# DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

Size: px
Start display at page:

Download "DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr."

Transcription

1 DC and Transient Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr (479)

2 Pass Transistors We have assumed source is grounded What if source > 0? e.g. pass transistor passing V g = If V s > -V t, V gs < V t Hence transistor would turn itself off nmos pass transistors pull no higher than -V tn Called a degraded 1 Approach degraded value slowly (low I ds ) pmos pass transistors pull no lower than V tp Transmission gates are needed to pass both 0 and 1 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 2

3 Pass Transistor Ckts V s = -V tn -V tn -V tn -V tn V s = V tp -V tn V SS -2V tn 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design

4 DC Response DC Response: V out vs. V in for a gate Ex: Inverter When V in = 0 -> V out = When V in = -> V out = 0 In between, V out depends on transistor size and current By KCL, must settle such that I dsn = I dsp We could solve equations But graphical solution gives more insight V in I dsp I dsn V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 4

5 Transistor Operation Current depends on region of transistor behavior For what V in and V out are nmos and pmos in Cutoff? Linear? Saturation? 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 5

6 nmos Operation Cutoff Linear Saturated V gsn < V tn V in < V tn V gsn > V tn V in > V tn V dsn < V gsn V tn V out < V in - V tn V gsn > V tn V in > V tn V dsn > V gsn V tn V out > V in - V tn V gsn = V in V dsn = V out V in I dsp I dsn V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 6

7 pmos Operation Cutoff Linear Saturated V gsp > V tp V in > + V tp V gsp < V tp V in < + V tp V dsp > V gsp V tp V out > V in - V tp V gsp < V tp V in < + V tp V dsp < V gsp V tp V out < V in - V tp V gsp = V in - V dsp = V out - V tp < 0 V in I dsp I dsn V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 7

8 I-V Characteristics Make pmos is wider than nmos such that b n = b p V gsn5 I dsn V gsn4 -V dsp V gsn V gsp1 V gsp2-0 V gsn2 V gsn1 V gsp V dsn V gsp4 -I dsp V gsp5 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 8

9 Current vs. V out, V in V in0 V in5 I dsn, I dsp V in1 V in4 V in2 V in V in V in4 V in2 V in1 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 9

10 Load Line Analysis For a given V in : Plot I dsn, I dsp vs. V out V out must be where currents are equal in V in I dsp I dsn V out V in0 V in5 I dsn, I dsp V in1 V in4 V in2 V in V in V in4 V in2 V in1 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 10

11 Load Line Analysis Vin = 0 V in0 I dsn, I dsp V in0 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 11

12 Load Line Analysis Vin = 0.2 I dsn, I dsp V in1 V in1 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 12

13 Load Line Analysis Vin = 0.4 I dsn, I dsp V in2 V in2 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 1

14 Load Line Analysis Vin = 0.6 I dsn, I dsp V in V in V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 14

15 Load Line Analysis Vin = 0.8 I dsn, I dsp V in4 V in4 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 15

16 Load Line Analysis Vin = 1 V in5 I dsn, I dsp V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 16

17 Load Line Analysis Summary V in0 V in5 V in1 V in4 V in2 V in V in V in4 V in2 V in1 V out 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 17

18 DC Transfer Curve Transcribe points onto V in vs. V out plot Transistor operating regions? V in0 V in5 V in0 V in1 V in2 A B V in1 V in4 V out C V in2 V in V in V in4 V in2 V in1 0 V in D V in4 V E in5 V tn /2 +V tp V out V in 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 18

19 Operating Regions Revisit transistor operating regions V in V out V out A B C Region nmos pmos A Cutoff Linear B Saturation Linear C Saturation Saturation D Linear Saturation E Linear Cutoff 0 D E V tn /2 +V tp V in 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 19

20 Beta Ratio If b p / b n 1, switching point will move from /2 Called skewed gate Other gates: collapse into equivalent inverter V out b b p n 0.1 b p 10 b n V in 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 20

21 Noise Margins How much noise can a gate input see before it does not recognize the input? Logical High Output Range Output Characteristics V OH NM H Input Characteristics Logical High Input Range V IH V IL Indeterminate Region Logical Low Output Range V OL NM L GND Logical Low Input Range 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 21

