Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Size: px
Start display at page:

Download "Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter"

Transcription

1 Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03

2 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation) Optimal Transistor Sizing for speed and Energy Power Consumption and Dissipation

3 The CMOS Inverter: A First Glance V DD V in V out C L

4 CMOS Inverter N Well V DD V DD PMOS PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND A=WxL

5 Two Inverters Share power and ground Abut cells V DD Connect in Metal Vin Vout Vout Vin

6 CMOS Inverter First-Order DC Analysis V DD V DD V out R p V out V OL = 0 V OH = V DD R n V in = V DD V in = 0

7 Delay Definitions (circuit speed) V in 50% t V out t phl t plh 90% 50% 10% t t f t r

8 CMOS Inverter: Transient Response V DD V DD R p t phl = f(r on.c L ) = 0.69 R on C L V out V out ln(2)=0.69 C L C L R n V in = 0 (a) Low-to-high V in = V DD (b) High-to-low

9 Voltage Transfer Characteristic

10 PMOS Load Lines (Vdd = 2.5V in 0.25um CMOS Process) (Vt = 0.4V as shown in Table 3-2) V in = V DD + V GS, p I Dn I D, n = I D, p V out = V DD + V DS, p V out I Dp V in =0 I Dn I Dn V in =0 V in =1.5 V in =1.5 V GSp =-1 V DS,p V DS,p V out V GSp =-2.5 I V in D, n = V DD = I D, p + V GS, p V out = VDD + V DS, p

11 CMOS Inverter Load Characteristics I Dn V in = 0 V in = 2.5 PMOS V in = 0.5 V in = 2 NMOS V in = 1 V in = 1.5 V in = 1.5 V in = 1 V in = 2 V in = 1.5 V in = 1 V in = 0.5 V in = 2.5 V in = 0 V out

12 CMOS Inverter VTC V out NMOS off PMOS res NMOS sat PMOS res NMOS sat PMOS sat NMOS res PMOS sat VM: Vin = Vout Switching Threshold Voltage NMOS res PMOS off V in Inverter

13 Switching Threshold as a Function of Transistor Ratio NMOS and PMOS are in Saturation Modes rvdd V M (when VDD >> V 1+ r DSAT For r = 1, and saturated velocity NMOS = 2 PMOS, Wp = 2Wn, V Tn, V Tp )

14 Switching Threshold as a Function of Transistor Ratio V (V) M W p /W n

15 Simulated VTC V out (V ) V in (V)

16 Impact of Process Variations 2.5 V out (V) Good NMOS Bad PMOS Nominal Good PMOS Bad NMOS V in (V) Good definition: Smaller oxide thickness, smaller L, higher W, smaller VT Inverter

17 Propagation Delay Inverter

18 CMOS Inverters V DD PMOS In Out 1.2 µm =2λ Metal1 Polysilicon NMOS GND

19 CMOS Inverter Propagation Delay V DD t phl = f(r on.c L ) = 0.69 R on C L V out V out ln(0.5) R on C L 1 V DD V in = V DD R on C L t

20 The Transistor as a Switch V GS V T S Ron D I D V GS = V DD R mid R 0 V DD /2 V DD V DS

21 The Transistor as a Switch 7 x R eq (O hm ) V DD (V )

22 The Transistor as a Switch Inverter

23 Transient Response 3 2.5? V out (V ) t p = 0.69 C L (R eqn +R eqp )/2 0.5 t plh t phl t (sec) x 10-10

24 Delay (speed degrade) as a function of V DD t p (norm alized) when t phl V DD >> V Tn + V C 0.52 ( W / L) k V L ' n DSATn DSATn / V DD (V ) Similar to Rn curve! Sharp change at 2Vt

25 Design for Speed Performance Keep loading capacitances (CL) small Increase transistor ratio (W/L) (adding CMOS gain) Watch out for self-loading (for the previous stage)! Increase Vdd! Trade power/energy dissipation for performance!

