Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory

Size: px
Start display at page:

Download "Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory"

Transcription

1 EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 28: Latch-Based iming Conclusion Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory Presentations 12 minutes (max 10 slides) + 3 minutes for Q & A 2 1

2 Agenda Latch based timing Wrap-up 3 Latch-Based iming 2

3 Skew-olerant Domino General Reference: Harris, Horowitz, Skew-tolerant domino circuits ISSCC 97, JSSC 11/97 Also slides from D. Harris s Web site: 5 Latch timing t D-Q D Q When data arrives to transparent latch Latch is a soft barrier Clk t Clk-Q When data arrives to closed latch Data has to be re-launched 6 3

4 Single-Phase Clock with Latches φ Latch Unger and an rans. on Comp. 10/86 Logic skl skl skt skt In Chapter 10: = + sk skl skt Clk PW P 7 Preventing Late Arrivals Clk Clk P PW SU Data must arrive Clk-Q LM SU SU Clk PW D-Q LM SU 8 4

5 Preventing Late Arrivals skl + skt + SU + clk QM PW, P max + D QM LM Or: P clk QM + LM + SU + skl + skt PW P D + QM LM 9 Preventing Premature Arrivals Clk PW H Clk-Q Lm wo cases, reduce to one: Lm skl + skt + H + PW Clk Qm 10 5

6 Single-Latch iming Bounds on logic delay: φ skl + skt + SU + clk QM PW, P max + LM D QM Latch Lm skl + skt + H + PW Clk Qm Logic Either balance logic delays or make PW short 11 Latch-Based Design L1 latch is transparent L2 latch is transparent when f = 0 when f = 1 f L1 Latch Logic L2 Latch Logic 12 6

7 Latch-Based iming As long as transitions are within the assertion period of the latch, no impact of position of clock edges 13 Latch Design and Hold imes 14 7

8 Latch-Based iming Longest path P D QM LHM Independent of skew Short paths LLM CLLm SK + H Clk Qm CLHm SK + H Clk Qm Same as register-based design but holds for both clock edges 15 Latch-Based iming φ Static logic Skew L1 Latch Logic L2 Latch L1 latch φ = 1 L2 latch Logic Long path φ = 0 Can tolerate skew! Short path 16 8

9 Soft-Edge Properties of Latches Slack passing logical partition uses left over time (slack) from the previous partition ime borrowing logical partition utilizes a portion of time allotted to the next partition Makes most impact in unbalanced pipelines Bernstein et al, Chapter 8, Chandrakasan (Partovi), Chap Slack-Passing and Cycle Borrowing For N stage pipeline, overall logic delay should be < N cl 18 9

10 Slack Passing Example Edge riggered: = 125 nsec Latch-based: = 100 nsec 19 Latches with Dynamic Logic Phase1-domino evaluates Phase2-domino precharges Clock evaluates logic and opens subsequent latch: L2 latch φ = 0 L1 latch Static signals driving dynamic logic must be either non-inverting or stable before evaluation φ = 1 Phase2-domino evaluates Short path Phase1-domino precharges 20 10

11 Domino Logic with Latches ime available to logic is P 2 D-Q 21 Clock Skew ime penalty: L = P (2 D-Q + 2 sk ) 22 11

12 Non-Balanced Phase Delays ime penalty: L = P (2 D-Q + 2 sk ) - imbal 23 Skew-olerant Domino Overlap clocks: x evaluates before y precharges implicit latch between φ1 and φ2 no need for latch between domino phases From [Harris] 24 12

13 Multiple Phases 25 ime Borrowing 26 13

14 echnology Strategy / Roadmap Plan A: Extending Si CMOS R D Plan B: Subsytem Integration R D Plan C: Post Si CMOS Options R R&D Plan Q: Quantum Computing R.C. Chen, Where Si-CMOS is going: rendy Hype vs. Real echnology, ISSCC 06 D 27 Next Lecture Finish timing Asynchronous design 28 14

