GMU, ECE 680 Physical VLSI Design 1

Size: px
Start display at page:

Download "GMU, ECE 680 Physical VLSI Design 1"

Transcription

1 ECE680: Physical VLSI Design Chapter VII Timing Issues in Digital Circuits (chapter 10 in textbook) GMU, ECE 680 Physical VLSI Design 1

2 Synchronous Timing (Fig. 10 1) CLK In R Combinational 1 R Logic 2 C in C out Out T > t c q + t logic + t su t hold < t c q, cd + t logic, cd hold c q, cd logic, cd GMU, ECE 680 Physical VLSI Design 2

3 Timing Definitions Latch Parameters D Q Clk Clk D PW m t hold T t su Q t c-q t d-q Delays can be different for rising and falling data transitions GMU, ECE 680 Physical VLSI Design 3

4 Register Parameters D Q Clk Clk T D t hold t su Q t c-q Delays can be different for rising and falling data transitions GMU, ECE 680 Physical VLSI Design 4

5 Clock Uncertainties Devices 4 Power Supply 3 Interconnect 2 6 Capacitive Load 1 Clock Generation 5 Temperature 7 Coupling to Adjacent Lines Sources of clock uncertainty GMU, ECE 680 Physical VLSI Design 5

6 Clock Nonidealities Clock skew Spatial variation in temporally equivalent clock edges; deterministic + random, t SK Clock jitter Temporal variations in consecutive edges of the clock signal; modulation + random noise Cycle to cycle (short term) t JS Long term t JL Variation of the pulse width Important for level sensitive clocking GMU, ECE 680 Physical VLSI Design 6

7 Clock Skew and Jitter Clk t SK Clk t JS Both skew and jitter affect the effective cycle time Only skew affects the race margin T clk + δ 2t jitter > t c q + t logic + t su δ + 2t jitter + t hold < t c q, cd + t logic, cd Page 501 GMU, ECE 680 Physical VLSI Design 7

8 Clock Skew # of registers Earliest occurrence of Clk edge Nominal /2 Latest occurrence of Clk edge Nominal + /2 Insertion delay Max Clk skew Clk delay GMU, ECE 680 Physical VLSI Design 8

9 Positive and Negative Skew In R1 R2 R3 Combinational Combinational D Q D Q Logic D Q Logic CLK t CLK1 t CLK2 t CLK3 delay (a) Positive skew delay In R1 D Q Combinational Logic R2 D Q Combinational Logic R3 D Q t CLK1 t CLK2 t CLK3 delay delay CLK (b) Negative skew GMU, ECE 680 Physical VLSI Design 9

10 Positive Skew T CLK CLK1 T CLK 1 3 CLK2 2 4 t h Launching edge arrives before the receiving edge GMU, ECE 680 Physical VLSI Design 10

11 Negative Skew T CLK + CLK1 T CLK 1 3 CLK2 2 4 Receiving edge arrives before the launching edge GMU, ECE 680 Physical VLSI Design 11

12 Timing Constraints In R1 D Q Combinational Logic R2 D Q CLK t CLK1 t CLK2 t c q t logic t c q, cd t su, t hold t logic, cd Minimum cycle time: T = t c q + t su + t logic Worst case is when receiving edge arrives early (positive ) GMU, ECE 680 Physical VLSI Design 12

13 Timing Constraints In D R1 Q Combinational Logic R2 D Q CLK t CLK1 t CLK2 t c q t c q, cd t logic t logic, cd t su, t hold Hold time constraint: t (c q, cd) + t (logic, cd) > t hold + Worst case is when receiving edge arrives late Race between data and clock GMU, ECE 680 Physical VLSI Design 13

14 Impact of Jitter T CLK CLK -t ji tte r t jitter t ji tte r In REGS CLK t c-q, t c-q, cd t su, t hold t jitter Combinational Logic t t logic log ic, cd GMU, ECE 680 Physical VLSI Design 14

15 Longest Logic Path in Edge Triggered Systems Clk T Clk-Q T T LM T SU T JI + Latest point of launching Earliest arrival of next cycle GMU, ECE 680 Physical VLSI Design 15

16 Clock Constraints in Edge Triggered Systems If launching edge is late and receiving edge is early, the data will not be too late if: T c-q + T LM + T SU < T T JI,1 T JI,2 - Minimum cycle time is determined by the maximum delays through the logic T c-q + T LM + T SU T JI < T Skew can be either positive or negative GMU, ECE 680 Physical VLSI Design 16