26 Propagation delay v.s. Transistor size NMOS-to-PMOS Ratio: Symmetrical tphl and tplh PMOS is 2.5~3.5 wider than NMOS in width under same L Is there better propagation delay (tp), or a better N-to-P ratio for overall tp can be found? Consider two identical cascaded CMOS inverters. The approximated load cap of the 1 st gate is C = ) + C L ( Cdp 1 + Cdn 1) + ( Cgp2 + Cgn2 W C C C, dp1 dn1 C, gp2 gn2 Is drain capacitance of PMOS and NMOS of 1 st stage Is gate capacitance of PMOS and NMOS of 2 nd stage Inverter

27 Propagation delay v.s. Transistor size Inverter When the PMOS device is made β times larger than the ( W / L) p NMOS β = Then CL becomes From (5.20), we have t p = eqp where γ = is the resistance ratio of equal-size NMOS and PMOS C = (1 ( W / L) n βc C βc dp1 dn1 and gp2 gn2 C = ) + C L ( 1+ β )( Cdn 1 + Cgn2 [(1 + β )( C + C ) + C ] dn1 ( R γ [ + β )( C + C ) + C ] R (1 + ) R R eqn dn1 gn2 gn2 W W eqn eqn + R eqp β β ) W

28 NMOS/PMOS ratio t p (sec) x tplh 1.9 tphl β Fig tp β opt β = W p /W n From Table 3.3 β= 31Κ/13Κ = 2.4 when β = opt = γ (1 + ( C C 1 + C 2 dn γ CW + C dn1 gn2 gn >> C Inverter ) W

29 Sizing Inverter

30 Inverter Chain In Out 1 f1 f2 C L If C L is given: - How many stages are needed to minimize the delay? - How to size the inverters? May need some additional constraints.

31 Notation Definition Unit-size NMOS Transistor: the NMOS with minimum Lmin and Wmin that meets the layout design rule (assume L is fixed, and W is varied) : Intrinsic Cap. of unit-size NMOS transistor C unit R unit C g R W : Channel resistance of unit-size NMOS transistor : Gate cap of unit-size NMOS transistor : Channel resistance of W-sized NMOS transistor : Self-loading or intrinsic cap of the inverter C int (diffusion cap and gate-drain overlap (Miller) cap)

32 Delay Minimum length devices, L=0.25µm Assume R P = 2R N and W P = 2W N =2W same pull-up and pull-down currents approx. equal resistances R N = R P approx. equal rise t plh and fall t phl delays Analyze as an RC network Delay (D): t phl = (ln 2) R N C L t plh = (ln 2) R P C L 2W W W W unit unit R P = (2Runit ) Runit = RN = W P W N Load for the next stage: C = 3 gin R W W W unit (R of unit size NMOS) C unit Inverter

33 with Load Delay R P 2W R W W C L Load (C L ) t p = kr W C L k is a constant, equal to 0.69 Assumptions: no load zero delay t phl = (ln 2) R N C L t plh = (ln 2) R P C L Inverter

34 with Load and Para. Cap. C P = 2C unit Delay 2W W C int C L C N = C unit Load Delay = kr W (C int + C L ) = kr W C int + kr W C L = Delay (Internal) + Delay (Load) = kr W C int (1+ C L /C int ) Inverter

35 Delay Formula Delay ~ R W ( C + C ) int L t p = kr W C int ( 1 + C / C ) = t ( 1 + f / γ ) L int p 0 C int = γc g,in with γ 1 f = C L /C g,in : Effective fanout RW = R unit / W ; C int =WC unit t p0 = 0.69R unit C unit (Intrinsic or unloaded delay) Not function of transistor size!! Inverter

36 Apply to Inverter Chain In Out 1 2 N C L t p = t p1 + t p2 + + t pn C gin, j+ 1 t + pj ~ RunitCunit 1 γcgin, j N N C gin j t p = t p j = t, + 1, p0 1 +, Cgin N = j i C, + 1 = 1 = 1 γ gin, j C L

