Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits"

Transcription

1 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic esigning i Sequential Logic Circuits November 2002

2 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive feedback charge-based

3 Naming Conventions In our text: alatchislevel level sensitive a register is edge-triggered There are many different naming conventions For instance, many books call edgetriggered elements flip-flops This leads to confusion however

4 Latch versus Register Latch stores data when clock is low Register stores data when clock rises Clk Clk Clk Clk

5 Latches Positive Latch Negative Latch In G Out In Out G clk In Out clk In Out Out stable Out follows In Out stable Out follows In

6 Latch-Based esign N latch is transparent when φ = 0 φ P latch is transparent when φ = 1 N Latch Logic P Latch Logic

7 Timing efinitions t su t hold t Register ATA STABLE t t c 2 q ATA STABLE t

8 Characterizing Timing t 2 Clk Clk t C 2 Register t C 2 Latch

9 Maximum Clock Frequency φ FF s LOGIC t p,comb t clk- + t p,comb + t setup = T Also: t cdreg + t cdlogic > t hold t cd : contamination delay = minimum delay

10 Positive Feedback: Bi-Stability V i1 V o1 =V i2 V o2 V o1 V i2 V o2 =V i 1 V o1 V 5Vo o1 V i 2 V i1 V o2 V i2 =V o1 A V i25 o1 V 2 C B V i1 = V o2

11 Meta-Stability i2 5V o1 A i2 5V o1 A V i V i C C d B B V i1 5V o2 d Gain should be larger than 1 in the transition region d V i1 5V o2

12 Writing into a Static Latch Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states Converting into a MUX Forcing the state (can implement as NMOS-only)

13 Mux-Based Latches Negative latch (transparent when = 0) Positive latch (transparent when = 1) = Clk + Clk In = Clk + Clk In

14 Mux-Based Latch

15 Mux-Based Latch M M NMOS only Non-overlapping overlapping clocks

16 Master-Slave (Edge-Triggered) Register Master Slave 1 0 M 0 1 M Two opposite latches trigger on edge Also called master-slave latch pair

17 Master-Slave Register Multiplexer-based latch pair I 2 T 2 I 3 I 5 T 4 I 6 M I 1 T 1 I 4 T 3

18 Clk- elay 2.5 Volt ts t c 2 q(lh) t c 2 q(hl) time, nsec

19 Setup Time M 2.0 I 2 2 T 2 lts Vo lts Vo I 2 2 T M time (nsec) time (nsec) (a) T setup nsec (b) T setup nsec

20 Reduced Clock Load Master-Slave Register T 1 I 1 T 2 I 3 I 2 I 4

21 Avoiding Clock Overlap X A B (a) Schematic diagram (b) Overlapping clock pairs

22 Overpowering the Feedback Loop Cross-Coupled Coupled Pairs NOR-based set-reset S S S R 0 0 R R Forbidden State

23 Cross-Coupled Coupled NAN Cross-coupled NANs Added clock V S M 2 M 4 M R 8 M 1 M 3 M 6 S M 5 M 7 R This is not used in datapaths any more, but is a basic building memory cell

24 Sizing Issues S W = 0.5 μm (Volts s) W/L 5 and Volts 1 W = 0.6 μm W = 0.7 μm W = 0.8 μm W = 0.9 μm W = 1 μm time (ns) (a) (b) Output voltage dependence on transistor width Transient response

25 Storage Mechanisms Static ynamic (charge-based)

26 Making a ynamic Latch Pseudo-Static ti

27 More Precise Setup Time Clk t t (a) t 1.05t C 2 t C 2 t Su t 2 C t H (b)

28 Setup/Hold Time Illustrations Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 M Clk- elay Inv1 CP T Clk- ata T Setup-1 Clock T Setup-1 Time t=0 Time

29 Setup/Hold Time Illustrations Circuit it before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 M Clk- elay Inv1 CP T Clk- ata T Setup-1 Clock T Setup-1 Time t=0 Time

30 Setup/Hold Time Illustrations Circuit it before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 M Clk- elay Inv1 CP T Clk- ata T Setup-1 Clock T Setup-1 Time t=0 Time

31 Setup/Hold Time Illustrations Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 M Clk- elay Inv1 T Clk- CP ata Clock T Setup-1 Time T Setup-1 t=0 Time

