ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Size: px
Start display at page:

Download "ESE 570: Digital Integrated Circuits and VLSI Fundamentals"

Transcription

1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna

2 Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery (time permitting) Penn ESE 570 Spring Khanna 2

3 Memory Overview Penn ESE 570 Spring 2017 Khanna

4 CPU Memory Hierarchy CPU Chip L1 on-cpu cache 1k to 64 k SRAM (register file) off-chip cache memory L2 L3 L4 64k to 4M 4M to 32M 8M SRAM or DRAM Penn ESE 570 Spring 2017 Khanna 4

5 Locality and Cacheing! Memory hierarchies exploit locality by cacheing (keeping close to the processor) data likely to be used again! This is done because we can build " large, slow memories OR " small, fast memories BUT " we can t build large, fast memories! If hierarchy works, we get the illusion of SRAM access time with disk based memory capacity. " SRAM (static RAM) ns access time, very expensive (on-cpu faster) " DRAM (dynamic RAM) ns, cheaper " Disk -- access time measured in milliseconds, very cheap Penn ESE 570 Spring 2017 Khanna 5

6 Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH DRAM LIFO Shift Register CAM Penn ESE 570 Spring Khanna

7 Memory Architecture: Core M bits M bits N Words S 0 S 1 S 2 S N-2 S N_1 Word 0 Word 1 Word 2 Word N-2 Word N-1 Storage Cell A 0 A 1 A K-1 Decoder S 0 Word 0 Word 1 Word 2 Word N-2 Word N-1 Storage Cell Input-Output (M bits) Input-Output (M bits) N words => N select signals Too many select signals Decoder reduces # of select signals K = log 2 N Penn ESE 570 Spring Khanna

8 Memory Architecture: Decoders M bits M bits N Words S 0 S 1 S 2 S N-2 S N_1 Word 0 Word 1 Word 2 Word N-2 Word N-1 Storage Cell A 0 A 1 A K-1 Decoder S 0 Word 0 Word 1 Word 2 Word N-2 Word N-1 Storage Cell Input-Output (M bits) Input-Output (M bits) N words => N select signals Too many select signals Decoder reduces # of select signals K = log 2 N Penn ESE 570 Spring Khanna

9 Array-Structured Memory Architecture Problem: ASPECT RATIO or HEIGHT >> WIDTH 2 L-K Bit Line Storage Cell A K A K+1 A L-1 Row Decoder Word Line Sense Amplifiers / Drivers M.2 K Amplify swing to rail-to-rail amplitude A 0 A K-1 Column Decoder Selects appropriate word Input-Output (M bits) Penn ESE 570 Spring Khanna

10 Latches/Register Can Store a State! Build master-slave register from pair of latches! Control with non-overlapping clocks Penn ESE 570 Spring Khanna 10

11 ROM Memories Penn ESE 570 Spring Khanna 11

12 MOS NOR ROM Pull-up devices WL[0] WL[1] GND WL[2] WL[3] GND BL[0] BL[1] BL[2] BL[3] Penn ESE 570 Spring Khanna

13 MOS NOR ROM Pull-up devices WL[0] WL[1] GND WL[2] GND WL[3] BL[0] BL[1] BL[2] BL[3] Penn ESE 570 Spring Khanna

14 MOS NOR ROM Pull-up devices WL[0] WL[1] GND WL[2] GND WL[3] BL[0] BL[1] BL[2] BL[3] Penn ESE 570 Spring Khanna

15 MOS NAND ROM BL[0] BL[1] BL[2] BL[3] Pull-up devices WL[0] WL[1] WL[2] WL[3] All word lines high by default with exception of selected row Penn ESE 570 Spring Khanna

16 MOS NAND ROM Pull-up devices WL[0] WL[1] 0 BL[0] BL[1] BL[2] BL[3] WL[2] WL[3] All word lines high by default with exception of selected row Penn ESE 570 Spring Khanna