37 Optimal Tapering for Given N Delay equation has (N-1) unknowns, C gin,2 ~ C gin,n Minimize the delay, find (N 1) partial derivatives Result: C gin,j+1 /C gin,j = C gin,j /C gin,j-1 Size of each stage is the geometric mean of two neighbors C gin, j = Cgin, j 1C gin, j+ 1 - Each stage has the same effective fanout (C out /C in ) - Each stage has the same delay

38 Optimum Delay and Number of Stages When each stage is sized by f and has same effective fanout f N f = F = C Effective fanout of each stage: Minimum path delay p L f = N F t = Nt + p0 / Cgin,1 ( 1 /γ ) N F

39 Example In C 1 1 f f 2 Out C L = 8 C 1 C L /C 1 has to be evenly distributed across N = 3 stages: f = 3 8 = 2

40 Optimum Number of Stages Given load, C L and given input capacitance C in Find optimal sizing f t C p L = = F C Nt p0 in = f N C in with N = t ln ( ) p0 F / γ + 1 = + γ ln ln F F f f ln f γ ln f t f p = t p0 ln γ F ln f 1 γ 2 ln f f = 0 f = exp 1+ ( γ f ) For γ = 0, f = e, N = lnf

41 Optimum Effective Fanout f f ( γ f ) = exp 1+ f opt = 3.6 for γ=1, f opt = for γ=0

42 Normalized delay function of F t = Nt + p p0 ( 1 /γ ) N F

43 Buffer Design N f t p Without considering the internal capacitance Inverter

44 Power Dissipation Inverter

45 Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking diodes and transistors

46 Dynamic Power Consumption E VDD = 0 dvout 2 VDD( t) VDDdt = VDD CL dt = VDDCL dvout CLVDD dt = 0 0 i

47 Dynamic Power Dissipation Vdd Vin Vout C L Energy/transition = C L * V dd 2 Power = Energy/transition * f = C L * V dd 2 * f Not a function of transistor sizes! Need to reduce C L, V dd, and f to reduce power. E C 2 dvout CLVDD = ivdd( t) voutdt = CL voutdt = Energy in CL dt 2 0 0

48 Node Transition Activity and Power Consider switching a CMOS gate for N clock cycles E = C V N L 2 nn dd ( ) E N : the energy consumed for N clock cycles n(n): the number of 0->1 transition in N clock cycles P = lim avg N E N f N clk = nn lim ( ) C N N L V dd 2 fclk α 0 1 = nn lim ( ) N N P avg = α 0 1 C L V dd 2 fclk P AVG = ( α0 1 C L ) V 2 DD f CLK = C Eff V 2 DD f CLK ( C Eff : Effective Capacitance) Inverter

49 Switching Activity (Example 5.12) α0 1 = 2 / 8 = 0.25

50 Transistor Sizing for Minimum Energy Goal: Minimize Energy of whole circuit while maintaining the speed speed performance Design parameters: f and V DD tp tp,ref of referenced circuit with f=1 and Vdd =V ref In Out C g1 1 f C ext t t p p0 f = t p γ VDD V V DD TE F fγ ( F = C ext / C g 1) ( V TE = VT + VDSAT / 2)

51 Transistor Sizing (2) Transistor Sizing (2) Performance Constraint (γ=1) Vdd(f) Energy for single transition Energy ratio of the design and reference circuit ( ) ( ) = = = F f F f V V V V V V F f F f t t t t TE DD TE ref ref DD ref p p pref p = F F f V f V E E ref DD ref ) ( 2 [ ] ] ) )(1 1 1[( F f C V F f f C V E g DD g DD = = γ γ γ

