CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering


 Phyllis Banks
 2 years ago
 Views:
Transcription
1 CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016
2 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March / 37
3 Static dual CMOS gates In1 In2 InN pullup network PMOS F(In1, In2,..., InN) In1 In2 InN pulldown network NMOS Pull and pulldown networks are dual of each other: series of switches parallel switches João Canas Ferreira (FEUP) CMOS logic gates March / 37
4 NND logic gate B B Out= B B Out João Canas Ferreira (FEUP) CMOS logic gates March / 37
5 NND logic gate B B Out= B B Out Pulldown network: G = B Pullup network : F = + B = B direct path to Gnd direct path to V DD Generally (selfduality): G(In 1, In 2,...) = F(In 1, In 2,...) Out = G(In 1, In 2,...) João Canas Ferreira (FEUP) CMOS logic gates March / 37
6 NOR logic gate B B Out = +B C Out = +B+C B B C B Out João Canas Ferreira (FEUP) CMOS logic gates March / 37
7 Complex CMOS logic gate B C D Out = D+(B+C) D B C João Canas Ferreira (FEUP) CMOS logic gates March / 37
8 Building a complex CMOS logic gate Design the pulldown network Find hierarchically all subnetworks Switch parallel series by hierarchical order João Canas Ferreira (FEUP) CMOS logic gates March / 37
9 Building a complex CMOS logic gate Design the pulldown network Find hierarchically all subnetworks Switch parallel series by hierarchical order D B C João Canas Ferreira (FEUP) CMOS logic gates March / 37
10 Building a complex CMOS logic gate Design the pulldown network Find hierarchically all subnetworks Switch parallel series by hierarchical order D D B C B C 4 João Canas Ferreira (FEUP) CMOS logic gates March / 37
11 Building a complex CMOS logic gate Design the pulldown network Find hierarchically all subnetworks Switch parallel series by hierarchical order 2 D D B 4 C B C B C 4 D 1 João Canas Ferreira (FEUP) CMOS logic gates March / 37
12 Criteria for complex CMOS static gates Dual circuit is not necessarily obtained by series parallel. There may be several dual circuits. How to identify a good dual circuit? João Canas Ferreira (FEUP) CMOS logic gates March / 37
13 Criteria for complex CMOS static gates Dual circuit is not necessarily obtained by series parallel. There may be several dual circuits. How to identify a good dual circuit? Methods Use Karnaugh maps to identify dual circuit with good layout properties and reduced parasitics. Maximize the number of connections to V DD or Gnd Put delay critical transistors near the output node João Canas Ferreira (FEUP) CMOS logic gates March / 37
14 Example: carry generation (1) Carry output of a full adder: F(a, b, c) = ab + bc + ac Implement function G(a, b, c) = F 0cover defines the pulldown circuit 1cover defines the pullup circuit B C cover: ab + bc + ac 1cover: a b + b c + a c João Canas Ferreira (FEUP) CMOS logic gates March / 37
15 Examplo: carry generation (2) Pulldown circuit Maximize number of connections to V DD Critical signal (C) near output Factorize: ab + c(a + b) C B B João Canas Ferreira (FEUP) CMOS logic gates March / 37
16 Examplo: carry generation (3) Series/parallel dual pullup circuit B C B João Canas Ferreira (FEUP) CMOS logic gates March / 37
17 Examplo: carry generation (3) Series/parallel dual pullup circuit Pullup circuit derived from 1cover B B C B B C João Canas Ferreira (FEUP) CMOS logic gates March / 37
18 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March / 37
19 Properties of dual static complex CMOS gates Railtorail excursion: large noise margin João Canas Ferreira (FEUP) CMOS logic gates March / 37
20 Properties of dual static complex CMOS gates Railtorail excursion: large noise margin Logic levels do not depend on the size of the devices (ratioless logic) João Canas Ferreira (FEUP) CMOS logic gates March / 37
21 Properties of dual static complex CMOS gates Railtorail excursion: large noise margin Logic levels do not depend on the size of the devices (ratioless logic) Steadystate path from output to Vdd/Gnd: low output resistance João Canas Ferreira (FEUP) CMOS logic gates March / 37
22 Properties of dual static complex CMOS gates Railtorail excursion: large noise margin Logic levels do not depend on the size of the devices (ratioless logic) Steadystate path from output to Vdd/Gnd: low output resistance Very high input resistance (input DC current 0) João Canas Ferreira (FEUP) CMOS logic gates March / 37