17 MOS NAND ROM Pull-up devices WL[0] WL[1] WL[2] WL[3] BL[0] BL[1] BL[2] BL[3] All word lines high by default with exception of selected row Penn ESE 570 Spring Khanna

18 Non-Volatile Memory ROM PseudonMOS NOR gate Penn ESE 570 Spring 2017 Khanna 18

19 Contact-Mask Programmable ROM Penn ESE 570 Spring 2017 Khanna 19

20 Contact-Mask Programmable ROM Penn ESE 570 Spring 2017 Khanna 20

21 Read-Write Memories (RAM)! Static (SRAM) " Data stored as long as supply is applied " Large (6 transistors/cell " Fast " Differential! Dynamic (DRAM) " Periodic refresh required " Small (1-3 transistors/cell) " Slower " Single ended Penn ESE 570 Spring Khanna

22 Latches/Register Can Store a State! Build master-slave register from pair of latches! Control with non-overlapping clocks Penn ESE 570 Spring Khanna 22

23 Gate Based Latch! How many transistors in this latch? Penn ESE 570 Spring Khanna 23

24 6T SRAM Cell! Cell size accounts for most of memory array size! 6T SRAM Cell " Used in most commercial chips " Data stored in cross-coupled inverters! Read: " Precharge BL, BL BL bit " Raise WL word WL! Write: " Drive data onto BL, BL " Raise WL BL bit_b Penn ESE 570 Spring 2017 Khanna 24

25 6-transistor CMOS SRAM Cell WL M2 M4 M5 Q Q M6 M1 M3 BL BL Penn ESE 570 Spring Khanna

26 6-transistor CMOS SRAM Cell WL M2 M4 M5 Q Q M6 M1 M3 BL BL Penn ESE 570 Spring Khanna

27 6-transistor CMOS SRAM Cell WL Assume 1 is stored (Q=1) M5 M2 Q 0 M4 Q 1 M6 M1 M3 BL BL Penn ESE 570 Spring Khanna

28 CMOS SRAM Analysis (stored 1) WL BL M4 BL M5 0 Q = 0 1 Q = 1 M6 M1 C bit C bit Penn ESE 570 Spring Khanna

29 6-transistor CMOS SRAM Cell WL Assume 1 is stored (Q=1) Read Operation: - First bitlines get VDD precharged high (Vdd) - Then wordline goes high (Vdd) BL M5 M2 Q 0 M1 M4 M3 Q 1 M6 BL VDD Penn ESE 570 Spring Khanna

30 CMOS SRAM Analysis (Read) VDD WL BL M4 BL M5 0 Q = 0 1 Q = 1 M6 VDD V M1 VDD C bit C bit Penn ESE 570 Spring Khanna

31 CMOS SRAM Analysis (Read) VDD WL BL M4 BL M5 0 Q = 0 1 Q = 1 M6 VDD V M1 VDD C bit C bit ( ) 2 = k n,m1 ( V Tn )ΔV ΔV 2 k n,m5 ΔV V Tn 2 Penn ESE 570 Spring Khanna

32 CMOS SRAM Analysis (Read) VDD WL BL M4 BL M5 0 Q = 0 1 Q = 1 M6 VDD V M1 VDD C bit C bit k n,m5 k n,m1 = W L W L 5 1 = ( V Tn )ΔV ΔV 2 2 ( ΔV V Tn ) 2 Penn ESE 570 Spring Khanna

33 CMOS SRAM Analysis (Read) VDD WL BL M4 BL M5 0 Q = 0 1 Q = 1 M6 VDD V M1 VDD C bit C bit k n,m5 k n,m1 = W L W L Penn ESE 570 Spring Khanna 5 1 = ( V Tn )ΔV ΔV 2 2 ( ΔV V Tn ) 2 ΔV =V Tn W L W L 5 1 = ( 1.5V Tn )V Tn 2V Tn ( ) 2