32 Setup/Hold Time Illustrations Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 M Clk- elay T Clk- Inv1 CP ata Clock T Setup-1 Time T Setup-1 t=0 Time

33 Setup/Hold Time Illustrations Hold-1 case CN TG1 1 S M Inv2 M Clk- elay Inv1 CP 0 T Clk- Clock ata T Hold-1 Time T Hold-1 t=0 Time

34 Setup/Hold Time Illustrations Hold-1 case CN TG1 1 S M Inv2 M Clk- elay Inv1 CP 0 T Clk- Clock ata T Hold-1 Time T Hold-1 t=0 Time

35 Setup/Hold Time Illustrations Hold-1 case CN TG1 1 S M Inv2 M Clk- elay Inv1 CP 0 T Clk- T Hold-1 Time Clock ata T Hold-1 t=0 Time

36 Setup/Hold Time Illustrations Hold-1 case CN TG1 1 S M Inv2 M Clk- elay Inv1 T Clk- CP 0 Clock ata T Hold-1 Time T Hold-1 t=0 Time

37 Setup/Hold Time Illustrations Hold-1 case CN TG1 1 S M Inv2 M T Clk- Clk- elay Inv1 CP 0 Clock T Hold-1 ata T Hold-1 Time t=0 Time

38 Other Latches/Registers: C 2 MOS V V M 2 M 6 M 4 X M 8 M 3 C L1 M 7 C L2 M 1 M 5 Master Stage Slave Stage Keepers can be added to make circuit pseudo-staticstatic

39 Insensitive to Clock-Overlap V V V V M 2 M 6 M 2 M 6 M X M 8 X 1 M 3 1 M 7 M 1 M 5 M 1 M 5 (a) (0-0) overlap (b) (1-1) overlap

40 Pipelining a REG a REG log REG Out REG REG log REG Out b REG b REG Reference Pipelined

41 Other Latches/Registers: t TSPC V V V V Out In In Out Positive latch (transparent when = 1) Negative latch (transparent when = 0)

42 Including Logic in TSPC V V V V PUN In 1 In 2 In PN In 1 In 2 Example: logic inside the latch AN latch

43 TSPC Register V V V M 3 M 6 M 9 Y M 2 X M 5 M 8 M 1 M 4 M 7

44 Pulse-Triggered Latches An Alternative ti Approach Ways to design an edge-triggered sequential cell: Master-Slave Pulse-Triggered Latches Latch ata L1 L2 L ata Clk Clk Clk Clk Clk

45 Pulsed Latches V V M 3 M 6 V G M 2 G M 5 M P X G M 1 M 4 M N (a) register (b) glitch generation G (c) glitch clock

46 Pulsed Latches Hybrid Latch Flip-flop (HLFF), AM K-6 and K-7 : P 3 x P 1 M 3 M 6 P M M M 1 M 4

47 Hybrid Latch-FF Timing Volts time (ns)

48 Latch-Based Pipeline In F C 1 C 2 C 3 G Out Compute F compute G

49 Non-Bistable Sequential Circuits Schmitt Trigger In Out V ou t V OH VTC with hysteresis V OL Restores signal slopes V M V M+ V in

50 Noise Suppression using Schmitt Trigger V in V out V M+ V M t 0 t t 0 +t p t

51 CMOS Schmitt Trigger V M 2 M 4 V in X V out M 1 M 3 Moves switching threshold of the first inverter

52 Schmitt Trigger Simulated VTC V M1 1.5 X(V) 1.0 V 0.5 V M2 1.0 x (V) k= 1 V k= k= 3 k= V in (V) V in (V) Voltage-transfer characteristics with hysteresis. The effect of varying the ratio of the PMOS device M 4. The width is k* 0.5 m m.