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2007 Advanced Digital Integrated Circuits Lecture 25: Synchronization Timing Announcements Homework 5 due on 4/26 Final exam on May 8 in class Project presentations on May 3, 1-5pm 2 1 Project

More information

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 27: Latches Timing Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday,

More information

The Linear-Feedback Shift Register

The Linear-Feedback Shift Register EECS 141 S02 Timing Project 2: A Random Number Generator R R R S 0 S 1 S 2 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 The Linear-Feedback Shift Register 1 Project Goal Design a 4-bit LFSR SPEED, SPEED,

More information

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages) EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 12: SRAM Design ECC Timing Announcements Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

More information

Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003

Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić Timing Issues January 2003 1 Synchronous Timing CLK In R Combinational 1 R Logic 2 C in C out Out 2

More information

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7 1 Reminders CA assignments CA7 is due Thursday at noon ECE Graduate Symposium Poster session in ECE Atrium on Friday HW4 (detailed

More information

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VII Timing Issues in Digital Circuits (chapter 10 in textbook) GMU, ECE 680 Physical VLSI Design 1 Synchronous Timing (Fig. 10 1) CLK In R Combinational 1 R Logic 2

More information

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders EECS 427 Lecture 14: Timing Readings: 10.1-10.3 EECS 427 F09 Lecture 14 1 Reminders CA assignments Please submit CA6 by tomorrow noon CA7 is due in a week Seminar by Prof. Bora Nikolic SRAM variability

More information

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 1 EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 2 Topics Clocking Clock Parameters Latch Types Requirements for reliable clocking Pipelining Optimal pipelining

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

EE141- Spring 2007 Digital Integrated Circuits

EE141- Spring 2007 Digital Integrated Circuits EE141- Spring 27 igital Integrated Circuits Lecture 19 Sequential Circuits 1 Administrative Stuff Project Ph. 2 due Tu. 5pm 24 Cory box + email ee141- project@bwrc.eecs.berkeley.edu Hw 8 Posts this Fr.,

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis EE115C Winter 2017 Digital Electronic Circuits Lecture 19: Timing Analysis Outline Timing parameters Clock nonidealities (skew and jitter) Impact of Clk skew on timing Impact of Clk jitter on timing Flip-flop-

More information

Xarxes de distribució del senyal de. interferència electromagnètica, consum, soroll de conmutació.

Xarxes de distribució del senyal de. interferència electromagnètica, consum, soroll de conmutació. Xarxes de distribució del senyal de rellotge. Clock skew, jitter, interferència electromagnètica, consum, soroll de conmutació. (transparències generades a partir de la presentació de Jan M. Rabaey, Anantha

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits

EE241 - Spring 2006 Advanced Digital Integrated Circuits EE241 - Spring 2006 Advanced Digital Integrated Circuits Lecture 20: Asynchronous & Synchronization Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal

More information

Lecture 9: Sequential Logic Circuits. Reading: CH 7

Lecture 9: Sequential Logic Circuits. Reading: CH 7 Lecture 9: Sequential Logic Circuits Reading: CH 7 Sequential Logic FSM (Finite-state machine) Inputs Current State COMBINATIONAL LOGIC Registers Outputs = f(current, inputs) Next state 2 storage mechanisms

More information

Skew-Tolerant Circuit Design

Skew-Tolerant Circuit Design Skew-Tolerant Circuit Design David Harris David_Harris@hmc.edu December, 2000 Harvey Mudd College Claremont, CA Outline Introduction Skew-Tolerant Circuits Traditional Domino Circuits Skew-Tolerant Domino

More information

Designing Sequential Logic Circuits

Designing Sequential Logic Circuits igital Integrated Circuits (83-313) Lecture 5: esigning Sequential Logic Circuits Semester B, 2016-17 Lecturer: r. Adam Teman TAs: Itamar Levi, Robert Giterman 26 April 2017 isclaimer: This course was