34 CMOS SRAM Analysis (Read) Voltage Rise (V) Cell Ratio (CR) Penn ESE 570 Spring 2017 Khanna

35 6-transistor CMOS SRAM Cell WL Assume 1 is stored (Q=1) Write Operation: - Want to write a 0 VDD - First drive bitlines with input data - Then wordline goes high (Vdd) BL M5 M2 Q 0 M1 M4 M3 Q 1 M6 BL 0 Penn ESE 570 Spring Khanna

36 CMOS SRAM Analysis (Write) VDD WL M4 M5 0 Q = 0 Q = 1 1 M6 M1 VDD BL = 1 0 BL = 0 Penn ESE 570 Spring Khanna

37 CMOS SRAM Analysis (Write) VDD WL M4 M5 0 Q = 0 Q = 1 1 M6 M1 VDD BL = 1 0 BL = 0 ( ) 2 = k n,m 4 ( V Tp )V Q V Q k n,m 6 V Tn 2 2 Penn ESE 570 Spring Khanna

38 CMOS SRAM Analysis (Write) VDD WL M4 M5 0 Q = 0 Q = 1 1 M6 M1 VDD BL = 1 0 BL = 0 k n,m 4 k n,m 6 = ( V Tn ) 2 ( V Tp )V Q V 2 Q 2 Penn ESE 570 Spring Khanna

39 CMOS SRAM Analysis (Write) VDD WL M5 0 Q = 0 M4 Q = 1 1 M6 PR = W 4 L 4 W 6 L 6 M1 VDD BL = 1 0 BL = 0 k n,m 4 k n,m 6 = ( V Tn ) 2 ( V Tp )V Q V 2 Q 2 Penn ESE 570 Spring Khanna V Q =V Tn k n,m 4 k n,m 6 = ( V Tn ) 2 ( V Tp )V Tn V 2 Tn 2

40 CMOS SRAM Analysis (Write) PR = W 4 L 4 W 6 L 6 Penn ESE 570 Spring 2017 Khanna

41 DRAM! Smaller than SRAM! Require data refresh to compensate for leakage Penn ESE 570 Spring 2017 Khanna 41

42 3-Transistor DRAM Cell BL1 BL2 WWL RWL WWL RWL M1 X M2 M3 X BL1 -V T C S BL2 -V T ΔV No constraints on device ratios Reads are non-destructive Value stored at node X when writing a 1 = V WWL -V Tn Penn ESE 570 Spring 2017 Khanna

43 1-Transistor DRAM Cell BL WL WL Write "1" Read "1" M1 C S X GND V T C BL BL /2 sensing /2 Write: C S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance Penn ESE 570 Spring 2017 Khanna C ΔV V BL V ( PRE V BIT V ) S = = PRE C S + C BL Voltage swing is small; typically around 250 mv.

44 DRAM Cell Observations 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out. DRAM memory cells are single ended in contrast to SRAM cells. The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation. Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design. When writing a 1 into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than. Penn ESE 570 Spring 2017 Khanna

45 Memory Periphery Penn ESE 570 Spring 2017 Khanna

46 Periphery! Decoders! Sense Amplifiers! Input/Output Buffers! Control/Timing Circuitry Penn ESE 570 Spring Khanna

47 Array Architecture! 2 n words of 2 m bits each! Good regularity easy to design! Very high density if good cells are used Penn ESE 570 Spring 2017 Khanna 47

48 Array Architecture! 2 n words of 2 m bits each! Good regularity easy to design! Very high density if good cells are used Penn ESE 570 Spring 2017 Khanna 48

49 Array Architecture! 2 n words of 2 m bits each! Good regularity easy to design! Very high density if good cells are used Penn ESE 570 Spring 2017 Khanna 49

50 Array Architecture! 2 n words of 2 m bits each! Good regularity easy to design! Very high density if good cells are used Penn ESE 570 Spring 2017 Khanna 50