17 Shortest Path Earliest point of launching Clk T Clk-Q T Lm Clk T H Nominal clock edge Data must not arrive before this time Example 10.1 GMU, ECE 680 Physical VLSI Design 17

18 Clock Constraints in Edge Triggered Systems If launching edge is early and receiving edge is late: T c-q + T LM T JI,1 < T H + T JI,2 + Minimum logic delay T c-q + T LM < T H + 2T JI + T clk + δ 2t jitter > t c q + t logic + t su δ + 2t jitter + t hold < t c q, cd + t logic, cd GMU, ECE 680 Physical VLSI Design 18

19 How to counter Clock Skew? Negative Skew REG RE EG. RE EG log Out In REG Positive Skew Clock Distribution Data and Clock Routing GMU, ECE 680 Physical VLSI Design 19

20 Flip Flop Flop Based Timing Logic delay Skew Flip-flop delay Flip -flop Logic T SU T Clk-Q Representation after M. Horowitz, VLSI Circuits i T clk + δ 2t jitter > t c q + t logic + t su δ + 2t jitter + t hold < t c q, cd + t logic, cd GMU, ECE 680 Physical VLSI Design 20

21 Flip Flops Flops and Dynamic Logic Logic delay T SU T SU T Clk-Q T Clk-Q Precharge Evaluate Logic delay Evaluate Precharge Flip flops p are used only with static logic GMU, ECE 680 Physical VLSI Design 21

22 Latch timing t D-Q When data arrives to transparent latch D Q Latch is a soft barrier Clk t Clk-Q When data arrives to closed latch Data has to be re-launched GMU, ECE 680 Physical VLSI Design 22

23 Single Phase Clock with Latches Latch Logic T skl T skl T skt T skt Clk PW P GMU, ECE 680 Physical VLSI Design 23

24 Latch Based Design L1 latch is transparent L2 latch is transparent when =0 when =1 L1 Lth Latch Logic L2 Lth Latch Logic GMU, ECE 680 Physical VLSI Design 24

25 Slack borrowing In L1 L2 L1 B D Q CLB_A CLB_B D Q D Q a b c d e t pd,a t pd,b CLK1 CLK2 CLK1 T CLK CLK1 CLK2 slack passed to next stage t pd,a t DQ t pd,b t DQ a valid b valid c valid e valid d valid GMU, ECE 680 Physical VLSI Design 25

26 Latch Based Timing Static logic Skew L1 Latch Logic L2 Latch L2 latch L1 latch Logic Long path Can tolerate skew! Short path GMU, ECE 680 Physical VLSI Design 26

27 Clock Distribution H-tree CLK Clock is distributed in a tree-like fashion GMU, ECE 680 Physical VLSI Design 27

28 More realistic H tree [Restle98] GMU, ECE 680 Physical VLSI Design 28

29 The Grid System Driver GCLK GCLK Driver Driver GCLK No rc-matching Large power Driver GCLK GMU, ECE 680 Physical VLSI Design 29

30 Example: DEC Alpha Clock Frequency: 300 MHz Million Transistors Total Clock Load: 3.75 nf Power in Clock Distribution network : 20 W (out of 50) Uses Two Level Clock Distribution: Single 6-stage driver at center of chip Secondary buffers drive left and right side clockgridinmetal3andmetal4 in and Metal4 Total driver size: 58 cm! GMU, ECE 680 Physical VLSI Design 30

31 21164 Clocking t rise = 0.35ns t cycle = 3.3ns Clock waveform final drivers pre driver Location of clock driver on die t skew = 150ps 2 phase single wire clock, distributed ib d globally ll 2 distributed driver channels Reduced RC delay/skew Improved thermal distribution 3.75nF clock load 58 cm final driver width Local inverters for latching Conditional clocks in caches to reduce power More complex race checking Device variation GMU, ECE 680 Physical VLSI Design 31

