 V I leakage,max = 0.85 pa C x min = C ext + C j,min = C ext + C j (V = V x max ) V x max = V DD V Tn,MP 4V V x min = 2.55V C j (V ) = A C j0 1+ V φ 0 + P C j0sw 1+ V φ 0sw C j (V x max = 4V ) = 4.56 ff 1+ 4V ff 1+ 4V 0.95 = 4.21fF 68

69 Example min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) VDD = 5.0 V VT0 = 1.0 V PB = 0.88 V PBsw = 0.95 V I leakage,max = 0.85 pa C x min = C ext + C j,min = C ext + C j (V = V x max ) C x min = 0.52 ff ff ff fF = 8.05 ff 69

70 Example min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) VDD = 5.0 V VT0 = 1.0 V PB = 0.88 V PBsw = 0.95 V I leakage,max = 0.85 pa C x min = C ext + C j,min = C ext + C j (V = V x max ) C x min = 0.52 ff ff ff fF = 8.05 ff min(t hold ) = 8.05 ff (4V 2.55V ) =13.73ms 0.85pA 70

71 Example Overview: Min Hold Time! Find min voltage value for storage node to maintain data " V x = voltage across storage capacitor! With dimensions of switch MOS and load MOS " Calculate C ext = C gb + C int = C gb + C poly + C metal " Calculate C j = junction capacitance! With max leakage value " Calculate min hold time (i.e. min time for storage capacitor to leak to min V x ) min(t hold ) = Δt = C x min I leakage max ΔV x = C x min I leakage max (V x max V x min ) Penn ESE 570 Spring Khanna 71

72 Charge Sharing

73 Dynamic Circuit Techniques 73

74 Shift Register! Shift registers store and delay data! Simple design: cascade of latches D D- Latch ϕ 2 D- Latch ϕ 1 ϕ 1 D- Latch Out 74

75 Shift Register with Dynamic D Latches When V out(i) = 0V (or 5V) and V in(i+1) = 5V (or 0V) for i = 1,2 (stage) Charge Sharing is an issue when ϕ 1 /ϕ 2 close. 75

76 Charge Sharing V b >> V a 76

77 Charge Sharing V b >> V a 77

78 Charge Sharing Rule of Thumb make C out1 = 10 C in2 V b >> V a 78

79 Charge Sharing V b << V a 79

80 Charge Sharing V b << V a If V b = 0 and V a >> V b # V R C in2v DD C out1 + C in2 80

81 Charge Sharing V b << V a If V b = 0 and V a >> V b # V R C in2v DD C out1 + C in2 If C out1 >> C in2 # V R C in2v DD C out1 << V DD 81

82 Charge Sharing Rule of Thumb make C out1 = 10 C in2 V b << V a If V b = 0 and V a >> V b # V R C in2v DD C out1 + C in2 If C out1 >> C in2 # V R C in2v DD C out1 << V DD 82

83 Shift Register with Dynamic D Latches m 83

84 Domino Logic Design Considerations

85 Requirements! Single transition " Once transitioned, it is done # like domino falling! All inputs at 0 during precharge " Outputs pre-charged to 1 then inverted to 0 " I.e. Inputs are pre-charge to 0! Non-inverting gates 85

86 Cascaded Domino CMOS Logic Gates propagating 86

87 Pre-charge Leakage weak keeper (W/L) p-keeper < (W/L) n-min 87

88 Charge Sharing within PDN 88

89 Charge Sharing within PDN 89

90 Charge Sharing within PDN 90

91 Charge Sharing within PDN Since all nodes are precharged there is no chargesharing. C 4 Z4 Z3 C 3 C 2 Z2 Z1 P0 C 1 Z1 = G1 + P1 * P0 Z2 = G2 + P2 * G1 + P2 * P1 * P0 = G2 + P2 * Z1 Z3 = G3 + P3 * G2 + P3 * P2 * G1 + P3 * P2 * P1 * P0 = G3 + P3 * Z2 Z4 = G4 + P4 * G3 + P4 * P3 * G2 + P4 * P3 * P2 * G1 + P4 * P3 *P1 * P0 = G4 + P4 * Z3 91

