# Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity Substrate coupling Crosstalk Parasitic Extraction Reduced Order Modeling Manufacturability Power Estimation 1

2 Outline Design for Manufacturability Yield Parametric Yield Defect-related yield Statistical Design Power Estimation Power consumption mechanisms Different level of abstraction Static or dynamic analysis Physical issues verification (DSM) Manufacturability IC manufacturing process is affected by random disturbances different silicon dioxide growth rates, mask misalignement, drift of fabrication equipment operation, etc. These disturbances are often uncontrollable and affect the circuit performance How good is my chips performance? How many of my chips will work? Yield: percentage of manufactured products that pass all performance specifications Yield loss mechanisms Parametric yield (process variations) Defect-related yield (defects) 2

3 Parametric Yield Process variations Process Variations SPICE model Process variations are reflected into a statistical SPICE model Usually only a few parameters have a statistical distribution (e.g. : { L, W, T OX,V Tn, V Tp }) and the others are set to a nominal value The nominal SPICE model is obtained by setting the statistical parameters to their nominal value 3

4 Global Variations (Inter-die) Process variations Performance variations Critical path delay of a 16-bit adder All devices have the same set of model parameters value Local Variations (Intra-die) Each device instance has a slightly different set of model parameter values (aka device mismatch) The performance of some analog circuits strongly depends on the degree of matching of device properties Digital circuits are in general more immune to mismatch, but clock distribution network is sensitive (clock skew) 4

5 Statistical Design Need to account for process variations during design phase Statistical design Nominal design Yield optimization Design centering Statistical Design 5

6 Design for Manufacturability (DFM) Approaches 1) Worst-Case Approach: choose the SPICE model giving the worst possible behavior Traditional choice is pessimistic and lead to circuit overdesign (neglects any kind of correlation) Other techniques to choose the SPICE model values (accounting for correlation) 2) Probability Density Function Approach: keep track of the whole distribution Expensive: need smart ways to do it Defect-related Yield Manufacturing process may introduce some defects in the layout From W. Maly Computer-aided design for VLSI circuit manufacturability, IEEE Proc

7 Defect-related Yield Defect-layout relationship Yield in terms of area and design rules Larger area lower yield Smaller geometries higher sensitivity to defects trade-off: yield loss must be expressed in terms of the defect size and layout characteristics rather than in terms of area alone More relaxed layout More aggressive layout Defect-related Yield Critical area Model relationship between defect characteristics (density and size distribution) and the probability of the defect The critical area, for a defect radius R, is defined as the area on the layout where, if the center of a defect is deposited a fault occurs: Y exp{ A cr ( R)} From W. Maly Computer-aided design for VLSI circuit manufacturability, IEEE Proc

8 Physical issues verification (DSM) Power Estimation Higher speed and shrinking geometries Increased power consumption and heat dissipation Higher packaging costs Higher on-chip electric field Decreased reliability power dissipation of VLSI circuits becomes a critical concern Accurate and efficient power estimation (and optimization) techniques are required Low Power Challenges Multifaceted approach adopted: Reducing chip capacitance through process scaling Reducing voltage Employing better architectural and circuit design techniques From 2D to 3D optimization problem From D. Singh et al Power Conscious CAD Tools and Methodologies: A Perspective, IEEE Proc

9 Power and Synthesis Flow Potential for Power Savings 400% 50% 20% 10% Behavioral RTL Gate Switch Accuracy of Power Estimation 1997 Jan M. Rabaey Design Abstraction Levels HDL Behavioral Synthesis RTL Synthesis Logic Optimization Transistor Optimization Power Analysis Power Analysis Power Analysis Power Analysis Place & Route 1997 Jan M. Rabaey 9

10 Power Consumption Mechanisms in CMOS Static Consumption Small component (increasing importance for DSM) Leakage diodes and transistors Dynamic Consumption Due to load capacitance Largest component Due to direct-path currents CMOS Power Consumption Mechanisms Static consumption Ideally zero Due to: Leakage current through reverse biased diode junctionbetween source (or drain) and the substrate Subthreshold current of the transistor Vdd Vout Drain Junction Leakage P = I stat leak V DD Sub-Threshold Current Digital Integrated Circuits 2nd 10