53 CMOS Schmitt Trigger (2) V M 4 M 3 M 6 In Out M 2 X M 5 V M 1

54 Multivibrator Circuits R S Bistable Multivibrator flip-flop, Schmitt Trigger T Monostable Multivibrator one-shot Astable Multivibrator oscillator

55 Transition-Triggered Triggered Monostable In ELAY t d Out t d

56 Monostable Trigger (RC-based) V In A R B Out C (a) Trigger circuit. In B V M (b) Waveforms. Out t t 1 t 2

57 Astable Multivibrators (Oscillators) N V 1 V 3 V 5 Ring Oscillator 2.0 Volts time (ns) simulated response of 5-stage oscillator

58 Relaxation Oscillator I1 Out 1 I2 Out 2 R C Int T = 2 (log3) RC

59 Voltage Controller Oscillator (VCO) V M6 V M4 Schmitt Trigger restores signal slopes In M2 I ref M1 I ref V contr M5 M3 Current starved inverter 6 t ph L (n nsec) V contr (V) propagation delay as a function of control voltage

60 ifferential elay Element and VCO V o 2 V o 1 v 3 in1 in2 v 1 v 2 v 4 V ctrl delay cell 3.0 two stage VCO 2.5 V 1 V 2 V 3 V time (ns) simulated waveforms of 2-stage VCO

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

GMU, ECE 680 Physical VLSI Design

GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI esign Chapter IV esigning Sequential Logic Circuits (Chapter 7) 1 Sequential Logic Inputs Current State COMBINATIONAL LOGIC Registers Outputs Next state 2 storage mechanisms positive

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders

EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7. EECS 427 F09 Lecture Reminders EECS 427 Lecture 15: Timing, Latches, and Registers Reading: Chapter 7 1 Reminders CA assignments CA7 is due Thursday at noon ECE Graduate Symposium Poster session in ECE Atrium on Friday HW4 (detailed

More information

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS 2 -> ESD PROTECTION CIRCUITS (INPUT PADS) -> ON-CHIP CLOCK GENERATION & DISTRIBUTION -> OUTPUT PADS -> ON-CHIP NOISE DUE TO PARASITIC INDUCTANCE -> SUPER BUFFER

More information

Introduction EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 6: Sequential Logic 3 Registers & Counters 5/9/2010

Introduction EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 6: Sequential Logic 3 Registers & Counters 5/9/2010 EE 224: INTROUCTION TO IGITAL CIRCUITS & COMPUTER ESIGN Lecture 6: Sequential Logic 3 Registers & Counters 05/10/2010 Avinash Kodi, kodi@ohio.edu Introduction 2 A Flip-Flop stores one bit of information

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits Chapter 3 Chapter 3 :: Topics igital esign and Computer Architecture, 2 nd Edition avid Money Harris and Sarah L. Harris Introduction Latches and Flip Flops Synchronous Logic esign Finite State Machines

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register Description: The NTE4035B is a 4 bit shift register in a 16 Lead DIP type package constructed with MOS P Channel an N Channel

More information

Preparation of Examination Questions and Exercises: Solutions

Preparation of Examination Questions and Exercises: Solutions Questions Preparation of Examination Questions and Exercises: Solutions. -bit Subtraction: DIF = B - BI B BI BO DIF 2 DIF: B BI 4 6 BI 5 BO: BI BI 4 5 7 3 2 6 7 3 B B B B B DIF = B BI ; B = ( B) BI ( B),

More information

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop EE210: Switching Systems Lecture 14: State Tables, Diagrams, Latches, and Flip Flop Prof. YingLi Tian Nov. 6, 2017 Department of Electrical Engineering The City College of New York The City University

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS5 J. Wawrzynek Spring 22 2/22/2. [2 pts] Short Answers. Midterm Exam I a) [2 pts]

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Static CMOS Circuits. Example 1

Static CMOS Circuits. Example 1 Static CMOS Circuits Conventional (ratio-less) static CMOS Covered so far Ratio-ed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and Boolean Algebra) Acknowledgements: Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, Contemporary Logic Design (second edition), Pearson

More information

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops General Description These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

More information

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html

More information

HCF4035B 4 STAGE PARALLEL IN/PARALLEL OUT SHIFT REGISTER

HCF4035B 4 STAGE PARALLEL IN/PARALLEL OUT SHIFT REGISTER 4 STAGE PARALLEL IN/PARALLEL OUT SHIFT REGISTER 4 STAGE CLOCKED SHIFT OPERATION SYNCHRONOUS PARALLEL ENTRY ON ALL 4 STAGES JK INPUTS ON FIRST STAGE ASYNCHRONOUS TRUE/COMPLEMENT CONTROL ON ALL OUTPUTS STATIC