More information

Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering. Jungli, Taiwan

Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering. Jungli, Taiwan Chapter 7 Sequential Circuits Jin-Fu Li Advanced Reliable Systems (ARES) Lab. epartment of Electrical Engineering National Central University it Jungli, Taiwan Outline Latches & Registers Sequencing Timing

More information

UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Last modified on April 14, 2004 by Brian Leibowitz (bsl@eecs.berkeley.edu) Jan Rabaey Homework

More information

Hold Time Illustrations

Hold Time Illustrations Hold Time Illustrations EE213-L09-Sequential Logic.1 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential Logic.2 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential

More information

Issues on Timing and Clocking

Issues on Timing and Clocking ECE152B TC 1 Issues on Timing and Clocking X Combinational Logic Z... clock clock clock period ECE152B TC 2 Latch and Flip-Flop L CK CK 1 L1 1 L2 2 CK CK CK ECE152B TC 3 Clocking X Combinational Logic...

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 18 CMOS Sequential Circuits - 1 guntzel@inf.ufsc.br

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Naming Conventions In our text: a latch is level sensitive

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL LOGIC

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning i Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Elad Alon Homework #9 EECS141 PROBLEM 1: TIMING Consider the simple state machine shown

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements:., Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University

More information

EE241 - Spring 2003 Advanced Digital Integrated Circuits

EE241 - Spring 2003 Advanced Digital Integrated Circuits EE241 - Spring 2003 Advanced Digital Integrated Circuits Lecture 16 Energy-Recovery Circuits SOI Technology and Circuits Optimal EDP Contours 1 Leakage and Switching ELk 2 = ESw Opt L ln d K tech α avg

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References EE241 - Spring 2000 Advanced Digital Integrated Circuits Lecture 26 Memory References Rabaey, Digital Integrated Circuits Memory Design and Evolution, VLSI Circuits Short Course, 1998.» Gillingham, Evolution

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information

Problem Set 9 Solutions

Problem Set 9 Solutions CSE 26 Digital Computers: Organization and Logical Design - 27 Jon Turner Problem Set 9 Solutions. For each of the sequential circuits shown below, draw in the missing parts of the timing diagrams. You

More information

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Mark McDermott Electrical and Computer Engineering The University of Texas at Austin 9/27/18 VLSI-1 Class Notes Why Clocking?

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2000 Advanced Digital Integrated Circuits Lecture 3 Circuit Optimization for Speed Announcements Tu 2/8/00 class will be pre-taped on Friday, 2/4, 4-5:30 203 McLaughlin Class notes are available

More information

EE371 - Advanced VLSI Circuit Design

EE371 - Advanced VLSI Circuit Design EE371 - Advanced VLSI Circuit Design Midterm Examination May 7, 2002 Name: No. Points Score 1. 18 2. 22 3. 30 TOTAL / 70 In recognition of and in the spirit of the Stanford University Honor Code, I certify

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor

More information

GMU, ECE 680 Physical VLSI Design

GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 Digital Circuits ECS 371 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 18 Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30 1 Announcement Reading Assignment: Chapter 7: 7-1,

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 1: Introduction to Digital Electronics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Textbook

More information

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 25: Digital Arithmetic Adders Announcements Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department Page 1 of 13 COE 202: Digital Logic Design (3-0-3) Term 112 (Spring 2012) Final

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 5. Sequential Logic 6.004x Computation Structures Part 1 igital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L5: Sequential Logic, Slide #1 Something We Can t Build (Yet) What if you were

More information

EE141- Spring 2004 Digital Integrated Circuits

EE141- Spring 2004 Digital Integrated Circuits EE141- pring 2004 Digital Integrated ircuits Lecture 19 Dynamic Logic - Adders (that is wrap-up) 1 Administrative tuff Hw 6 due on Th No lab this week Midterm 2 next week Project 2 to be launched week

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI Chapter 13 Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS SET-RESET (SR) ARBITER LATCHES FLIP FLOPS EDGE TRIGGERED DFF FF TIMING Joseph A. Elias, Ph.D. Adjunct Professor, University

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

Chapter 7 Sequential Logic

Chapter 7 Sequential Logic Chapter 7 Sequential Logic SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} March 28, 2016 Table of Contents 1 Intro 2 Bistable Circuits 3 FF Characteristics

More information

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements.