11 CMOS Power Consumption Mechanisms Dynamic consumption Load Capacitance Major component Energy/transition: Vin Vdd Vout Power=Energy/transition: P E dyn dyn = C V = C L L V 2 DD 2 DD f C L Digital Integrated Circuits 2nd if the gate is switched on and off f times per second Note: it is not a function of gate size! CMOS Power Consumption Mechanisms Dynamic consumption Switching activity Consider switching a CMOS gate for N clock cycles E = C V 2 nn ( ) N L dd E N : the energy consumed for N clock cycles n(n ): the number of 0->1 transition in N clock cycles P = lim avg N E N f N clk = nn ( ) lim N N C L V 2 fclk dd α 0 1 = nn ( ) lim N N P = α avg 0 1 C L V 2 fclk dd Digital Integrated Circuits 2nd a 0 1 is called the switching activity C eff = a 0 1 C L is called the effective capacitance 11

12 CMOS Power Consumption Mechanisms Dynamic consumption Short Circuit current Ideally zero Not zero since rise and fall time (t r and t f ) are not zero Power=Energy/transition: tr + tf Psc = Ipeak VDD ( ) f 2 if the gate is switched on and off f times per second I peak determined by the saturation current of the devices Digital Integrated Circuits 2nd Vin I V DD (ma) Vdd C L Vin (V) Vout Power Consumption Mechanisms in CMOS V DD Dynamic Dissipation P 2 dyn = CL VDD fclk α0 1 In Out Short-Circuit Currents tr + t f Psc = I peak VDD ) fclk α 2 ( 0 1 I SC C L Static Dissipation P = I V stat leak DD Complete power model provides infrastructure for analysis and optimization 1997 Jan M. Rabaey Concentrate on the estimation of a

13 Power Estimation Dynamic Analysis Simulation requires representative simulation vectors Derived by designer Automatic (Monte Carlo) Transitor level (PowerMill) Very accurate Much faster than SPICE Gate level (Powergate, DesignPower) Faster than transistor level Still very accurate due to good modeling of power dissipation at cell-level Power Estimation Static Analysis Propagation of switching probabilities No input vectors needed Much faster than simulation Less accurate than simulation Hard to model real delays Glitches? 13

14 Power Estimation Static Analysis Probability Propagation AND gate sp(1) = sp1 * sp2 tp(0 1) = sp * (1 - sp) Example sp = 0.5 * 0.5 = /2 1/2 1/2 1/2 tp = 0.25 * (1-0.25) = Propagate 1/4 1/4 7/ Jan M. Rabaey Power Estimation Static Analysis Probability Propagation Ignores Temporal and Spatial Correlations 1997 Jan M. Rabaey 14

15 Power Estimation Static Analysis Probability Propagation: Problems Problem: Reconvergent Fan-out: Creates spatial correlation between signals ? 0.5! P(X) = P(B=1).(P(X=1 B = 1) Becomes complex and untractable real fast 1997 Jan M. Rabaey Power Optimization Supply voltage reduction Most effective: quadratic improvement Implies performance degradation Use of multiple-v DD (not below the sum of thresholds) Increase of leakage current Effective capacitance reduction Reduce physical capacitance Reduce switching activity True at all levels of abstraction: trade-off between impact on the design and accuracy 15

16 Summary Design for Manufacturability Yield Parametric Yield Defect-related yield Statistical Design Power Estimation Power consumptionmechanisms Different level of abstraction Static or dynamic analysis Class Review Fundamentals of Circuit Simulation Formulation of circuit equations Solution of linear equations Solution of nonlinear equations Solution of ordinary differential equations Analog Circuits Simulation Analog Hardware Description Languages Digital Systems Verification Overview Equivalence Checking FastMOS simulation Timing Analysis Hardware Description Languages System C Physical Issues Verification Interconnects Signal Integrity Parasitic Extraction Reduced Order Modeling Manufacturability Power Estimation 16

### Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

### Where Does Power Go in CMOS?

Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking

### Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»

### EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

### EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

### Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

- Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

### Lecture 8-1. Low Power Design

Lecture 8 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas E-mail: k.masselos@ic.ac.uk Lecture 8-1 Based on slides/material

### EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

### Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

- Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :30-3pm at BWRC (in lieu of Tuesday) Today s lecture Power

### Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

### EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

### EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders

EECS 47 Lecture 11: Power and Energy Reading: 5.55 [Adapted from Irwin and Narayanan] 1 Reminders CAD5 is due Wednesday 10/8 You can submit it by Thursday 10/9 at noon Lecture on 11/ will be taught by