32 Clock Drivers GMU, ECE 680 Physical VLSI Design 32

33 Clock Skew in Alpha Processor GMU, ECE 680 Physical VLSI Design 33

34 EV6 (Alpha 21264) Clocking 600 MHz 0.35 micron CMOS t cycle = 1.67ns t rise = 0.35ns Global clock waveform PLL t skew = 50ps 2 Phase, with multiple conditional buffered clocks 2.8 nf clock load 40 cm final driver width Local clocks can be gated off to save power Reduced load/skew Reduced thermal issues Multiple clocks complicate race checking GMU, ECE 680 Physical VLSI Design 34

35 21264 Clocking GMU, ECE 680 Physical VLSI Design 35

36 EV6 Clock Results ps ps GCLK Skew GCLK Rise Times (at Vdd/2 Crossings) (20% to 80% Extrapolated to 0% to 100%) GMU, ECE 680 Physical VLSI Design 36

37 EV7 Clock Hierarchy Active Skew Management and Multiple Clock Domains DLL NCLK (Mem Ctrl) DLL DLL + widely dispersed drivers + DLLs compensate static and low frequency variation + divides design and verification effort L2L CLK (L2 Cache) GCLK (CPU Core) PLL L2R CLK (L2 Cache) - DLL design and verification is added work + tailored clocks SYSCLK 37

38 Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal 2) Ensures the correct ordering of events Truly asynchronous design 1) Completion is ensured by careful timing analysis 2) Ordering of events is implicit in logic Self timed design 1) Completion ensured by completion signal 2) Ordering imposed by handshaking protocol GMU, ECE 680 Physical VLSI Design 38

39 Synchronous Pipelined Datapath In R1 D Q Logic Block #1 R2 D Q Logic Block #2 R3 D Q Logic Block #3 R4 D Q CLK t pd,reg t pd1 t pd2 t pd3 Advantages: disadvantages: Easy to integrate Frequency assume the worst case of logic GMU, ECE 680 Physical VLSI Design 39

40 Self Timed Pipelined Datapath Req Req Req Req Ack HS Ack HS Ack HS ACK Startt Done Startt Done Startt Done In R1 F1 R2 F2 R3 F3 Out t pf1 t pf2 t pf3 GMU, ECE 680 Physical VLSI Design 40

41 Completion Signal Generation In LOGIC NETWORK Out Start DELAY MODULE Done Using Delay Element (e.g. in memories) GMU, ECE 680 Physical VLSI Design 41

42 Completion Signal Generation Using Redundant Signal Encoding GMU, ECE 680 Physical VLSI Design 42

43 Completion Signal in DCVSL V DD V DD Start B0 B1 Done B0 B1 In1 In1 In2 In2 PDN PDN Start GMU, ECE 680 Physical VLSI Design 43

44 Self Timed Adder Start V DD P P P P P 0 P 1 P 2 P 3 Start V DD Done C 0 C 0 C 1 C 2 C 3 C 4 C 4 C 4 G 0 G 1 G 2 G 3 C 3 C 4 C 3 Start Startt P 0 P 1 V DD P 2 P 3 C 2 C 2 C 1 Start C 0 C 1 C 2 C 3 C 4 (b) Completion signal C 4 C 1 C 0 K 0 K 1 K 2 K 3 Start (a) Differential carry generation GMU, ECE 680 Physical VLSI Design 44

45 Completion Signal Using Current Sensing Inputs Start Register Input V DD Static CMOS Logic GND sense Current Sensor A Output Start A B t delay t overlap Min Delay Generator B Done Done Output t MDG t pd-nor valid GMU, ECE 680 Physical VLSI Design 45

46 Hand Shaking Protocol Req Ack Req 2 SENDER Data RECEIVER Ack 3 (a) Sender-receiver configuration Data 1 1 Two Phase Handshake cycle 1 cycle 2 Sender s action Receiver s action (b) Timing i diagram GMU, ECE 680 Physical VLSI Design 46

47 Event Logic The Muller C Element A B A B F n C F 0 1 F n 1 0 F n (a) Schematic (b) Truth table V DD V DD V DD A B S R Q F A B B B F A F (a) Logic A B B (b) Majority Function (c) Dynamic GMU, ECE 680 Physical VLSI Design 47

48 2-Phase Handshake Protocol Sender logic Data ready Data Receiverer logic Data accepted C Req Ack Handshake logic Advantage : FAST - minimal # of signaling events (important for global interconnect) Disadvantage : edge - sensitive, has state GMU, ECE 680 Physical VLSI Design 48