51 Decoders Penn ESE 570 Spring 2017 Khanna

52 Decoders! n:2 n decoder consists of 2 n n-input AND gates " One output needed for each row of memory " Build AND from NAND or NOR gates Static CMOS A1 A0 word0 word1 A1 A word word2 word3 Penn ESE 570 Spring 2017 Khanna 52

53 Large Decoders! For n > 4, NAND gates become slow " Break large gates into multiple smaller gates A3 A2 A1 A0 word0 word1 word2 word3 word15 Penn ESE 570 Spring 2017 Khanna 53

54 Predecoding! Many of these gates are redundant " Factor out common gates into predecoder " Saves area " Same path effort A3 A2 A1 A0 predecoders 1 of 4 hot predecoded lines word0 word1 word2 word3 word15 Penn ESE 570 Spring 2017 Khanna 54

55 Row Select: Precharge NAND Penn ESE 570 Spring 2017 Khanna 55

56 Row Select: Precharge NOR Penn ESE 570 Spring 2017 Khanna 56

57 Column Circuitry & Bit-line Conditioning Penn ESE 570 Spring 2017 Khanna

58 Array Architecture! 2 n words of 2 m bits each! Good regularity easy to design! Very high density if good cells are used Penn ESE 570 Spring 2017 Khanna 58

59 Column Circuitry! Some circuitry is required for each column " Bitline conditioning " Precharging " Driving input data to bitline " Sense amplifiers " Column multiplexing (AKA Column Decoders) Penn ESE 570 Spring 2017 Khanna 59

60 Bitline Conditioning! Precharge bitlines high before reads BL bit φ BL bit_b Penn ESE 570 Spring 2017 Khanna 60

61 Bitline Conditioning! Precharge bitlines high before reads BL bit φ BL bit_b Penn ESE 570 Spring 2017 Khanna 61

62 Bitline Conditioning! Precharge bitlines high before reads BL bit φ BL bit_b! What if pre-charged to Vdd/2? " Pros: reduces read-upset " Challenge: generate Vdd/2 voltage on chip Penn ESE 570 Spring 2017 Khanna 62

63 Sense Amplifiers! Bitlines have many cells attached " Ex: 32-kbit SRAM has 128 rows x 256 cols " 128 cells on each bitline! t pd (C/I) ΔV " Even with shared diffusion contacts, 64C of diffusion capacitance (big C) " Discharged slowly through small transistors in each memory cell (small I)! Sense amplifiers are triggered on small voltage swing V (ΔV) BL V(1) V PRE ΔV Penn ESE 570 Spring 2017 Khanna Sense amp activated Word line activated V(0) t 63

64 Idea! Memory for compact state storage! Share circuitry across many bits " Minimize area per bit # maximize density! Aggressively use: " Pass transistors, Ratioing " Precharge, Amplifiers to keep area down Penn ESE 570 Spring Khanna 64

65 Admin! Homework 7 due Thursday " Extra Credit due Sunday! Project partners due Thursday " your team names to me " taniak@seas.upenn.edu! Final Project " Design and layout memory " Handout posted before Thursday class " Due 4/25 (last day of class) " Everyone gets an extension until 5/3 (day of final exam) Penn ESE 570 Spring Khanna 65

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 3, 8 Memory: Core Cells Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery Penn ESE 57 Spring 8 - Khanna

More information

Semiconductor Memory Classification

Semiconductor Memory Classification Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References EE241 - Spring 2000 Advanced Digital Integrated Circuits Lecture 26 Memory References Rabaey, Digital Integrated Circuits Memory Design and Evolution, VLSI Circuits Short Course, 1998.» Gillingham, Evolution

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory SRAM Design Chapter Overview Classification Architectures The Core Periphery Reliability Semiconductor Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable

More information

Lecture 25. Semiconductor Memories. Issues in Memory

Lecture 25. Semiconductor Memories. Issues in Memory Lecture 25 Semiconductor Memories Issues in Memory Memory Classification Memory Architectures TheMemoryCore Periphery 1 Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access