52 Transistor Sizing (4) V DD =f(f) E/E ref =f(f) Required Supply Voltage Energy v.s. Sizing factor

53 Sizing factor for Speed and Energy Device sizing, combined with supply voltage reduction, is a very effective way in reducing energy consumption of a logic network. The gain can be up to 10 for large fanout. Oversizing beyond the optimal value comes at a hefty price in energy. Optimal size for energy is smaller than the optimal sizing for performance. For example, f(energy) = 3.53, f(performance) = 4.47= 20, for F=20

54 Short Circuit Currents (during switching) Vd d Vin Vout C L 0.15 I VDD (ma) V in (V)

55 Minimizing Short-Circuit Power Inverter

56 Neil Weste Textbook Inverter

57 Leakage Current Sub-threshold current is one of most compelling issues in low-energy circuit design!! P = I stat stat V DD

58 Reverse-Biased Diode Leakage GATE p + p+ N + - V dd Reverse Leakage Current I DL = J S A JS = pa/µm2 at 25 deg C for 0.25µm CMOS JS doubles for every 9 deg C!

59 Subthreshold Leakage Component Inverter

60 Subthreshold Leakage Component (2) Inverter

61 Putting All Together P total = P dyna + P dp + P stat = ( C V L 2 DD + V DD I peak t s ) f V DD I leak In a typical CMOS circuits, the capacitive dissipation is by far the dominant factor. Leakage is ignorable at present, but will be major issue in deep-submicron CMOS circuits.

62 Principles for Power Reduction Prime choice: Reduce voltage! Recent years have seen an acceleration in supply voltage reduction Design at very low voltages still open question (0.6,, 0.9 V by 2010!) Reduce switching activity (at different levels) Reduce physical capacitance Device Sizing: for example, for F = 20 f opt (energy)=3.53, f opt (performance)=4.47.

63 Power-Delay Product (PDP) PDP = P t av p f = 1/(2t ) max L p CLV DD DD fmaxt p PDP = C V = PDP stands for the average energy consumed per switching event (0 1, 1 0)

64 Energy-Delay Product (EDP) Measure of both Performance and Energy EDP = PDP t C V α p = P av t 2 p = CLV 2 L DD t p, VTE = VT + VDSAT VDD VTE 2 DD t p / 2 (5.21) 2 3 CLVDD EDP = α, VDD, opt = 2( V V ) DD TE 3 2 V TE (5.59) The value of supply voltage that simultaneously optimizes performance and energy. For Vt=0.5V, the VDD is around 1V.

65 Energy-Delay Product (EDP) V V Tn Tp = 0.42V, = 0.4V, V V Dsat, n Dsat, p = 0.63V, V = 1V, V TE, n TE, p = 0.74V = 0.9V V TE = ( V TE, n + V TE, p ) / 2 = 0.8V V DD, opt = (3/ 2) 0.8V = 1.2V Note: Vdd for minimum EDP May not be the Optimal Vdd for a given design problem (speed contraint)

66 Summary Inverter Speed (delay), sizing, and power are discussed. The concept can be extended to complex gates in next chapter and future discussions Very important for the 1 st -order guess/approximation for designers in considering power/area/speed of the target CMOS circuits

Digital Integrated Circuits 2nd Inverter

Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response

More information

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain - Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :30-3pm at BWRC (in lieu of Tuesday) Today s lecture Power

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full rail-to-rail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power

More information

Lecture 4: CMOS review & Dynamic Logic

Lecture 4: CMOS review & Dynamic Logic Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full rail-to-rail swing high noise margins Logic levels not dependent

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Dynamic operation 20

Dynamic operation 20 Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

More information

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS

More information

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8 EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»

More information

Where Does Power Go in CMOS?

Where Does Power Go in CMOS? Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM

More information

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE COMP 103 Lecture 10 Inverter Dynamics: The Quest for Performance Section 5.4.2, 5.4.3 [All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated

More information

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»

More information

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1 5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

Digital Integrated Circuits

Digital Integrated Circuits Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter :

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

ECE321 Electronics I

ECE321 Electronics I ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman Zarkesh-Ha Office: ECE Bldg. 30B Office hours: Tuesday :00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 CMOS

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter?