92 CMOS Logic! Best option in the majority of CMOS circuits! Advantages: " Noise-immunity not sensitive to k n /k p " does not involve pre-charging of nodes " dissipates no DC power " layout can be automated! Disadvantages: " Large fan-in gates lead to complex circuit structures (2N transistors) " larger parasitics " slower and higher dynamic power dissipation than alternatives " no clock and no synchronization. 92

93 Pseudo-nMOS/Ratioed Logic! Finds widest utility in large fan-in gates! Advantages: " Requires only N+1 transistors for N fan-in " smaller parasitics " faster and lower dynamic power dissipation than full CMOS! Disadvantages: " Noise-immunity sensitive to k n /k p " dissipates DC power when pulled down " not well-suited for automated layout " no clock and no synchronization. 93

94 CMOS domino-logic! Used for low-power, high-speed applications.! Advantages: " Requires N+k transistors for N fan-in (size advantages of pseudonmos) " dissipates no DC power " noise immunity not sensitive to k n /k p " use of clocks enables synchronous operation! Disadvantages: " Relies on storage on soft nodes " will require thorough simulation at all the process corners to insure proper operation " some of the speed advantage over static gates is diminished by the required pre-charge (pre-discharge) time 94

95 Ideas! Leads to clocked circuit discipline " Uses state holding element (eg. Latches and registers) " Prevents timing assumptions and complex reasoning about all possible timings! Dynamic/clocked logic " Only build/drive one pulldown network " Fast transition propagation! Domino Logic allows for cascading! Charge Leakage " Constrains maximum clock frequency! Charge Sharing with pass gates " Need to size carefully! Different logic-types for different applications 95

96 Admin! HW 7 out now " Due midnight " Start now. Involves optimization, which takes time.! Start getting groups together for project " Groups of 2 96

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΕΙΣ 12-13: esigning ynamic and Static CMOS Sequential Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

Hold Time Illustrations

Hold Time Illustrations Hold Time Illustrations EE213-L09-Sequential Logic.1 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential Logic.2 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 18 CMOS Sequential Circuits - 1 guntzel@inf.ufsc.br

More information

Lecture 9: Sequential Logic Circuits. Reading: CH 7

Lecture 9: Sequential Logic Circuits. Reading: CH 7 Lecture 9: Sequential Logic Circuits Reading: CH 7 Sequential Logic FSM (Finite-state machine) Inputs Current State COMBINATIONAL LOGIC Registers Outputs = f(current, inputs) Next state 2 storage mechanisms

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

GMU, ECE 680 Physical VLSI Design

GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

COMBINATIONAL LOGIC. Combinational Logic

COMBINATIONAL LOGIC. Combinational Logic COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino np-cmos Combinational vs. Sequential Logic In Logic

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

EECS 141 F01 Lecture 17

EECS 141 F01 Lecture 17 EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

EE141- Spring 2007 Digital Integrated Circuits

EE141- Spring 2007 Digital Integrated Circuits EE141- Spring 27 igital Integrated Circuits Lecture 19 Sequential Circuits 1 Administrative Stuff Project Ph. 2 due Tu. 5pm 24 Cory box + email ee141- project@bwrc.eecs.berkeley.edu Hw 8 Posts this Fr.,

More information

! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 3, 8 Memory: Core Cells Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery Penn ESE 57 Spring 8 - Khanna

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Naming Conventions In our text: a latch is level sensitive

More information

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning i Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

Lecture 16: Circuit Pitfalls

Lecture 16: Circuit Pitfalls Introduction to CMOS VLSI Design Lecture 16: Circuit Pitfalls David Harris Harvey Mudd College Spring 2004 Outline Pitfalls Detective puzzle Given circuit and symptom, diagnose cause and recommend solution

More information

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics CMO Design Multi-input delay analysis pring 25 Transmission Gate OUT Z OUT Z pring 25 Transmission Gate OUT When is low, the output is at high impedance When is high, the output follows However,