More information

SEMICONDUCTOR MEMORIES

SEMICONDUCTOR MEMORIES SEMICONDUCTOR MEMORIES Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH DRAM LIFO Shift Register CAM

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Semiconductor Memories

Semiconductor Memories !"#"$%&'()$*#+%$*,' -"+./"$0 1'!*0"#)'2*+03*.$"4* Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Semiconductor Memories December 20, 2002 !"#$%&'()*&'*+&, Memory Classification Memory Architectures

More information

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VIII Semiconductor Memory (chapter 12 in textbook) 1 Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies

More information

Semiconductor memories

Semiconductor memories Semiconductor memories Semiconductor Memories Data in Write Memory cell Read Data out Some design issues : How many cells? Function? Power consuption? Access type? How fast are read/write operations? Semiconductor

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 1 Hw 8 Posted Last one to be graded Due Friday April 30 Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 2 1 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 Frequency

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141 - Fall 2002 Lecture 27 Memory Announcements We finished all the labs No homework this week Projects are due next Tuesday 9am 1 Today s Lecture Memory:» SRAM» DRAM» Flash Memory 2 Floating-gate transistor

More information

Semiconductor Memories. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Paolo Spirito

Semiconductor Memories. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Paolo Spirito Semiconductor Memories Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Paolo Spirito Memory Classification Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random

More information

Semiconductor Memories

Semiconductor Memories Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Semiconductor Memories December 20, 2002 Chapter Overview Memory Classification Memory Architectures

More information

Memory Trend. Memory Architectures The Memory Core Periphery

Memory Trend. Memory Architectures The Memory Core Periphery Semiconductor Memories: an Introduction ti Talk Overview Memory Trend Memory Classification Memory Architectures The Memory Core Periphery Reliability Semiconductor Memory Trends (up to the 90 s) Memory

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

Semiconductor Memories

Semiconductor Memories Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Semiconductor Memories December 20, 2002 Chapter Overview Memory Classification Memory Architectures

More information

Administrative Stuff

Administrative Stuff EE141- Spring 2004 Digital Integrated Circuits Lecture 30 PERSPECTIVES 1 Administrative Stuff Homework 10 posted just for practice. No need to turn in (hw 9 due today). Normal office hours next week. HKN

More information

ECE520 VLSI Design. Lecture 23: SRAM & DRAM Memories. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 23: SRAM & DRAM Memories. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 23: SRAM & DRAM Memories Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

Semiconductor Memories

Semiconductor Memories Introduction Classification of Memory Devices "Combinational Logic" Read Write Memories Non Volatile RWM Read Only Memory Random Access Non-Random Access Static RAM FIFO Dynamic RAM LIFO Shift Register

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

CMOS Inverter. Performance Scaling

CMOS Inverter. Performance Scaling Announcements Exam #2 regrade requests due today. Homework #8 due today. Final Exam: Th June 12, 8:30 10:20am, CMU 120 (extension to 11:20am requested). Grades available for viewing via Catalyst. CMOS

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Class Material. Flash Memory. Read-Only Memory Cells MOS OR ROM

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Class Material. Flash Memory. Read-Only Memory Cells MOS OR ROM EE141-pring 2006 igital Integrated Circuits Lecture 29 Flash memory Administrative tuff reat job on projects and posters! Homework #10 due today Lab reports due this week Friday lab in 353 Final exam May

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

ECE251. VLSI System Design

ECE251. VLSI System Design ECE251. VLSI System Design Project 4 SRAM Cell and Memory Array Operation Area Memory core 4661 mm 2 (256bit) Row Decoder 204.7 mm 2 Collumn Decoder Overall Design Predecoder 156.1 mm 2 Mux 629.2 mm 2

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

F14 Memory Circuits. Lars Ohlsson

F14 Memory Circuits. Lars Ohlsson Lars Ohlsson 2018-10-18 F14 Memory Circuits Outline Combinatorial vs. sequential logic circuits Analogue multivibrator circuits Noise in digital circuits CMOS latch CMOS SR flip flop 6T SRAM cell 1T DRAM