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter? July 5th, 4 Goals of This Chapter Quantification of Design Metrics of an inverter Static (or Steady-State) Behavior Chapter 5 CMOS Inverter Boonchuay Supmonchai Integrated Design Application Research (IDAR)

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate EE4-Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:30-8:00pm in 05 Northgate Exam is

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter First-Order DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

EE115C Digital Electronic Circuits Homework #3

EE115C Digital Electronic Circuits Homework #3 Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56-147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational

More information

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders EECS 47 Lecture 11: Power and Energy Reading: 5.55 [Adapted from Irwin and Narayanan] 1 Reminders CAD5 is due Wednesday 10/8 You can submit it by Thursday 10/9 at noon Lecture on 11/ will be taught by

More information

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr. DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

More information

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model - Fall 00 Lecture 5 CMO Inverter MO Transistor Model Important! Lab 3 this week You must show up in one of the lab sessions this week If you don t show up you will be dropped from the class» Unless you

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

Properties of CMOS Gates Snapshot

Properties of CMOS Gates Snapshot MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

More information

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an N-Switch, the

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics

More information

High-to-Low Propagation Delay t PHL

High-to-Low Propagation Delay t PHL High-to-Low Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (n-channel) immediately switches from cutoff to saturation; the p-channel pull-up switches from triode to

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated ircuits YuZhuo Fu contact:fuyuzhuo@ic.sjtu.edu.cn Office location:47 room WeiDianZi building,no 800 Donghuan road,minhang amus Introduction Digital I 3.MOS Inverter Introduction Digital

More information

Digital Microelectronic Circuits ( )

Digital Microelectronic Circuits ( ) Digital Microelectronic ircuits (361-1-3021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

EE141-Fall Digital Integrated Circuits. Announcements. Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday. Homework #4 due next Thursday

EE141-Fall Digital Integrated Circuits. Announcements. Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday. Homework #4 due next Thursday EE4-Fall 2000 Digital Integrated ircuits Lecture 6 Inverter Delay Optimization Announcements Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday Homework #4 due next Thursday 2 2 lass Material Last lecture

More information

Interconnect (2) Buffering Techniques. Logical Effort

Interconnect (2) Buffering Techniques. Logical Effort Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18-322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The check-off is due today (by 9:30PM) Students

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Lecture 8-1. Low Power Design

Lecture 8-1. Low Power Design Lecture 8 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas E-mail: k.masselos@ic.ac.uk Lecture 8-1 Based on slides/material

More information

CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates. University of Connecticut 181 CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

ASIC FPGA Chip hip Design Pow Po e w r e Di ssipation ssipa Mahdi Shabany

ASIC FPGA Chip hip Design Pow Po e w r e Di ssipation ssipa Mahdi Shabany ASIC/FPGA Chip Design Power Di ssipation Mahdi Shabany Department tof Electrical ti lengineering i Sharif University of technology Outline Introduction o Dynamic Power Dissipation Static Power Dissipation

More information

COMBINATIONAL LOGIC. Combinational Logic

COMBINATIONAL LOGIC. Combinational Logic COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino np-cmos Combinational vs. Sequential Logic In Logic

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

More information

EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 2001 Advanced Digital Integrated Circuits EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

CSE493/593. Designing for Low Power

CSE493/593. Designing for Low Power CSE493/593 Designing for Low Power Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.].1 Why Power Matters Packaging costs Power supply rail design Chip and system

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003 Interconnect (2) Buffering Techniques.Transmission Lines Lecture 12 18-322 Fall 2003 A few announcements Partners Lab Due Times Midterm 1 is nearly here Date: 10/14/02, time: 3:00-4:20PM, place: in class

More information