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. 1 2 Introduction Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. Defines the precise instants when the circuit is allowed to change

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Lecture material adapted from R. Katz, G. Borriello, Contemporary Logic esign (second edition), Prentice-Hall/Pearson

More information

Energy Delay Optimization

Energy Delay Optimization EE M216A.:. Fall 21 Lecture 8 Energy Delay Optimization Prof. Dejan Marković ee216a@gmail.com Some Common Questions Is sizing better than V DD for energy reduction? What are the optimal values of gate

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.

More information

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process Parity Checker Example A string of bits has even parity if the number of 1 s in the string is even. Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if the parity thus far is even

More information

Lecture 14: Circuit Families

Lecture 14: Circuit Families Introduction to CMOS VLSI Design Lecture 4: Circuit Families David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Pseudo-nMOS Logic q Dynamic Logic q

More information

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain - Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :30-3pm at BWRC (in lieu of Tuesday) Today s lecture Power

More information

EE141. Lecture 28 Multipliers. Lecture #20. Project Phase 2 Posted. Sign up for one of three project goals today

EE141. Lecture 28 Multipliers. Lecture #20. Project Phase 2 Posted. Sign up for one of three project goals today EE141-pring 2008 igital Integrated ircuits Lecture 28 Multipliers 1 Announcements Project Phase 2 Posted ign up for one of three project goals today Graded Phase 1 and Midterm 2 will be returned next Fr

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State Today LECTURE 28 Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State Time permitting, RC circuits (where we intentionally put in resistance

More information

Lecture 16: Circuit Pitfalls

Lecture 16: Circuit Pitfalls Introduction to CMOS VLSI Design Lecture 16: Circuit Pitfalls David Harris Harvey Mudd College Spring 2004 Outline Pitfalls Detective puzzle Given circuit and symptom, diagnose cause and recommend solution

More information

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΕΙΣ 12-13: esigning ynamic and Static CMOS Sequential Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

EECS 141 F01 Lecture 17

EECS 141 F01 Lecture 17 EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

More information

CSE 140 Spring 2017: Final Solutions (Total 50 Points)

CSE 140 Spring 2017: Final Solutions (Total 50 Points) CSE 140 Spring 2017: Final Solutions (Total 50 Points) 1. (Boolean Algebra) Prove the following Boolean theorem using Boolean laws only, i.e. no theorem is allowed for the proof. State the name of the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences nalysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #1 Prof. nantha Chandrakasan Student

More information

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1 Sequential Logic Handouts: Lecture Slides 6.4 - Spring 2 2/27/ L6 Sequential Logic Roadmap so far Fets & voltages Logic gates Combinational logic circuits Sequential Logic Voltage-based encoding V OL,

More information

Successive Approximation ADCs

Successive Approximation ADCs Department of Electrical and Computer Engineering Successive Approximation ADCs Vishal Saxena Vishal Saxena -1- Successive Approximation ADC Vishal Saxena -2- Data Converter Architectures Resolution [Bits]

More information

Timing Analysis with Clock Skew

Timing Analysis with Clock Skew , Mark Horowitz 1, & Dean Liu 1 David_Harris@hmc.edu, {horowitz, dliu}@vlsi.stanford.edu March, 1999 Harvey Mudd College Claremont, CA 1 (with Stanford University, Stanford, CA) Outline Introduction Timing

More information

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

C.K. Ken Yang UCLA Courtesy of MAH EE 215B Decoders: Logical Effort Applied C.K. Ken Yang UCLA yang@ee.ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 6.2.2 (Ratio-ed logic) W&H 6.2.2 Overview We have now gone through the basics of decoders,