23 Properties of dual static complex CMOS gates Railtorail excursion: large noise margin Logic levels do not depend on the size of the devices (ratioless logic) Steadystate path from output to Vdd/Gnd: low output resistance Very high input resistance (input DC current 0) No direct path between Vdd and Gnd: no static power dissipation João Canas Ferreira (FEUP) CMOS logic gates March / 37
24 Properties of dual static complex CMOS gates Railtorail excursion: large noise margin Logic levels do not depend on the size of the devices (ratioless logic) Steadystate path from output to Vdd/Gnd: low output resistance Very high input resistance (input DC current 0) No direct path between Vdd and Gnd: no static power dissipation Delay depends (mainly) on the load capacitance and the equivalent resistance (R on ) of the transistors. João Canas Ferreira (FEUP) CMOS logic gates March / 37
25 Models for calculating propagation delay Subsritute transistors by switch and R eq Include intrinsic capacitance of internal nodes João Canas Ferreira (FEUP) CMOS logic gates March / 37
26 Delay is dependent on input patterns João Canas Ferreira (FEUP) CMOS logic gates March / 37
27 Delay is dependent on input patterns Delay depends on pullup/pulldown path João Canas Ferreira (FEUP) CMOS logic gates March / 37
28 Delay is dependent on input patterns Delay depends on pullup/pulldown path 0 to 1 output transition: João Canas Ferreira (FEUP) CMOS logic gates March / 37
29 Delay is dependent on input patterns Delay depends on pullup/pulldown path 0 to 1 output transition: both inputs are zero: 0.69 (R p /2)C L João Canas Ferreira (FEUP) CMOS logic gates March / 37
30 Delay is dependent on input patterns Delay depends on pullup/pulldown path 0 to 1 output transition: both inputs are zero: 0.69 (R p /2)C L one input is zero: 0.69 R p C L João Canas Ferreira (FEUP) CMOS logic gates March / 37
31 Delay is dependent on input patterns Delay depends on pullup/pulldown path 0 to 1 output transition: both inputs are zero: 0.69 (R p /2)C L one input is zero: 0.69 R p C L 1 to 0 output transition: João Canas Ferreira (FEUP) CMOS logic gates March / 37
32 Delay is dependent on input patterns Delay depends on pullup/pulldown path 0 to 1 output transition: both inputs are zero: 0.69 (R p /2)C L one input is zero: 0.69 R p C L 1 to 0 output transition: both inputs are 1 : R n C L João Canas Ferreira (FEUP) CMOS logic gates March / 37
33 Delay is dependent on input patterns Delay depends on pullup/pulldown path 0 to 1 output transition: both inputs are zero: 0.69 (R p /2)C L one input is zero: 0.69 R p C L 1 to 0 output transition: both inputs are 1 : R n C L includingintr (Elmore delay approximation): 0.69 (R n C intr + 2 R n C L ) João Canas Ferreira (FEUP) CMOS logic gates March / 37
34 NND2: input dependent delay NMOS: 0.5 µm/0.25 µm PMOS: 0.75 µm/0.25 µm C L =100 ff Voltage (V) Source: [Rabaey03] time (ps) Input pattern Delay (ps) =B= =1, B= =0 1, B=1 50 =B= =1, B= =1 0, B=1 57 João Canas Ferreira (FEUP) CMOS logic gates March / 37
35 Transistor sizing (1) Symmetric (balanced) gates (assuming β = 2) Size in multiples of (W min /L min ) (multiplying W) João Canas Ferreira (FEUP) CMOS logic gates March / 37
36 Transistor sizing (2) Starting with the left branch Starting with the right branch series of transistors has the equivalent size: For constant L: (W/L) eq = For parallel devices: For constant L: (W/L) 1 + (W/L) W eq = 1 W 1 + W (W/L) eq = (W/L) 1 + (W/L) W eq = W 1 + W João Canas Ferreira (FEUP) CMOS logic gates March / 37
37 Influence of the number of inputs João Canas Ferreira (FEUP) CMOS logic gates March / 37
38 Influence of the number of inputs Elmore estimate of the propagation delay:: t phl = 0.69((R 1 C 1 + (R 1 + R 2 ) C 2 + (R 1 + R 2 + R 3 ) C 3 + (R 1 + R 2 + R 3 + R 4 ) C L ) Equal NMOS transistors: t phl = 0.69 R eqn (C C C C L ) Propagation delay degrades significantly with increasing number of inputs (fanin); in the worst case, quadratically ( N = N(N 1)/2). João Canas Ferreira (FEUP) CMOS logic gates March / 37
39 Propagation delay as a function of the number of inputs Source: [Rabaey03] Practical rule: void logic gates with more than four inputs. João Canas Ferreira (FEUP) CMOS logic gates March / 37
40 Propagation delay as a function of effective fanout Effective fanout: F = C load C input Source: [Rabaey03] João Canas Ferreira (FEUP) CMOS logic gates March / 37
41 Reducing propagation delay (1) Make transistors wider Useful while external load capacitance is dominant. João Canas Ferreira (FEUP) CMOS logic gates March / 37