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL LOGIC

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

F14 Memory Circuits. Lars Ohlsson

F14 Memory Circuits. Lars Ohlsson Lars Ohlsson 2018-10-18 F14 Memory Circuits Outline Combinatorial vs. sequential logic circuits Analogue multivibrator circuits Noise in digital circuits CMOS latch CMOS SR flip flop 6T SRAM cell 1T DRAM

More information

Lecture 14: Circuit Families

Lecture 14: Circuit Families Introduction to CMOS VLSI Design Lecture 4: Circuit Families David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Pseudo-nMOS Logic q Dynamic Logic q

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2) ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 Signature: EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 obert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In

More information

Properties of CMOS Gates Snapshot

Properties of CMOS Gates Snapshot MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

More information

MODULE III PHYSICAL DESIGN ISSUES

MODULE III PHYSICAL DESIGN ISSUES VLSI Digital Design MODULE III PHYSICAL DESIGN ISSUES 3.2 Power-supply and clock distribution EE - VDD -P2006 3:1 3.1.1 Power dissipation in CMOS gates Power dissipation importance Package Cost. Power

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects

Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects Lecture 5 MOS Inverter: Switching Characteristics and Interconnection Effects Introduction C load = (C gd,n + C gd,p + C db,n + C db,p ) + (C int + C g ) Lumped linear capacitance intrinsic cap. extrinsic

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1 5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

More information

Lecture 24. CMOS Logic Gates and Digital VLSI II

Lecture 24. CMOS Logic Gates and Digital VLSI II ecture 24 CMOS ogic Gates and Digital VSI II In this lecture you will learn: Static CMOS ogic Gates FET Scaling CMOS Memory, SRM and DRM CMOS atches, and Registers (Flip-Flops) Clocked CMOS CCDs CMOS ogic:

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit

More information

Lecture 6: Circuit design part 1

Lecture 6: Circuit design part 1 Lecture 6: Circuit design part 6. Combinational circuit design 6. Sequential circuit design 6.3 Circuit simulation 6.4. Hardware description language Combinational Circuit Design. Combinational circuit

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Lecture 7 Circuit Delay, Area and Power

Lecture 7 Circuit Delay, Area and Power Lecture 7 Circuit Delay, Area and Power lecture notes from S. Mitra Intro VLSI System course (EE271) Introduction to VLSI Systems 1 Circuits and Delay Introduction to VLSI Systems 2 Power, Delay and Area:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements.

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. 1 2 Introduction Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. Defines the precise instants when the circuit is allowed to change

More information

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 Signature: EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

Errata of K Introduction to VLSI Systems: A Logic, Circuit, and System Perspective

Errata of K Introduction to VLSI Systems: A Logic, Circuit, and System Perspective Errata of K13126 Introduction to VLSI Systems: A Logic, Circuit, and System Perspective Chapter 1. Page 8, Table 1-1) The 0.35-µm process parameters are from MOSIS, both 0.25-µm and 0.18-µm process parameters

More information

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VIII Semiconductor Memory (chapter 12 in textbook) 1 Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies

More information

Dynamic operation 20

Dynamic operation 20 Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 2: January 17, 2017 MOS Fabrication pt. 1: Physics and Methodology Lecture Outline! Digital CMOS Basics! VLSI Fundamentals! Fabrication Process

More information

SRAM Cell, Noise Margin, and Noise

SRAM Cell, Noise Margin, and Noise SRAM Cell, Noise Margin, and Noise C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of MAH and BAW 1 Overview Reading Rabaey 5.3 W&H 2.5 Background Reading a memory cell can disturb its value. In addition,

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Digital EE141 Integrated Circuits 2nd Combinational Circuits

Digital EE141 Integrated Circuits 2nd Combinational Circuits Digital Integrated Circuits Designing i Combinational Logic Circuits 1 Combinational vs. Sequential Logic 2 Static CMOS Circuit t every point in time (except during the switching transients) each gate

More information

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe57-05f

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

Where Does Power Go in CMOS?

Where Does Power Go in CMOS? Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 2: January 19, 2016 MOS Fabrication pt. 1: Physics and Methodology Lecture Outline! Digital CMOS Basics! VLSI Fundamentals! Fabrication Process

More information