More information

Digital Logic Design - Chapter 4

Digital Logic Design - Chapter 4 Digital Logic Design - Chapter 4 1. Analyze the latch circuit shown below by obtaining timing diagram for the circuit; include propagation delays. Y This circuit has two external input and one feedback

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Sequential Logic Stephen A. Edwards Columbia University Summer 2017 State-Holding Elements Bistable Elements S Latch Latch Positive-Edge-Triggered Flip-Flop Flip-Flop with

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 2001 Advanced Digital Integrated Circuits EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

More information

Digital Electronics Final Examination. Part A

Digital Electronics Final Examination. Part A Digital Electronics Final Examination Part A Spring 2009 Student Name: Date: Class Period: Total Points: /50 Converted Score: /40 Page 1 of 13 Directions: This is a CLOSED BOOK/CLOSED NOTES exam. Select

More information

Clocking Issues: Distribution, Energy

Clocking Issues: Distribution, Energy EE M216A.:. Fall 2010 Lecture 12 Clocking Issues: istribution, Energy Prof. ejan Marković ee216a@gmail.com Clock istribution Goals: eliver clock to all memory elements with acceptable skew eliver clock

More information

Lecture #4: Potpourri

Lecture #4: Potpourri Lecture #4: Potpourri Paul Hartke Phartke@stanford.edu Stanford EE183 April 15, 2002 Tutorial/Verilog Questions? Tutorial is mostly done, right? Due tonight at Midnight (Mon 4/14/02) Turn in copies of

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Midterm02 Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Thursday Nov. 16 th In normal lecture (13:00-14:15)

More information

Reducing Delay Uncertainty in Deeply Scaled Integrated Circuits Using Interdependent Timing Constraints

Reducing Delay Uncertainty in Deeply Scaled Integrated Circuits Using Interdependent Timing Constraints Reducing Delay Uncertainty in Deeply Scaled Integrated Circuits Using Interdependent Timing Constraints Emre Salman and Eby G. Friedman Department of Electrical and Computer Engineering University of Rochester

More information

Lecture 8: Combinational Circuits

Lecture 8: Combinational Circuits Introduction to CMOS VLSI Design Lecture 8: Combinational Circuits David Harris Harvey Mudd College Spring 004 Outline ubble Pushing Compound Gates Logical Effort Example Input Ordering symmetric Gates

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

Written exam with solutions IE1204/5 Digital Design Monday 23/

Written exam with solutions IE1204/5 Digital Design Monday 23/ Written exam with solutions IE204/5 Digital Design Monday 23/0 207 4.00-8.00 General Information Examiner: Ingo Sander. Teacher: Kista, William Sandvist Exam text has to be returned when you hand in your

More information

UMBC. At the system level, DFT includes boundary scan and analog test bus. The DFT techniques discussed focus on improving testability of SAFs.

UMBC. At the system level, DFT includes boundary scan and analog test bus. The DFT techniques discussed focus on improving testability of SAFs. Overview Design for testability(dft) makes it possible to: Assure the detection of all faults in a circuit. Reduce the cost and time associated with test development. Reduce the execution time of performing

More information

Structural Delay Testing Under Restricted Scan of Latch-based Pipelines with Time Borrowing

Structural Delay Testing Under Restricted Scan of Latch-based Pipelines with Time Borrowing Structural Delay Testing Under Restricted Scan of Latch-based Pipelines with Borrowing Kun Young Chung and Sandeep K. Gupta University of Southern California, EE Systems Abstract High-speed circuits use

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

Hw 6 due Thursday, Nov 3, 5pm No lab this week

Hw 6 due Thursday, Nov 3, 5pm No lab this week EE141 Fall 2005 Lecture 18 dders nnouncements Hw 6 due Thursday, Nov 3, 5pm No lab this week Midterm 2 Review: Tue Nov 8, North Gate Hall, Room 105, 6:30-8:30pm Exam: Thu Nov 10, Morgan, Room 101, 6:30-8:00pm

More information

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: PDP, EDP, Intersignal Correlations, Glitching, Top

More information