### CSE493/593. Designing for Low Power

CSE493/593 Designing for Low Power Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.].1 Why Power Matters Packaging costs Power supply rail design Chip and system

### Variation-Resistant Dynamic Power Optimization for VLSI Circuits

Process-Variation Variation-Resistant Dynamic Power Optimization for VLSI Circuits Fei Hu Department of ECE Auburn University, AL 36849 Ph.D. Dissertation Committee: Dr. Vishwani D. Agrawal Dr. Foster

### Integrated Circuits & Systems

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

### Variation-Resistant Dynamic Power Optimization for VLSI Circuits

Process-Variation Variation-Resistant Dynamic Power Optimization for VLSI Circuits Fei Hu Department of ECE Auburn University, AL 36849 Ph.D. Dissertation Committee: Dr. Vishwani D. Agrawal Dr. Foster

### CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 14: Designing for Low Power [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12 CMPEN

### Dynamic operation 20

Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

### Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

### Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

### THE INVERTER. Inverter

THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

### EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

### Lecture 2: CMOS technology. Energy-aware computing

Energy-Aware Computing Lecture 2: CMOS technology Basic components Transistors Two types: NMOS, PMOS Wires (interconnect) Transistors as switches Gate Drain Source NMOS: When G is @ logic 1 (actually over

### EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC

### MODULE III PHYSICAL DESIGN ISSUES

VLSI Digital Design MODULE III PHYSICAL DESIGN ISSUES 3.2 Power-supply and clock distribution EE - VDD -P2006 3:1 3.1.1 Power dissipation in CMOS gates Power dissipation importance Package Cost. Power

### Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

### ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

407 Computer Aided Design for Electronic Systems Simulation Instructor: Maria K. Michael Overview What is simulation? Design verification Modeling Levels Modeling circuits for simulation True-value simulation

### COMP 103. Lecture 16. Dynamic Logic

COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

### Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

### Topic 4. The CMOS Inverter

Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

### EE141Microelettronica. CMOS Logic

Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

### PARADE: PARAmetric Delay Evaluation Under Process Variation *

PARADE: PARAmetric Delay Evaluation Under Process Variation * Xiang Lu, Zhuo Li, Wangqi Qiu, D. M. H. Walker, Weiping Shi Dept. of Electrical Engineering Dept. of Computer Science Texas A&M University

### CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

### Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters

1 Scaling of MOS Circuits CONTENTS 1. What is scaling?. Why scaling? 3. Figure(s) of Merit (FoM) for scaling 4. International Technology Roadmap for Semiconductors (ITRS) 5. Scaling models 6. Scaling factors

### Digital Integrated Circuits 2nd Inverter

Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response

### EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

### CMOS Inverter (static view)

Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

### Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

### Introduction to CMOS VLSI Design (E158) Lecture 20: Low Power Design

Harris Introduction to CMOS VLSI Design (E158) Lecture 20: Low Power Design David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH E158

### VLSI Design I; A. Milenkovic 1

Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

### Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

### PARADE: PARAmetric Delay Evaluation Under Process Variation * (Revised Version)

PARADE: PARAmetric Delay Evaluation Under Process Variation * (Revised Version) Xiang Lu, Zhuo Li, Wangqi Qiu, D. M. H. Walker, Weiping Shi Dept. of Electrical Engineering Dept. of Computer Science Texas

### Status. Embedded System Design and Synthesis. Power and temperature Definitions. Acoustic phonons. Optic phonons

Status http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan Specification, languages, and modeling Computational complexity,

### ECE321 Electronics I

ECE321 Electronics I Lecture 1: Introduction to Digital Electronics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Textbook

### 9/18/2008 GMU, ECE 680 Physical VLSI Design

ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

### The Physical Structure (NMOS)

The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

### Transistor Sizing for Radiation Hardening

Transistor Sizing for Radiation Hardening Qug Zhou and Kartik Mohanram Department of Electrical and Computer Engineering Rice University, Houston, TX 775 E-mail: {qug, kmram}@rice.edu Abstract This paper

### ! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

### EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

### Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

### Chapter 2. Design and Fabrication of VLSI Devices

Chapter 2 Design and Fabrication of VLSI Devices Jason Cong 1 Design and Fabrication of VLSI Devices Objectives: To study the materials used in fabrication of VLSI devices. To study the structure of devices