22 Logic Levels To maximize noise margins, select logic levels at unity gain point (slope = -1) of DC transfer characteristic V out V OH Unity Gain Points Slope = -1 b p /b n > 1 V in V out V OL 0 V tn V IL V IH - V tp V in 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 22

23 Transient Response DC analysis tells us V out if V in is constant Transient analysis tells us V out (t) if V in (t) changes Requires solving differential equations Input is usually considered to be a step or ramp From 0 to or vice versa 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 2

24 Inverter Step Response Ex: find step response of inverter driving load cap V in (t) I dsn (t) V out (t) C load t 0 V in (t) V out (t) t V V in out dv () t ( t t ) out dt ( t) u( t t ) V 0 0 V I DD dsn C DD () t load I 0 t t0 Vout ( t) b VDD V t V () t V V 2 D V b 2 dsn ( t) 2 VDD V Vout VDD Vt out out D t 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 24

25 Delay Definitions Switching speed: t r : rise time From output crossing 0.2 to 0.8 VDD t f : fall time From output crossing 0.8 to 0.2 VDD Propagation Delay: (max delay) t pdr : rising propagation delay From input to rising output crossing VDD/2 t pdf : falling propagation delay From input to falling output crossing VDD/2 t pd : average propagation delay t pd = (t pdr + t pdf )/2 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 25

26 Delay Definitions Contamination Delay: (min delay) t cdr : rising contamination delay From input to rising output crossing /2 t cdf : falling contamination delay From input to falling output crossing /2 t cd : average contamination delay t pd = (t cdr + t cdf )/2 Difference between propagation and contamination delay: Output is guaranteed to stay stable before contamination delay Output is guaranteed to stay stable after propagation delay 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 26

27 Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically Uses more accurate I-V models too! But simulations take time to write, may hide insight (V) V in t pdf = 66ps t pdr = 8ps 0.5 V out p 400p 600p 800p 1n t(s) 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 27

28 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But easier to ask What if? The step response usually looks like a 1 st order RC response with a decaying exponential. Use RC delay models to estimate delay C = total capacitance on output node Use effective resistance R So that t pd = RC Characterize transistors by finding their effective R Depends on average current as gate switches 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 28

29 Effective Resistance Shockley models have limited value Not accurate enough for modern transistors Too complicated for much hand analysis Simplification: treat transistor as resistor Replace I ds (V ds, V gs ) with the effective resistance R I ds = V ds /R R averaged across switching of a digital gate Too inaccurate to predict current at any given time But good enough to predict RC delay 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 29

30 RC Delay Model Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nmos has resistance R, capacitance C Unit pmos has resistance 2R, capacitance C Capacitance proportional to width Resistance inversely proportional to width g d k s g R/k kc d s kc kc g d k s g s kc 2R/k kc kc d 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 0

31 RC Values Capacitance C = Cg = Cs = Cd = 2 ff/μm of gate width in 0.6 μm Gradually decline to 1 ff/μm in nanometer techs. Resistance R 6 KΩ*μm in 0.6 μm process Improves with shorter channel lengths Unit transistors May refer to minimum contacted device (4/2 λ) Or maybe 1 μm wide device Doesn t matter as long as you are consistent 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 1

32 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 2C A 2 1 Y R R 2C C Y 2C C R 2C C 2C C d = 6RC C 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 2

33 Delay Model Comparison 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design

34 Example: -input NAND Sketch a -input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R) /10/2017 CSCE/ELEG 4914: Advnaced Digital Design 4

35 -input NAND Caps Annotate the -input NAND gate with gate and diffusion capacitance /10/2017 CSCE/ELEG 4914: Advnaced Digital Design 5

36 NAND Caps Annotated Netlist (Assume all S/D are contacted) 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 6

37 NAND Caps Merge capacitance on the same net Note: Capacitor with both ends shorted is discarded C 5C 5C 6C 6C 9C 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 7

38 Diffusion Capacitance Diffusion capacitance depends on the layout Contacted Diffusion Cap is comparable to Cg Uncontacted is about half worst best 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 8