42 Reducing propagation delay (1) Make transistors wider Useful while external load capacitance is dominant. Progressive sizing M 1 > M 2 > M 3 >... > M N (FET closer to the output is the smallest) May reduce delay by more than 20 % João Canas Ferreira (FEUP) CMOS logic gates March / 37
43 Reducing propagation delay (2) Consider arrival order of signal I 3 1 M 3 C L charged 0 1 I 3 M 3 C L charged I 2 1 M 2 C 2 charged I 2 1 M 2 C 2 uncharged 0 1 I 1 M1 C 1 charged I 1 1 M1 C 1 uncharged delay determined by discharge of C L, C 1 e C 2 delay determined by discharge of C L João Canas Ferreira (FEUP) CMOS logic gates March / 37
44 Reducing propagation delay (3) Chose structure that allow a smaller fanin Example: F = BCDEFG Question: how to select the fastest structure? João Canas Ferreira (FEUP) CMOS logic gates March / 37
45 Reducing propagation delay (4) Buffer insertion Question: what is the ideal number of buffers and their sizes? João Canas Ferreira (FEUP) CMOS logic gates March / 37
46 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March / 37
47 Standard cell ( 1980 s) Source: [Rabaey03] Contacts and well not shown João Canas Ferreira (FEUP) CMOS logic gates March / 37
48 Standard cell (1990 s) Mirrored cell No channel Mirrored cell Source: [Rabaey03] João Canas Ferreira (FEUP) CMOS logic gates March / 37
49 Structure of a cell (inverter) Height: 12 metal tracks Metal track approx. 3λ + 3λ Pitch: distance between repeated objects Cell height: "12 pitch" cell border Supply ~ 10 λ Source: [Rabaey03] João Canas Ferreira (FEUP) CMOS logic gates March / 37
50 Variants of inverter cell Minimum routing in diffusion Silicidade diffusion Source: [Rabaey03] João Canas Ferreira (FEUP) CMOS logic gates March / 37
51 Twoinput NND gate Source: [Rabaey03] João Canas Ferreira (FEUP) CMOS logic gates March / 37
52 Layout planning (stick diagrams) Source: [Rabaey03] No sizes Relative positions João Canas Ferreira (FEUP) CMOS logic gates March / 37
53 Layout planning of complex cells X B Y C X C C Vdd C Z X = C (+B) B B B Z Y Gnd 1 Draw two graphs (one for each network) where the nodes represent circuit nodes and edges represent devices. 2 Find a consistent Euler paths through each graph. Euler path: path through all the edges (just once) Layout with continuous diffusion! The two paths must be consistent : same sequence of nodes on both paths (just one poly line for both nmos and pmos devices). João Canas Ferreira (FEUP) CMOS logic gates March / 37
54 Example: Two implementation alternatives Source: [Rabaey03] Cell on the right: no diffusion breaks João Canas Ferreira (FEUP) CMOS logic gates March / 37
55 nother example: Logic gate OI22 X C D C B D X D C Vdd C X = (+B)(C+D) D B B B Gnd João Canas Ferreira (FEUP) CMOS logic gates March / 37
56 Wide transistors One nger Two ngers Less diffusion capacitance Source: [Rabaey03] João Canas Ferreira (FEUP) CMOS logic gates March / 37
57 References Some of the figures come from the book: Rabaey03 J. M. Rabaey et al, Digital Integrated Circuits, 2nd edition,prentice Hall, João Canas Ferreira (FEUP) CMOS logic gates March / 37
Digital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More informationEE115C Digital Electronic Circuits Homework #6
Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationLogic Gate Sizing. The method of logical effort. João Canas Ferreira. March University of Porto Faculty of Engineering
Logic Gate Sizing The method of logical effort João Canas Ferreira University of Porto Faculty of Engineering March 016 Topics 1 Modeling CMOS Gates Chain of logic gates João Canas Ferreira (FEUP) Logic
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationDigital EE141 Integrated Circuits 2nd Combinational Circuits
Digital Integrated Circuits Designing i Combinational Logic Circuits 1 Combinational vs. Sequential Logic 2 Static CMOS Circuit t every point in time (except during the switching transients) each gate
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationCPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationBased on slides/material by. Topic 34. Combinational Logic. Outline. The CMOS Inverter: A First Glance
ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html
More informationCARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002
CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed
More informationCPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit
More informationCMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits
Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: TwoInput NOR Gate (NOR2)
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!