More information

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

C.K. Ken Yang UCLA Courtesy of MAH EE 215B Decoders: Logical Effort Applied C.K. Ken Yang UCLA yang@ee.ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 6.2.2 (Ratio-ed logic) W&H 6.2.2 Overview We have now gone through the basics of decoders,

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

WARM SRAM: A Novel Scheme to Reduce Static Leakage Energy in SRAM Arrays

WARM SRAM: A Novel Scheme to Reduce Static Leakage Energy in SRAM Arrays WARM SRAM: A Novel Scheme to Reduce Static Leakage Energy in SRAM Arrays Mahadevan Gomathisankaran Iowa State University gmdev@iastate.edu Akhilesh Tyagi Iowa State University tyagi@iastate.edu ➀ Introduction

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

CMSC 313 Lecture 25 Registers Memory Organization DRAM

CMSC 313 Lecture 25 Registers Memory Organization DRAM CMSC 33 Lecture 25 Registers Memory Organization DRAM UMBC, CMSC33, Richard Chang A-75 Four-Bit Register Appendix A: Digital Logic Makes use of tri-state buffers so that multiple registers

More information

Digital Integrated Circuits Lecture 14: CAMs, ROMs, and PLAs

Digital Integrated Circuits Lecture 14: CAMs, ROMs, and PLAs Digital Integrated Circuits Lecture 4: CAMs, ROMs, and PLAs Chih-Wei Liu VLSI Signal Processing LAB National Chiao Tung University cwliu@twins.ee.nctu.edu.tw DIC-Lec4 cwliu@twins.ee.nctu.edu.tw Outline

More information

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 RHK.F95 1 Technology Trends: Microprocessor Capacity 100000000 10000000 Pentium Transistors 1000000

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 2: January 17, 2017 MOS Fabrication pt. 1: Physics and Methodology Lecture Outline! Digital CMOS Basics! VLSI Fundamentals! Fabrication Process

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

Lecture 3 Review on Digital Logic (Part 2)

Lecture 3 Review on Digital Logic (Part 2) Lecture 3 Review on Digital Logic (Part 2) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ircuit Optimization Simplest implementation ost criterion literal

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 2: January 19, 2016 MOS Fabrication pt. 1: Physics and Methodology Lecture Outline! Digital CMOS Basics! VLSI Fundamentals! Fabrication Process

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

Lecture 24. CMOS Logic Gates and Digital VLSI II

Lecture 24. CMOS Logic Gates and Digital VLSI II ecture 24 CMOS ogic Gates and Digital VSI II In this lecture you will learn: Static CMOS ogic Gates FET Scaling CMOS Memory, SRM and DRM CMOS atches, and Registers (Flip-Flops) Clocked CMOS CCDs CMOS ogic:

More information

Random Access Memory. DRAM & SRAM Design DRAM SRAM MS635. Dynamic Random Access Memory. Static Random Access Memory. Cell Structure. 6 Tr.

Random Access Memory. DRAM & SRAM Design DRAM SRAM MS635. Dynamic Random Access Memory. Static Random Access Memory. Cell Structure. 6 Tr. DRAM & SRAM Design Random Access Memory Volatile memory Random access is possible if you know the address DRAM DRAM Dynamic Random Access Memory SRAM Static Random Access Memory SRAM Cell Structure Power

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Signature: EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. You may use

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 13, 2017 Variation; I/O Circuits, Inductive Noise Lecture Outline! Design Quality " Variation! Packaging! Variation and Testing!

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Lecture 16: Circuit Pitfalls

Lecture 16: Circuit Pitfalls Introduction to CMOS VLSI Design Lecture 16: Circuit Pitfalls David Harris Harvey Mudd College Spring 2004 Outline Pitfalls Detective puzzle Given circuit and symptom, diagnose cause and recommend solution

More information

FERROELECTRIC RAM [FRAM] Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science

FERROELECTRIC RAM [FRAM] Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science A Seminar report On FERROELECTRIC RAM [FRAM] Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2) ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.