39 NAND Caps Annotated Netlist (Assume only Pins are contacted) I/O pins and power pins 2C 2C 2C 2C 2C C 2C 2C 2C C C C C C C C 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 9

40 NAND Caps After Merging (Assume only Pins are contacted) 5C 5C 5C C C C 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 40

41 Merged Diffusion Capacitance We assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND layout shares one diffusion contact Reduces output capacitance by 2C Merged uncontacted diffusion might help too Shared Contacted Diffusion Merged Uncontacted Diffusion 2C 2C Isolated Contacted Diffusion C C C C C 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 41

42 Elmore Delay ON transistors look like resistors Pull-up or pull-down network modeled as RC ladder Elmore delay of RC ladder t R C pd i to source i nodes i R C R R C... R R... R C R 1 R 2 R R N N N C 1 C 2 C C N 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 42

43 Example: NAND Estimate worst-case rising and falling delay of -input NAND driving h identical gates. pdf h copies t pdr 9 5h RC + (C)(R+R/) + (C) (R+R/+R/) = (18+5h)RC n 1 9C n 2 C C R R R R R R h RC t C C h C Y 5hC 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 4

44 Delay Components Delay has two parts Parasitic delay 18 or 11 RC Independent of load Effort delay 5h RC Proportional to load capacitance t pdr = (18+5h) RC t pdf = (11+5h) RC 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 44

45 Contamination Delay Best-case (contamination) delay can be substantially less than propagation delay. T cdr : If all three inputs fall simultaneously (All PMOS on) n 1 9C n 2 C C Y 5hC R 5 tcdr 9 5h C h RC 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 45

46 Contamination Delay T cdf : Is it the same as T pdf? All NMOS are on The best case is when two diff cap are already discharged t cdf = (9+5h) RC 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 46

47 Layout Comparison Which layout is better? A B A B Y Y GND GND 10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 47

### Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

### Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

### Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

### Lecture 4: DC & Transient Response

Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

### 5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

### DC & Transient Responses

ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = -> = When = -> = In between, depends on transistor size and current

### EEE 421 VLSI Circuits

EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

### MOS Transistor Theory

MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

### Lecture 12 CMOS Delay & Transient Response

EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

### CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit

### DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

### MOS Transistor Theory

CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

### Topic 4. The CMOS Inverter

Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

### Delay and Power Estimation

EEN454 Digital Integrated ircuit Design Delay and Power Estimation EEN 454 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But make it easier to ask What

### Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

### Lecture 4: CMOS Transistor Theory

Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

### Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html

### CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

### Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

### THE INVERTER. Inverter

THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

### ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

### ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

### CMOS Inverter (static view)

Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

### Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EE4-Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:30-8:00pm in 05 Northgate Exam is

### ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

### 4.10 The CMOS Digital Logic Inverter

11/11/2004 section 4_10 The CMOS Digital Inverter blank.doc 1/1 4.10 The CMOS Digital Logic Inverter Reading Assignment: pp. 336346 Complementary MOSFET (CMOS) is the predominant technology for constructing

### MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

### ECE321 Electronics I

ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman Zarkesh-Ha Office: ECE Bldg. 30B Office hours: Tuesday :00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 CMOS

### Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

### Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

### Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI Contents Delay estimation Simple RC model Penfield-Rubenstein Model Logical effort Delay

### 5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

### Chapter 9. Estimating circuit speed. 9.1 Counting gate delays

Chapter 9 Estimating circuit speed 9.1 Counting gate delays The simplest method for estimating the speed of a VLSI circuit is to count the number of VLSI logic gates that the input signals must propagate

### EE5311- Digital IC Design

EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM

### Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

### Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

### Digital Integrated Circuits

Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter :

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

### CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

### EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

### Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Digital Microelectronic Circuits (361-1-301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»

### Static CMOS Circuits. Example 1

Static CMOS Circuits Conventional (ratio-less) static CMOS Covered so far Ratio-ed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,

### ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

### EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

### The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V

### Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

Homework Assignment #3 EE 477 Spring 2017 Professor Parker Note:! " = \$ " % &' ( ) * ),! + = \$ + % &' (, *,, -.. = 1.8 -, 345 = 0 - Question 1: a) (8%) Define the terms V OHmin, V IHmin, V ILmax and V

### CS/EE N-type Transistor

CS/EE 6710 MOS Transistor Models Electrical Effects Propagation Delay N-type Transistor D + G Vds i electrons +Vgs S - 1 Another Cutaway View Thanks to National Central University for Some images Vgs Forms

### CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

### MOS Transistor I-V Characteristics and Parasitics

ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

### Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an N-Switch, the

### VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

### 2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

### Digital Integrated Circuits A Design Perspective

igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

### EE115C Digital Electronic Circuits Homework #4

EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

### VLSI Design and Simulation

VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter First-Order DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p

### The Physical Structure (NMOS)

The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

### 9/18/2008 GMU, ECE 680 Physical VLSI Design

ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

### Lecture 12 Circuits numériques (II)

Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

### EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

### and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

### Properties of CMOS Gates Snapshot

MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

### Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS

### Integrated Circuits & Systems

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br

### EE5311- Digital IC Design

EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

### EE 434 Lecture 33. Logic Design

EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The two-inverter loop X Y X

### Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational

### CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March

### CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

### Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M - 0 > V M - V Tn V SDp = V DD - V M = (V DD - V M ) V Tp Equate drain

### The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full rail-to-rail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power

### EECS 141: FALL 05 MIDTERM 1

University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

### High-to-Low Propagation Delay t PHL

High-to-Low Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (n-channel) immediately switches from cutoff to saturation; the p-channel pull-up switches from triode to

### Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)

### 3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

### Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems

### CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )

### EE115C Digital Electronic Circuits Homework #6

Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages

### CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University

### E40M Capacitors. M. Horowitz, J. Plummer, R. Howe

E40M Capacitors 1 Reading Reader: Chapter 6 Capacitance A & L: 9.1.1, 9.2.1 2 Why Are Capacitors Useful/Important? How do we design circuits that respond to certain frequencies? What determines how fast

### CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

### ENEE 359a Digital VLSI Design

SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

### VLSI Design, Fall Logical Effort. Jacob Abraham

6. Logical Effort 6. Logical Effort Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 207 September 20, 207 ECE Department, University of

### Using MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B

Using MOS Models C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 5.4 W&H 4.2 Background In the past two lectures we have reviewed the iv and CV curves for MOS devices, both

### Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

### Integrated Circuits & Systems

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

### EE141Microelettronica. CMOS Logic

Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

### UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Elad Alon Homework #2 EECS141 Due Thursday, September 9, 5pm, box in 240 Cory PROBLEM

### EE115C Digital Electronic Circuits Homework #3

Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56-147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard

### THE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design

chapter5.fm Page 176 Friday, January 18, 2002 9:01 M CHPTER 5 THE CMOS INVERTER Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design 5.1 Introduction

### ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 3, 2016 Combination Logic: Ratioed & Pass Logic, and Performance Lecture Outline! CMOS NOR2 Worst Case Analysis! Pass Transistor

### Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 14: March 1, 2016 Combination Logic: Ratioed and Pass Logic Lecture Outline! CMOS Gates Review " CMOS Worst Case Analysis! Ratioed Logic Gates!

### EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

### ECE 425 Midterm Overview. Fall 2017

ECE 425 Midterm Overview Fall 2017 Overview q Midterm (20% of total grade) Oct 24 th 3:30-5:00pm in class q Materials Lecture 1 through 11 MP0, MP1 HW1, HW2 Practice exam q Rules 1 page of cheat sheet,

### EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

EE 330 Lecture 37 Digital Circuits Other Logic Families Static Power Dissipation Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) Review from Last Time Inverter

### Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.

EECS 16 Designing Information Devices and Systems II Fall 017 Miki Lustig and Michel Maharbiz Homework 1 This homework is due September 5, 017, at 11:59M. 1. Fundamental Theorem of Solutions to Differential

### ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

### CMOS Logic Gates. University of Connecticut 172

CMOS Logic Gates University of Connecticut 172 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and