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

74AHC373; 74AHCT373. Octal D-type transparant latch; 3-state

74AHC373; 74AHCT373. Octal D-type transparant latch; 3-state Rev. 03 20 May 2008 Product data sheet 1. General description 2. Features The is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics CS755 5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

More information

P-MOS Device and CMOS Inverters

P-MOS Device and CMOS Inverters Lecture 23 P-MOS Device and CMOS Inverters A) P-MOS Device Structure and Oeration B) Relation of Current to t OX, µ V LIMIT C) CMOS Device Equations and Use D) CMOS Inverter V OUT vs. V IN E) CMOS Short

More information

Chapter 6 Flip-Flops, and Registers

Chapter 6 Flip-Flops, and Registers Flip-Flops, and Registers Chapter Overview Up to this point we have focused on combinational circuits, which do not have memory. We now focus on circuits that have state or memory. These are called sequential

More information

CPS 104 Computer Organization and Programming Lecture 11: Gates, Buses, Latches. Robert Wagner

CPS 104 Computer Organization and Programming Lecture 11: Gates, Buses, Latches. Robert Wagner CPS 4 Computer Organization and Programming Lecture : Gates, Buses, Latches. Robert Wagner CPS4 GBL. RW Fall 2 Overview of Today s Lecture: The MIPS ALU Shifter The Tristate driver Bus Interconnections

More information

SRAM Cell, Noise Margin, and Noise

SRAM Cell, Noise Margin, and Noise SRAM Cell, Noise Margin, and Noise C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of MAH and BAW 1 Overview Reading Rabaey 5.3 W&H 2.5 Background Reading a memory cell can disturb its value. In addition,

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

Lecture A: Logic Design and Gates

Lecture A: Logic Design and Gates Lecture A: Logic Design and Gates Syllabus My office hours 9.15-10.35am T,Th or gchoi@ece.tamu.edu 333G WERC Text: Brown and Vranesic Fundamentals of Digital Logic,» Buy it.. Or borrow it» Other book:

More information

54173 DM54173 DM74173 TRI-STATE Quad D Registers

54173 DM54173 DM74173 TRI-STATE Quad D Registers 54173 DM54173 DM74173 TRI-STATE Quad D Registers General Description These four-bit registers contain D-type flip-flops with totempole TRI-STATE outputs capable of driving highly capacitive or low-impedance

More information

Lecture 6: Logical Effort

Lecture 6: Logical Effort Lecture 6: Logical Effort Outline Logical Effort Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary Introduction Chip designers face a bewildering array

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

54AC174/54ACT174 Hex D Flip-Flop with Master Reset

54AC174/54ACT174 Hex D Flip-Flop with Master Reset 54AC174/54ACT174 Hex D Flip-Flop with Master Reset General Description The AC/ ACT174 is a high-speed hex D flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information

More information

MM74HC161 MM74HC163 Synchronous Binary Counter with Asynchronous Clear Synchronous Binary Counter with Synchronous Clear

MM74HC161 MM74HC163 Synchronous Binary Counter with Asynchronous Clear Synchronous Binary Counter with Synchronous Clear September 1983 Revised February 1999 MM74HC161 MM74HC163 Synchronous Binary Counter with Asynchronous Clear Synchronous Binary Counter with Synchronous Clear General Description The MM74HC161 and MM74HC163

More information

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 VLSI Design Adder Design [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 Major Components of a Computer Processor Devices Control Memory Input Datapath

More information

EECS150 - Digital Design Lecture 18 - Counters

EECS150 - Digital Design Lecture 18 - Counters EECS150 - Digital Design Lecture 18 - Counters October 24, 2002 John Wawrzynek Fall 2002 EECS150 - Lec18-counters Page 1 Counters Special sequential circuits (FSMs) that sequence though a set outputs.

More information

EE371 - Advanced VLSI Circuit Design

EE371 - Advanced VLSI Circuit Design EE371 - Advanced VLSI Circuit Design Midterm Examination May 1999 Name: No. Points Score 1. 20 2. 24 3. 26 4. 20 TOTAL / 90 In recognition of and in the spirit of the Stanford University Honor Code, I

More information

ICS97U V Wide Range Frequency Clock Driver. Pin Configuration. Block Diagram. Integrated Circuit Systems, Inc. 52-Ball BGA.