More information

Pass-Transistor Logic

Pass-Transistor Logic -all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material

More information

Clock Strategy. VLSI System Design NCKUEE-KJLEE

Clock Strategy. VLSI System Design NCKUEE-KJLEE Clock Strategy Clocked Systems Latch and Flip-flops System timing Clock skew High speed latch design Phase locked loop ynamic logic Multiple phase Clock distribution Clocked Systems Most VLSI systems are

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer Architecture and Engineering Lecture 12 VLSI II 2005-2-24 John Lazzaro (www.cs.berkeley.edu/~lazzaro) TAs: Ted Hong and David Marquardt www-inst.eecs.berkeley.edu/~cs152/ Last Time: Device

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

High-Performance SRAM Design

High-Performance SRAM Design High-Performance SRAM Design Rahul Rao IBM Systems and Technology Group Exercise RWL WWL READ Path RWL WBL WBLb RBL WWL READ Path WBL WBLb RBL Worst case read condition : Worst case Bitline Leakage when

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

LH5P8128. CMOS 1M (128K 8) Pseudo-Static RAM PIN CONNECTIONS

LH5P8128. CMOS 1M (128K 8) Pseudo-Static RAM PIN CONNECTIONS LH5P8128 FEATURES 131,072 8 bit organization Access times (MAX.): 60/80/100 ns Cycle times (MIN.): 100/130/160 ns Single +5 V power supply Power consumption: Operating: 572/385/275 mw (MAX.) Standby (CMOS

More information

Chapter 7. VLSI System Components

Chapter 7. VLSI System Components VLSI Design Chapter 7 VLSI System Components Jin-Fu Li Chapter 7 VLSI System Components Introduction Datapath Operators Memory Elements Control Structures 2 System-Level Hierarchy System (Top) Complex

More information

Delay and Energy Consumption Analysis of Conventional SRAM

Delay and Energy Consumption Analysis of Conventional SRAM World Academy of Science, Engineering and Technology 13 8 Delay and Energy Consumption Analysis of Conventional SAM Arash Azizi-Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, and Ali Barati Abstract

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 1: Introduction to Digital Electronics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Textbook

More information

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8 EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»

More information

LH5P832. CMOS 256K (32K 8) Pseudo-Static RAM

LH5P832. CMOS 256K (32K 8) Pseudo-Static RAM LH5P832 CMOS 256K (32K 8) Pseudo-Static RAM FEATURES 32,768 8 bit organization Access time: 100/120 ns (MAX.) Cycle time: 160/190 ns (MIN.) Power consumption: Operating: 357.5/303 mw Standby: 16.5 mw TTL

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Review for the Final Stephen A. Edwards Columbia University Summer 25 The Final 2 hours 8 problems Closed book Simple calculators are OK, but unnecessary One double-sided

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements.

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. 1 2 Introduction Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. Defines the precise instants when the circuit is allowed to change

More information

ELEC516 Digital VLSI System Design and Design Automation (spring, 2010) Assignment 4 Reference solution

ELEC516 Digital VLSI System Design and Design Automation (spring, 2010) Assignment 4 Reference solution ELEC516 Digital VLSI System Design and Design Automation (spring, 010) Assignment 4 Reference solution 1) Pulse-plate 1T DRAM cell a) Timing diagrams for nodes and Y when writing 0 and 1 Timing diagram

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

EECS 141 F01 Lecture 17

EECS 141 F01 Lecture 17 EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

More information

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin Vo l ta ge ri s e [ V] EE-Spring 7 Digital Integrated ircuits Lecture SRM Project Launch nnouncements No new labs next week and week after Use labs to work on project Homework #6 due Fr. pm Project updated

More information