49 Example: Self-timed FIFO In R1 R2 R3 Out En Done Req i C C C Req 0 Ack i Ack o All 1s or 0s -> pipeline empty Alternating 1s and 0s -> pipeline full GMU, ECE 680 Physical VLSI Design 49

50 2 Phase Protocol GMU, ECE 680 Physical VLSI Design 50

51 Example From [Horowitz] GMU, ECE 680 Physical VLSI Design 51

52 Example GMU, ECE 680 Physical VLSI Design 52

53 Example GMU, ECE 680 Physical VLSI Design 53

54 Example GMU, ECE 680 Physical VLSI Design 54

55 4-Phase Handshake Protocol Req 2 4 Sender s action Receiver s action Ack 3 5 Data 1 1 Cycle 1 Cycle 2 Also known as RTZ Slower, but unambiguous GMU, ECE 680 Physical VLSI Design 55

56 4-Phase Handshake Protocol Implementation using Muller C elements Sender logic Data Receiver logic Data ready Data accepted C C S Req Ack Handshake logic GMU, ECE 680 Physical VLSI Design 56

57 Self Resetting Logic completion detection (L1) completion detection (L2) Precharged Precharged Precharged Logic Block Logic Block Logic Block (L1) (L2) (L3) completion detection (L3) V DD A B C int out Post charge logic GMU, ECE 680 Physical VLSI Design 57

58 Clock Delayed Domino GND CLK1 CLK2 (to next stage) V DD Q1 (also D2) D1 Pulldown Network GMU, ECE 680 Physical VLSI Design 58

59 Asynchronous Synchronous y Interface Asynchronous system f in Synchronous system f CLK Synchronization GMU, ECE 680 Physical VLSI Design 59

60 Synchronizers and Arbiters Arbiter: Circuit to decide which of 2 events occurred first Synchronizer: Arbiter with clock as one of the inputs Problem: Circuit HAS to make a decision in limited time which decision is not important Caveat: It is impossible to ensure correct operation But, we can decrease the error probability at the expense of delay GMU, ECE 680 Physical VLSI Design 60

61 A Simple Synchronizer CLK D int I 1 Q CLK I 2 Data sampled on rising edge of the clock Latch willeventually resolve the signal value, but... this might take infinite time! GMU, ECE 680 Physical VLSI Design 61

62 Synchronizer: Output Trajectories 2.0 V out time [ps] Single-pole l model for a flip-flop GMU, ECE 680 Physical VLSI Design 62

63 Mean Time to Failure GMU, ECE 680 Physical VLSI Design 63

64 Example T f = 10 nsec = T T signal = 50 nsec t r = 1 nsec t=310psec V IH - V IL = 1 V (V DD = 5 V) N(T) = errors/sec MTF (T) = sec = 8.3 years MTF (0) = 2.5 sec GMU, ECE 680 Physical VLSI Design 64

65 Influence of Noise p(v) Uniform distribution around VM T logarithmic reduction 0 V IL V IH Still Uniform Initial Distribution Low amplitude noise does not influence synchronization behavior GMU, ECE 680 Physical VLSI Design 65

66 Typical Synchronizers 2 phase clocking circuit 2 Q 1 Q 2 1 Using delay line GMU, ECE 680 Physical VLSI Design 66

67 Cascaded Synchronizers Reduce MTF In O 1 O 2 Out Sync Sync Sync GMU, ECE 680 Physical VLSI Design 67

68 Arbiters Req1 Req2 Arbiter Ack1 Ack2 Req1 A B Ack2 (a) Schematic symbol Req2 Ack1 Req11 (b) Implementation Req2 A V T gap (c) () Timing diagram B Ack1 metastable t GMU, ECE 680 Physical VLSI Design 68

69 PLL Based Synchronization Chip 1 Chip 2 Digital System Data Digital System f system = N x f crystal PLL Divider reference clock PLL Clock Buffer Crystal Oscillator f crystal 200<Mhz GMU, ECE 680 Physical VLSI Design 69

70 PLL Block Diagram Reference clock Phase detector Up Charge pump Loop filter v cont VCO Local clock Down Divide by N System Clock GMU, ECE 680 Physical VLSI Design 70

71 Phase Detector Output before filtering ref local clock (a) Output ref local clock Output Output (Low pass filtered) (b) V DD Transfer characteristic phase error (deg) (c) GMU, ECE 680 Physical VLSI Design 71