ICS97U V Wide Range Frequency Clock Driver. Pin Configuration. Block Diagram. Integrated Circuit Systems, Inc. 52-Ball BGA. Integrated Circuit Systems, Inc. ICS97U877 1.8V Wide Range Frequency Clock river Recommended Application: R2 Memory Modules / Zero elay Board Fan Out Provides complete R IMM logic solution with ICSSSTU32864

More information

EE115C Digital Electronic Circuits Homework #5

EE115C Digital Electronic Circuits Homework #5 EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56-147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 36

Contents. Chapter 3 Combinational Circuits Page 1 of 36 Chapter 3 Combinational Circuits Page of 36 Contents Combinational Circuits...2 3. Analysis of Combinational Circuits...3 3.. Using a Truth Table...3 3..2 Using a Boolean Function...6 3.2 Synthesis of

More information

Design and Analysis of Comparator Using Different Logic Style of Full Adder

Design and Analysis of Comparator Using Different Logic Style of Full Adder RESEARCH ARTICLE OPEN ACCESS Design and Analysis of Comparator Using Different Logic Style of Full Adder K. Rajasekhar**, P. Sowjanya*, V. Umakiranmai*, R. Harish*, M. Krishna* (** Assistant Professor,

More information

MM74C373 MM74C374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

MM74C373 MM74C374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop MM74C374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop General Description The and MM74C374 are integrated, complementary MOS (CMOS), 8-bit storage elements with 3- STATE outputs. These outputs

More information

EE 330 Lecture 6. Improved Switch-Level Model Propagation Delay Stick Diagrams Technology Files - Design Rules

EE 330 Lecture 6. Improved Switch-Level Model Propagation Delay Stick Diagrams Technology Files - Design Rules EE 330 Lecture 6 Improved witch-level Model Propagation elay tick iagrams Technology Files - esign Rules Review from Last Time MO Transistor Qualitative iscussion of n-channel Operation Bulk ource Gate

More information

74HC393; 74HCT393. Dual 4-bit binary ripple counter

74HC393; 74HCT393. Dual 4-bit binary ripple counter Rev. 03 6 September 2005 Product data sheet 1. General description 2. Features 3. Quick reference data The 74HC393; HCT393 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky

More information

DC & Transient Responses

DC & Transient Responses ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = -> = When = -> = In between, depends on transistor size and current

More information

Nyquist-Rate A/D Converters

Nyquist-Rate A/D Converters IsLab Analog Integrated ircuit Design AD-51 Nyquist-ate A/D onverters כ Kyungpook National University IsLab Analog Integrated ircuit Design AD-1 Nyquist-ate MOS A/D onverters Nyquist-rate : oversampling

More information

CMSC 313 Lecture 25 Registers Memory Organization DRAM

CMSC 313 Lecture 25 Registers Memory Organization DRAM CMSC 33 Lecture 25 Registers Memory Organization DRAM UMBC, CMSC33, Richard Chang A-75 Four-Bit Register Appendix A: Digital Logic Makes use of tri-state buffers so that multiple registers

More information

4.10 The CMOS Digital Logic Inverter

4.10 The CMOS Digital Logic Inverter 11/11/2004 section 4_10 The CMOS Digital Inverter blank.doc 1/1 4.10 The CMOS Digital Logic Inverter Reading Assignment: pp. 336346 Complementary MOSFET (CMOS) is the predominant technology for constructing

More information

Metastability. Introduction. Metastability. in Altera Devices

Metastability. Introduction. Metastability. in Altera Devices in Altera Devices May 1999, ver. 4 Application Note 42 Introduction The output of an edge-triggered flipflop has two valid states: high and low. To ensure reliable operation, designs must meet the flipflop

More information

Octal D-type transparent latch; 3-state

Octal D-type transparent latch; 3-state Rev. 02 18 October 2007 Product data sheet 1. General description 2. Features The is an octal -type transparent latch featuring separate -type inputs for each latch and 3-state true outputs for bus-oriented

More information

MM74C93 4-Bit Binary Counter

MM74C93 4-Bit Binary Counter MM74C93 4-Bit Binary Counter General Description The MM74C93 binary counter and complementary MOS (CMOS) integrated circuits cotructed with N- and P- channel enhancement mode traistors. The 4-bit binary