More informationEE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1
RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationCPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look
CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter
More informationCMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.
CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Views / bstractions / Hierarchies ehavioral Structural
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND
More informationHomework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout
0/6/06 Homework # Lecture 8, 9: Sizing and Layout of omplex MOS Gates Reading: hapter 4, sections 4.34.5 October 3 & 5, 06 hapter, section.5.5 Prof. R. Iris ahar Weste & Harris vailable on course webpage
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka )
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationVLSI Design I; A. Milenkovic 1
PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka ) www. ece.uah.edu/~milenka/cpe573f
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More informationCPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline
CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe5705f
More informationStatic CMOS Circuits. Example 1
Static CMOS Circuits Conventional (ratioless) static CMOS Covered so far Ratioed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationCOMP 103. Lecture 16. Dynamic Logic
COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.
ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler
More informationEE141. Administrative Stuff
Spring 2004 Digital Integrated ircuits Lecture 15 Logical Effort Pass Transistor Logic 1 dministrative Stuff First (short) project to be launched next Th. Overall span: 1 week Hardware lab this week Hw
More informationDynamic operation 20
Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationChapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter
Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationInterconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003
Interconnect (2) Buffering Techniques.Transmission Lines Lecture 12 18322 Fall 2003 A few announcements Partners Lab Due Times Midterm 1 is nearly here Date: 10/14/02, time: 3:004:20PM, place: in class
More informationInterconnect (2) Buffering Techniques. Logical Effort
Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The checkoff is due today (by 9:30PM) Students
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: omplementary MO Logic Gates epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model
ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationCOMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE
COMP 103 Lecture 10 Inverter Dynamics: The Quest for Performance Section 5.4.2, 5.4.3 [All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationVLSI Circuit Design (EEC0056) Exam
Mestrado Integrado em Engenharia Eletrotécnica e de omputadores VLSI ircuit esign (EE0056) Exam 205/6 4 th year, 2 nd sem. uration: 2:30 Open notes Note: The test has 5 questions for 200 points. Show all
More informationVery Large Scale Integration (VLSI)
Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. MadianVLSI Contents Delay estimation Simple RC model PenfieldRubenstein Model Logical effort Delay
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationECE 342 Electronic Circuits. Lecture 34 CMOS Logic
ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic  Generalization ABC... ABC...
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationCMOS Technology for Computer Architects
CMOS Technology for Computer Architects Recap Technology Trends Lecture 2: Transistor Inverter Iakovos Mavroidis Giorgos Passas Manolis Katevenis FORTHICS (University of Crete) 1 2 Recap Threshold Voltage
More informationName: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br
More informationEE115C Digital Electronic Circuits Homework #5
EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors
More informationEE141Fall 2011 Digital Integrated Circuits
EE4Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical
More informationL ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling
L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation
More informationDigital Integrated Circuits 2nd Inverter
Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response
More informationLecture 4: Implementing Logic in CMOS
Lecture 4: Implementing Logic in CMOS Mark Mcermott Electrical and Computer Engineering The University of Texas at ustin Review of emorgan s Theorem Recall that: () = + and = ( + ) (+) = and + = ( ) ()
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999
UNIVERSITY OF CLIFORNI College of Engineering Department of Electrical Engineering and Computer Sciences Professor Oldham Fall 1999 EECS 40 FINL EXM 13 December 1999 Name: Last, First Student ID: T: Kusuma
More informationCMOS Digital Integrated Circuits Lec 13 Semiconductor Memories
Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) ReadOnly Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationThe Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS
More information