72 Phase Frequency Detector Rst D Q UP B B A A Rst D Q DN B (a) schematic UP = 0 DN = 1 A UP = 0 DN = 0 B (b) state transition diagram UP = 1 DN = 0 A A A B UP DN B UP DN (c) Timing waveforms GMU, ECE 680 Physical VLSI Design 72

73 PFD Response to Frequency A B UP DN GMU, ECE 680 Physical VLSI Design 73

74 PFD Phase Transfer Characteristic Average (UP-DN) V DD 2 2 phase error (deg) GMU, ECE 680 Physical VLSI Design 74

75 Charge Pump V DD UP To VCO Control Input DN GMU, ECE 680 Physical VLSI Design 75

76 PLL Simulation Contro ol Voltage (V V) ref div vco ref Time ( s) div vco GMU, ECE 680 Physical VLSI Design 76

77 Clock Generation using DLLs Delay Locked Loop (Delay Line Based) f REF Phase Det U D Charge Pump Filter DL f O Phase Locked Loop (VCO Based) f REF U N PD D CP VCO Filter f O GMU, ECE 680 Physical VLSI Design 77

78 Delay Locked Loop F REF PH Phase detect U D Charge pump C V CTRL VCDL (a) F O REF OUT UP DN (b) PH V CTRL Delay (c) GMU, ECE 680 Physical VLSI Design 78

79 DLL Based Clock Distribution VCDL 晻 Digital Circuitit CP/LF Phase Detector GLOBAL CLK VCDL 晻 Digital Circuit CP/LF Phase Detector GMU, ECE 680 Physical VLSI Design 79

Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003

Timing Issues. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić. January 2003 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić Timing Issues January 2003 1 Synchronous Timing CLK In R Combinational 1 R Logic 2 C in C out Out 2

More information

The Linear-Feedback Shift Register

The Linear-Feedback Shift Register EECS 141 S02 Timing Project 2: A Random Number Generator R R R S 0 S 1 S 2 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 The Linear-Feedback Shift Register 1 Project Goal Design a 4-bit LFSR SPEED, SPEED,

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis EE115C Winter 2017 Digital Electronic Circuits Lecture 19: Timing Analysis Outline Timing parameters Clock nonidealities (skew and jitter) Impact of Clk skew on timing Impact of Clk jitter on timing Flip-flop-

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits

EE241 - Spring 2006 Advanced Digital Integrated Circuits EE241 - Spring 2006 Advanced Digital Integrated Circuits Lecture 20: Asynchronous & Synchronization Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal

More information

Xarxes de distribució del senyal de. interferència electromagnètica, consum, soroll de conmutació.

Xarxes de distribució del senyal de. interferència electromagnètica, consum, soroll de conmutació. Xarxes de distribució del senyal de rellotge. Clock skew, jitter, interferència electromagnètica, consum, soroll de conmutació. (transparències generades a partir de la presentació de Jan M. Rabaey, Anantha

More information

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders EECS 427 Lecture 14: Timing Readings: 10.1-10.3 EECS 427 F09 Lecture 14 1 Reminders CA assignments Please submit CA6 by tomorrow noon CA7 is due in a week Seminar by Prof. Bora Nikolic SRAM variability

More information

Lecture 25. Dealing with Interconnect and Timing. Digital Integrated Circuits Interconnect

Lecture 25. Dealing with Interconnect and Timing. Digital Integrated Circuits Interconnect Lecture 25 Dealing with Interconnect and Timing Administrivia Projects will be graded by next week Project phase 3 will be announced next Tu.» Will be homework-like» Report will be combined poster Today

More information

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Mark McDermott Electrical and Computer Engineering The University of Texas at Austin 9/27/18 VLSI-1 Class Notes Why Clocking?

More information

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2007 Advanced Digital Integrated Circuits Lecture 25: Synchronization Timing Announcements Homework 5 due on 4/26 Final exam on May 8 in class Project presentations on May 3, 1-5pm 2 1 Project

More information

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics Lecture 23 Dealing with Interconnect Impact of Interconnect Parasitics Reduce Reliability Affect Performance Classes of Parasitics Capacitive Resistive Inductive 1 INTERCONNECT Dealing with Capacitance

More information

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements.

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. 1 2 Introduction Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. Defines the precise instants when the circuit is allowed to change

More information

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory

Lecture 27: Latches. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 27: Latches Timing Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday,

More information

Issues on Timing and Clocking

Issues on Timing and Clocking ECE152B TC 1 Issues on Timing and Clocking X Combinational Logic Z... clock clock clock period ECE152B TC 2 Latch and Flip-Flop L CK CK 1 L1 1 L2 2 CK CK CK ECE152B TC 3 Clocking X Combinational Logic...

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory

Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm Final exam, Monday, May :30pm, 241 Cory EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 28: Latch-Based iming Conclusion Announcements Wrapping-up the class: Final presentations May 8, 1-5pm, BWRC Final reports due May 7, 8pm

More information

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M.

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience and IEEE Press, January 2003 Nov. 14,

More information

GMU, ECE 680 Physical VLSI Design

GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

Clocking Issues: Distribution, Energy

Clocking Issues: Distribution, Energy EE M216A.:. Fall 2010 Lecture 12 Clocking Issues: istribution, Energy Prof. ejan Marković ee216a@gmail.com Clock istribution Goals: eliver clock to all memory elements with acceptable skew eliver clock

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

Designing Sequential Logic Circuits

Designing Sequential Logic Circuits igital Integrated Circuits (83-313) Lecture 5: esigning Sequential Logic Circuits Semester B, 2016-17 Lecturer: r. Adam Teman TAs: Itamar Levi, Robert Giterman 26 April 2017 isclaimer: This course was

More information

Skew-Tolerant Circuit Design

Skew-Tolerant Circuit Design Skew-Tolerant Circuit Design David Harris David_Harris@hmc.edu December, 2000 Harvey Mudd College Claremont, CA Outline Introduction Skew-Tolerant Circuits Traditional Domino Circuits Skew-Tolerant Domino

More information

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages) EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 12: SRAM Design ECC Timing Announcements Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL LOGIC

More information

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning i Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

More information

Y. Tsiatouhas. VLSI Systems and Computer Architecture Lab

Y. Tsiatouhas. VLSI Systems and Computer Architecture Lab CMOS INTEGRATE CIRCUIT ESIGN TECHNIUES University of Ioannina Memory Elements and other Circuits ept. of Computer Science and Engineering Y. Tsiatouhas CMOS Integrated Circuit esign Techniques Overview.

More information

Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering. Jungli, Taiwan

Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering. Jungli, Taiwan Chapter 7 Sequential Circuits Jin-Fu Li Advanced Reliable Systems (ARES) Lab. epartment of Electrical Engineering National Central University it Jungli, Taiwan Outline Latches & Registers Sequencing Timing

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning Sequential Logic Circuits November 2002 Naming Conventions In our text: a latch is level sensitive

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

Timing Analysis with Clock Skew

Timing Analysis with Clock Skew , Mark Horowitz 1, & Dean Liu 1 David_Harris@hmc.edu, {horowitz, dliu}@vlsi.stanford.edu March, 1999 Harvey Mudd College Claremont, CA 1 (with Stanford University, Stanford, CA) Outline Introduction Timing

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining

EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 1 EE382 Processor Design Winter 1999 Chapter 2 Lectures Clocking and Pipelining Slide 2 Topics Clocking Clock Parameters Latch Types Requirements for reliable clocking Pipelining Optimal pipelining

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

Chapter 10 SOLUTIONS

Chapter 10 SOLUTIONS Chapter Problem Set Chapter SOLUTIONS. [C, None, 9.] For the circuit in Figure., assume a unit delay through the Register and Logic blocks (i.e., t R = t L = ). Assume that the registers, which are positive

More information

Motivation for CDR: Deserializer (1)

Motivation for CDR: Deserializer (1) Motivation for CDR: Deserializer (1) Input data 1:2 DMUX 1:2 DMUX channel 1:2 DMUX Input clock 2 2 If input data were accompanied by a well-synchronized clock, deserialization could be done directly. EECS

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Synchronizers, Arbiters, GALS and Metastability

Synchronizers, Arbiters, GALS and Metastability Synchronizers, Arbiters, GALS and Metastability David Kinniment University of Newcastle, UK Based on contributions from: Alex Bystrov, Keith Heron, Nikolaos Minas, Gordon Russell, Alex Yakovlev, and Jun

More information

Lecture 9: Sequential Logic Circuits. Reading: CH 7

Lecture 9: Sequential Logic Circuits. Reading: CH 7 Lecture 9: Sequential Logic Circuits Reading: CH 7 Sequential Logic FSM (Finite-state machine) Inputs Current State COMBINATIONAL LOGIC Registers Outputs = f(current, inputs) Next state 2 storage mechanisms

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

Digital VLSI Design. Lecture 8: Clock Tree Synthesis

Digital VLSI Design. Lecture 8: Clock Tree Synthesis Digital VLSI Design Lecture 8: Clock Tree Synthesis Semester A, 2018-19 Lecturer: Dr. Adam Teman January 12, 2019 Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were

More information

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1>

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1> Chapter 3 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 3 Chapter 3 :: Topics Introduction Latches and Flip-Flops Synchronous Logic Design Finite

More information

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register Description: The NTE4035B is a 4 bit shift register in a 16 Lead DIP type package constructed with MOS P Channel an N Channel

More information

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS 2 -> ESD PROTECTION CIRCUITS (INPUT PADS) -> ON-CHIP CLOCK GENERATION & DISTRIBUTION -> OUTPUT PADS -> ON-CHIP NOISE DUE TO PARASITIC INDUCTANCE -> SUPER BUFFER

More information

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7 1 Reminders CA assignments CA7 is due Thursday at noon ECE Graduate Symposium Poster session in ECE Atrium on Friday HW4 (detailed

More information

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output Description: The NTE74HC299 is an 8 bit shift/storage register with three state bus interface capability

More information

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset Description: The NTE74HC109 is a dual J K flip flip with set and reset in a 16 Lead plastic DIP

More information

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs Description: The NTE74HC173 is an high speed 3 State Quad D Type Flip Flop in a 16 Lead DIP type package that

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

Itanium TM Processor Clock Design

Itanium TM Processor Clock Design Itanium TM Processor Design Utpal Desai 1, Simon Tam, Robert Kim, Ji Zhang, Stefan Rusu Intel Corporation, M/S SC12-502, 2200 Mission College Blvd, Santa Clara, CA 95052 ABSTRACT The Itanium processor

More information

Hold Time Illustrations

Hold Time Illustrations Hold Time Illustrations EE213-L09-Sequential Logic.1 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential Logic.2 Pingqiang, ShanghaiTech, 2018 Hold Time Illustrations EE213-L09-Sequential

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download:

More information

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits Chapter 3 Chapter 3 :: Topics igital esign and Computer Architecture, 2 nd Edition avid Money Harris and Sarah L. Harris Introduction Latches and Flip Flops Synchronous Logic esign Finite State Machines

More information

EE371 - Advanced VLSI Circuit Design

EE371 - Advanced VLSI Circuit Design EE371 - Advanced VLSI Circuit Design Midterm Examination May 7, 2002 Name: No. Points Score 1. 18 2. 22 3. 30 TOTAL / 70 In recognition of and in the spirit of the Stanford University Honor Code, I certify

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information

Stop Watch (System Controller Approach)

Stop Watch (System Controller Approach) Stop Watch (System Controller Approach) Problem Design a stop watch that can measure times taken for two events Inputs CLK = 6 Hz RESET: Asynchronously reset everything X: comes from push button First

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 18 CMOS Sequential Circuits - 1 guntzel@inf.ufsc.br

More information

Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern integrated circuits

Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern integrated circuits Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern egrated circuits 3. Clock skew 3.1. Definitions For two sequentially adjacent registers, as shown in figure.1, C

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC0 74HC/HCT/HCU/HCMOS Logic Family Specificatio The IC0 74HC/HCT/HCU/HCMOS Logic Package Information The IC0 74HC/HCT/HCU/HCMOS

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

More information

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 5. Sequential Logic 6.004x Computation Structures Part 1 igital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L5: Sequential Logic, Slide #1 Something We Can t Build (Yet) What if you were

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

EE141- Spring 2007 Digital Integrated Circuits

EE141- Spring 2007 Digital Integrated Circuits EE141- Spring 27 igital Integrated Circuits Lecture 19 Sequential Circuits 1 Administrative Stuff Project Ph. 2 due Tu. 5pm 24 Cory box + email ee141- project@bwrc.eecs.berkeley.edu Hw 8 Posts this Fr.,

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC0 74C/CT/CU/CMOS Logic Family Specifications The IC0 74C/CT/CU/CMOS Logic Package Information The IC0 74C/CT/CU/CMOS

More information

Experiment 9 Sequential Circuits

Experiment 9 Sequential Circuits Introduction to Counters Experiment 9 Sequential Circuits The aim of this experiment is to familiarize you, frst with the basic sequential circuit device called a fip fop, and then, with the design and

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC6 74HC/HCT/HCU/HCMOS ogic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

Implementation of Clock Network Based on Clock Mesh

Implementation of Clock Network Based on Clock Mesh International Conference on Information Technology and Management Innovation (ICITMI 2015) Implementation of Clock Network Based on Clock Mesh He Xin 1, a *, Huang Xu 2,b and Li Yujing 3,c 1 Sichuan Institute

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements:., Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University

More information

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI Chapter 13 Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS SET-RESET (SR) ARBITER LATCHES FLIP FLOPS EDGE TRIGGERED DFF FF TIMING Joseph A. Elias, Ph.D. Adjunct Professor, University

More information

Problem Set 9 Solutions

Problem Set 9 Solutions CSE 26 Digital Computers: Organization and Logical Design - 27 Jon Turner Problem Set 9 Solutions. For each of the sequential circuits shown below, draw in the missing parts of the timing diagrams. You

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

ALU, Latches and Flip-Flops

ALU, Latches and Flip-Flops CSE14: Components and Design Techniques for Digital Systems ALU, Latches and Flip-Flops Tajana Simunic Rosing Where we are. Last time: ALUs Plan for today: ALU example, latches and flip flops Exam #1 grades

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

Sequential Logic Design: Controllers

Sequential Logic Design: Controllers Sequential Logic Design: Controllers Controller Design, Flip Flop Timing Copyright (c) 2012 Sean Key Standard Controller Architecture Controller A circuit that implements a FSM is referred to as a controller

More information

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3 MOSIS REPORT Spring 2010 MOSIS Report 1 MOSIS Report 2 MOSIS Report 3 MOSIS Report 1 Design of 4-bit counter using J-K flip flop I. Objective The purpose of this project is to design one 4-bit counter

More information

Design of CMOS Adaptive-Bandwidth PLL/DLLs

Design of CMOS Adaptive-Bandwidth PLL/DLLs Design of CMOS Adaptive-Bandwidth PLL/DLLs Jaeha Kim May 2004 At Samsung Electronics, Inc. Adaptive-Bandwidth PLL/DLL PLL/DLLs that scale their loop dynamics proportionally with the reference frequency

More information

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007 EECS 150 - Components and Design Techniques for Digital Systems FSMs 9/11/2007 Sarah Bird Electrical Engineering and Computer Sciences University of California, Berkeley Slides borrowed from David Culler

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

Synchronization and Arbitration in GALS

Synchronization and Arbitration in GALS Electronic Notes in Theoretical Computer Science 245 (2009) 85 101 www.elsevier.com/locate/entcs Synchronization and Arbitration in GALS David Kinniment 1,2 School of EECE Newcastle University Newcastle

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Last modified on April 14, 2004 by Brian Leibowitz (bsl@eecs.berkeley.edu) Jan Rabaey Homework

More information

Managing Physical Design Issues in ASIC Toolflows Complex Digital Systems Christopher Batten February 21, 2006

Managing Physical Design Issues in ASIC Toolflows Complex Digital Systems Christopher Batten February 21, 2006 Managing Physical Design Issues in ASI Toolflows 6.375 omplex Digital Systems hristopher Batten February 1, 006 Managing Physical Design Issues in ASI Toolflows Logical Effort Physical Design Issues lock

More information

NTE40160B, NTE40161B NTE40162B, NTE40163B Integrated Circuit CMOS, Synchronous Programmable 4 Bit Counters

NTE40160B, NTE40161B NTE40162B, NTE40163B Integrated Circuit CMOS, Synchronous Programmable 4 Bit Counters NTE40160B, NTE40161B NTE40162B, NTE40163B Integrated Circuit CMOS, Synchronous Programmable 4Bit Counters Description: The NTE40160B (Decade w/asynchronous Clear), NTE40161B (Binary w/asynchronous Clear),

More information