More information

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr. DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

More information

VLSI Design Issues. ECE 410, Prof. F. Salem/Prof. A. Mason notes update

VLSI Design Issues. ECE 410, Prof. F. Salem/Prof. A. Mason notes update VLSI Design Issues Scaling/Moore s Law has limits due to the hysics of material. Now L (L=20nm??) affects tx delays (seed), noise, heat (ower consumtion) Scaling increases density of txs and requires more

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC ESE 570: Digital Integrated Circuits and LSI Fundamentals Lec 0: February 4, 207 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic Characteristics

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems

More information

74HC174; 74HCT174. Hex D-type flip-flop with reset; positive-edge trigger

74HC174; 74HCT174. Hex D-type flip-flop with reset; positive-edge trigger Rev. 4 12 May 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The are hex positive edge-triggered D-type flip-flops with individual data inputs (Dn) and

More information

Hallogic Hall-effect Sensors OH090U, OH180U, OH360U OHN3000 Series, OHS3000 Series OHN3100 Series, OHS3100 Series

Hallogic Hall-effect Sensors OH090U, OH180U, OH360U OHN3000 Series, OHS3000 Series OHN3100 Series, OHS3100 Series Hallogic Halleffect Sensors Features: Designed for noncontact switching operations Operates over broad range of supply voltages (4.5 V to 24 V) Operates with excellent temperature stability in harsh environments

More information

NJU BIT PARALLEL TO SERIAL CONVERTER PRELIMINARY PACKAGE OUTLINE GENERAL DESCRIPTION PIN CONFIGURATION FEATURES BLOCK DIAGRAM

NJU BIT PARALLEL TO SERIAL CONVERTER PRELIMINARY PACKAGE OUTLINE GENERAL DESCRIPTION PIN CONFIGURATION FEATURES BLOCK DIAGRAM PRELIMINARY 11-BIT PARALLEL TO SERIAL CONVERTER GENERAL DESCRIPTION The NJU3754 is an 11-bit parallel to serial converter especially applying to MCU input port expander. It can operate from 2.7V to 5.5V.

More information

74LV General description. 2. Features. 3. Applications. 8-bit serial-in/serial-out or parallel-out shift register; 3-state

74LV General description. 2. Features. 3. Applications. 8-bit serial-in/serial-out or parallel-out shift register; 3-state Rev. 03 21 pril 2009 Product data sheet 1. General description 2. Features 3. pplications The is an 8 stage serial shift register with a storage register and 3-state outputs. Both the shift and storage

More information

A New Characterization Method for Delay and Power Dissipation of Standard Library Cells

A New Characterization Method for Delay and Power Dissipation of Standard Library Cells VLSI Design, 2002 Vol. 15 (3), pp. 667 678 A New Characterization Method for Delay and Power Dissipation of Standard Library Cells JOS B. SULISTYO * and DONG S. HA Department of Electrical and Computer

More information

Measurement of Mean μ-lifetime

Measurement of Mean μ-lifetime Measurement of Mean μ-lifetime Neha Dokania* *INO Graduate Training Programme, TIFR Abstract: The average muon lifetime is determined in the experiment by stopping muons in a plastic scintillator, where

More information

MM74HC373 3-STATE Octal D-Type Latch

MM74HC373 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Latch General Description The MM74HC373 high speed octal D-type latches utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

EECS150 - Digital Design Lecture 16 Counters. Announcements

EECS150 - Digital Design Lecture 16 Counters. Announcements EECS150 - Digital Design Lecture 16 Counters October 20, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150 Fall 2011

More information

74LVC74A. 1. General description. 2. Features and benefits. Dual D-type flip-flop with set and reset; positive-edge trigger

74LVC74A. 1. General description. 2. Features and benefits. Dual D-type flip-flop with set and reset; positive-edge trigger Rev. 7 20 November 2012 Product data sheet 1. General description The is a dual edge triggered D-type flip-flop with individual data (nd) inputs, clock (np) inputs, set (nsd) and (nrd) inputs, and complementary

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

74HC373; 74HCT General description. 2. Features and benefits. Octal D-type transparent latch; 3-state

74HC373; 74HCT General description. 2. Features and benefits. Octal D-type transparent latch; 3-state Rev. 5 13 ecember 2011 Product data sheet 1. General description 2. Features and benefits The is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL. It is specified in compliance

More information

HCC4543B HCF4543B BCD-TO-7 SEGMENT LATCH/DECODER/LCD DRIVER HCC/HCF4543B

HCC4543B HCF4543B BCD-TO-7 SEGMENT LATCH/DECODER/LCD DRIVER HCC/HCF4543B HCC4543B HCF4543B BCD-TO-7 SEGMENT LATCH/DECODER/LCD DRIER DISPLAY BLANKING OF ALL ILLEGAL INPUT COMBINATIONS LATCH STORAGE OF CODE CAPABILITY OF DRIING TWO LOW POWER TTL LOADS, TWO HTL LOADS, OR ONE LOW

More information

8-bit binary counter with output register; 3-state

8-bit binary counter with output register; 3-state Rev. 02 28 pril 2009 Product data sheet. General description 2. Features 3. Ordering information The is a high-speed Si-gate CMOS device and is pin compatible with Low power Schottky TTL (LSTTL). It is

More information

74VHC08; 74VHCT08. The 74VHC08; 74VHCT08 provide the quad 2-input AND function.

74VHC08; 74VHCT08. The 74VHC08; 74VHCT08 provide the quad 2-input AND function. Rev. 0 30 June 2009 Product data sheet. General description 2. Features 3. Ordering information The are high-speed Si-gate CMOS devices and are pin compatible with Low-power Schottky TTL (LSTTL). They

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata nd Ed. (0/9/07) Page Errata of CMOS Analog Circuit Design nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 8 Line 4 after figure 3.3, CISW CJSW 0 Line from bottom: F F 5 Replace

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

74F579 8-Bit Bidirectional Binary Counter with 3-STATE Outputs

74F579 8-Bit Bidirectional Binary Counter with 3-STATE Outputs April 1988 Revised October 2000 74F579 8-Bit Bidirectional Binary Counter with 3-STATE Outputs General Description The 74F579 is a fully synchronous 8-stage up/down counter with multiplexed 3-STATE I/O

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. tpd = 28 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. tpd = 28 ns (TYP. M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. HIGH SPEED tpd = 28 (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specificatio The IC6 74HC/HCT/HCU/HCMOS Logic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )

More information

Single Event Effects: SRAM

Single Event Effects: SRAM Scuola Nazionale di Legnaro 29/3/2007 Single Event Effects: SRAM Alessandro Paccagnella Dipartimento di Ingegneria dell Informazione Università di Padova alessandro.paccagnella@unipd.it OUTLINE Introduction

More information

Short Course On Phase-Locked Loops and Their Applications Day 4, AM Lecture. Digital Frequency Synthesizers

Short Course On Phase-Locked Loops and Their Applications Day 4, AM Lecture. Digital Frequency Synthesizers Short Course On Phase-Locked Loops and Their Applications Day 4, AM Lecture Digital Frequency Synthesizers Michael Perrott August 4, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Why Are

More information

74AHC02; 74AHCT02. The 74AHC02; 74AHCT02 provides a quad 2-input NOR function.

74AHC02; 74AHCT02. The 74AHC02; 74AHCT02 provides a quad 2-input NOR function. Rev. 04 2 May 2008 Product data sheet. General description 2. Features 3. Ordering information The is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified

More information

CHAPTER * 6-2. a) 3-input NAND gate b) 4-input NOR gate * Pearson Education, Inc. a) F = (A + B) C D. b) G = (A + B) (C + D)

CHAPTER * 6-2. a) 3-input NAND gate b) 4-input NOR gate * Pearson Education, Inc. a) F = (A + B) C D. b) G = (A + B) (C + D) HPTER 6 6-.* a) = ( + ) b) G = ( + ) ( + ) 200 Pearson Education, Inc. 6-2. a) 3-input NN gate b) 4-input NOR gate +V +V 6-3. 6 inputs 6 inputs 6 inputs 6-4.* The longest path is from input or. 0.073 ns

More information

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays Chapter 9 Estimating circuit speed 9.1 Counting gate delays The simplest method for estimating the speed of a VLSI circuit is to count the number of VLSI logic gates that the input signals must propagate

More information