### EECS150 - Digital Design Lecture 22 Power Consumption in CMOS. Announcements

EECS150 - Digital Design Lecture 22 Power Consumption in CMOS November 22, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

### The Devices. Jan M. Rabaey

The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

### ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

### Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an N-Switch, the

### Lecture 15: Scaling & Economics

Lecture 15: Scaling & Economics Outline Scaling Transistors Interconnect Future Challenges Economics 2 Moore s Law Recall that Moore s Law has been driving CMOS [Moore65] Corollary: clock speeds have improved

### EE241 - Spring 2005 Advanced Digital Integrated Circuits. Admin. Lecture 10: Power Intro

EE241 - Spring 2005 Advanced Digital Integrated Circuits Lecture 10: Power Intro Admin Project Phase 2 due Monday March 14, 5pm (by e-mail to jan@eecs.berkeley.edu and huifangq@eecs.berkeley.edu) Should

### CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

### ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

### Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

### ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

### PLA Minimization for Low Power VLSI Designs

PLA Minimization for Low Power VLSI Designs Sasan Iman, Massoud Pedram Department of Electrical Engineering - Systems University of Southern California Chi-ying Tsui Department of Electrical and Electronics

### EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

### EE5311- Digital IC Design

EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

### Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler

### Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects

Lecture 5 MOS Inverter: Switching Characteristics and Interconnection Effects Introduction C load = (C gd,n + C gd,p + C db,n + C db,p ) + (C int + C g ) Lumped linear capacitance intrinsic cap. extrinsic

### ENEE 359a Digital VLSI Design

SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides

### CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

### EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: PDP, EDP, Intersignal Correlations, Glitching, Top

### Chapter 2 Fault Modeling

Chapter 2 Fault Modeling Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why Model Faults? Fault Models (Faults)

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design

### ASIC FPGA Chip hip Design Pow Po e w r e Di ssipation ssipa Mahdi Shabany

ASIC/FPGA Chip Design Power Di ssipation Mahdi Shabany Department tof Electrical ti lengineering i Sharif University of technology Outline Introduction o Dynamic Power Dissipation Static Power Dissipation

### ENEE 359a Digital VLSI Design

SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

### Lecture 4: CMOS review & Dynamic Logic

Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full rail-to-rail swing high noise margins Logic levels not dependent

### Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

### MOSFET: Introduction

E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

### Chapter 8. Low-Power VLSI Design Methodology

VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

### Semiconductor Memories

Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

### EECS 141 F01 Lecture 17

EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

### MOS Transistor Theory

CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

### DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction

DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction Saraju P. Mohanty Dept of Computer Science and Engineering University of North Texas smohanty@cs.unt.edu http://www.cs.unt.edu/~smohanty/

### Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits

E = B; H = J + D D = ρ ; B = 0 D = ρ ; B = 0 Yehia Massoud ECE Department Rice University Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits ECE Affiliates 10/8/2003 Background: Integrated

### VLSI Design I. Defect Mechanisms and Fault Models

VLSI Design I Defect Mechanisms and Fault Models He s dead Jim... Overview Defects Fault models Goal: You know the difference between design and fabrication defects. You know sources of defects and you

### EEC 216 Lecture #2: Metrics and Logic Level Power Estimation. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #2: Metrics and Logic Level Power Estimation Rajeevan Amirtharajah University of California, Davis Announcements PS1 available online tonight R. Amirtharajah, EEC216 Winter 2008 2 Outline

### The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS

### EE115C Digital Electronic Circuits Homework #4

EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

### Integrated Circuits & Systems

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

### CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March

### Design of System Elements. Basics of VLSI

Design of System Elements Basics of VLSI A Generic Digital Machine MEMORY INPUT-OUT PUT CONTROL DATAPATH Jamadagni H S ITC/V1/2004 2of 50 Building Blocks for Digital Architectures Arithmetic unit Data

### Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

### Impact of Scaling on The Effectiveness of Dynamic Power Reduction Schemes

Impact of Scaling on The Effectiveness of Dynamic Power Reduction Schemes D. Duarte Intel Corporation david.e.duarte@intel.com N. Vijaykrishnan, M.J. Irwin, H-S Kim Department of CSE, Penn State University

### Digital Integrated Circuits A Design Perspective

Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures