CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look


 Merilyn Hodge
 2 years ago
 Views:
Transcription
1 CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( ) Course dministration Instructor: T: Labs: URL: Text: leksandar Milenkovic E 7L Office Hrs: MW 9:: Fathima Tareen ccounts on Solaris machines, Lab# is on nalysis and esign of igital ICs, 3 rd Edition Hodges et. al., 4 Previous: IC Fabrication (slides, Chapter 3) Today: MOS Transistors (slides, Chapter ) 9/8/4 VLSI esign I;. Milenkovic CMOS Inverter: First Look V in V out 9/8/4 VLSI esign I;. Milenkovic 3
2 CMOS Inverter: Steady State Response V OL = V OH = V M = f(r n, R p ) R p V out = V out = R n V in = V in = 9/8/4 VLSI esign I;. Milenkovic 4 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless lways a path to V dd or in steady state low output impedance (output resistance in kω range) large fanout (albeit with degraded performance) Extremely high input resistance (gate of MOS transistor is near perfect insulator) nearly zero steadystate input current No direct path steadystate between power and ground no static power dissipation Propagation delay function of load capacitance and resistance of transistors 9/8/4 VLSI esign I;. Milenkovic 5 Review: Short Channel IV Plot (NMOS) I () X 4 V GS =.5V V GS =.V V GS =.5V V GS =.V Linear dependence V S (V) NMOS transistor,.5um, L d =.5um, W/L =.5, =.5V, V T =.4V 9/8/4 VLSI esign I;. Milenkovic 6
3 Short Channel IV Plot (PMOS) ll polarities of all voltages and currents are reversed  V S (V)  V GS = .V V GS = .5V V GS = .V I () .8 V GS = .5V  X 4 PMOS transistor,.5um, L d =.5um, W/L =.5, =.5V, V T = .4V 9/8/4 VLSI esign I;. Milenkovic 7 Transforming PMOS IV Lines Want common coordinate set V in, V out, and I n I Sp = I Sn V GSn = V in ; V GSp = V in  V Sn = V out ; V Sp = V out  I n Vout V in = V in =.5 V in = V in =.5 V GSp =  V GSp = .5 Mirror around xaxis V in = + V GSp I n = I p Horiz. shift over V out = + V Sp 9/8/4 VLSI esign I;. Milenkovic 8 CMOS Inverter Load Lines PMOS.5 V in = V V in =.5V.5 X 4 NMOS V in =.5V V in =.V I n () V in =.V V in =.5V V V in =.5V in = V V in = V V in =.5V.5 V in =.5V V in =.V V in =.V V in =.5V V in =.5V V in = V.5um, W/L n =.5, W/L p = 4.5, =.5V, V Tn =.4V, V Tp = .4V 9/8/4 VLSI esign I;. Milenkovic 9
4 CMOS Inverter VTC V in (V) 9/8/4 VLSI esign I;. Milenkovic CMOS Inverter VTC NMOS off PMOS res.5.5 NMOS sat PMOS res NMOS sat PMOS sat.5 NMOS res PMOS sat NMOS res PMOS off V in (V) 9/8/4 VLSI esign I;. Milenkovic CMOS Inverter: Switch Model of ynamic ehavior R p V out V out R n V in = V in = 9/8/4 VLSI esign I;. Milenkovic
5 CMOS Inverter: Switch Model of ynamic ehavior R p V out V out R n V in = V in = Gate response time is determined by the time to charge through R p (discharge through R n ) 9/8/4 VLSI esign I;. Milenkovic 3 Relative Transistor Sizing When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to maximize the noise margins and obtain symmetrical characteristics 9/8/4 VLSI esign I;. Milenkovic 4 Switching Threshold V M where V in = V out (both PMOS and NMOS in saturation since V S = V GS ) V M r /( + r) where r = k p V STp /k n V STn Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors Want V M = / (to have comparable high and low noise margins), so want r (W/L) p k n V STn (V M V Tn V STn /) (W/L) n = k p V STp ( V M +V Tp +V STp /) 9/8/4 VLSI esign I;. Milenkovic 5
6 Switch Threshold Example In our generic.5 micron CMOS process, using the process parameters from slide L3.5, a =.5V, and a minimum size NMOS device ((W/L) n of.5) NMOS PMOS V T (V) γ(v.5 ) V ST (V).63  k (/V ) 5 x 63 x 6 λ(v  ).6 . (W/L) p (W/L) n = 9/8/4 VLSI esign I;. Milenkovic 6 Switch Threshold Example In our generic.5 micron CMOS process, using the process parameters, a =.5V, and a minimum size NMOS device ((W/L) n of.5) NMOS PMOS V T (V) γ(v.5 ) V ST (V).63  k (/V ) 5 x 63 x 6 λ(v  ).6 . (W/L) p 5 x ( /) = (W/L) n 3 x 6 x x = (.5.4./) (W/L) p = 3.5 x.5 = 5.5 for a V M of.5v 9/8/4 VLSI esign I;. Milenkovic 7 Simulated Inverter V M V M (V) ~3.4 (W/L) p /(W/L) n Note: xaxis is semilog V M is relatively insensitive to variations in device ratio setting the ratio to 3,.5 and gives V M s of.v,.8v, and.3v Increasing the width of the PMOS moves V M towards Increasing the width of the NMOS moves V M toward 9/8/4 VLSI esign I;. Milenkovic 8
7 Noise Margins etermining V IH and V IL 3 y definition, V IH and V IL are where dv out /dv in =  (= gain) V OH = V out V OL = VIL V M V in piecewise linear approximation of VTC VIH NM H =  V IH NM L = V IL  pproximating: V IH = V M  V M /g V IL = V M + (  V M )/g So high gain in the transition region is very desirable 9/8/4 VLSI esign I;. Milenkovic CMOS Inverter VTC from Simulation V in (V).5um, (W/L) p /(W/L) n = 3.4 (W/L) n =.5 (min size) =.5V V M.5V, g = 7.5 V IL =.V, V IH =.3V NM L = NM H =. (actual values are V IL =.3V, V IH =.45V NM L =.3V & NM H =.5V) Output resistance lowoutput =.4kΩ highoutput = 3.3kΩ 9/8/4 VLSI esign I;. Milenkovic Gain eterminates gain V in.5.5 Gain is a strong function of the slopes of the currents in the saturation region, for V in = V M (+r) g (V M V Tn V STn /)(λ n  λ p ) etermined by technology parameters, especially channel length modulation (λ). Only designer influence through supply voltage and V M (transistor sizing). 9/8/4 VLSI esign I;. Milenkovic
8 Impact of Process Variation on VTC Curve ad PMOS Good NMOS V in (V) Good PMOS ad NMOS Nominal process variations (mostly) cause a shift in the switching threshold 9/8/4 VLSI esign I;. Milenkovic Scaling the Supply Voltage Gain= V in (V).5.5 V in (V) evice threshold voltages are evice threshold voltages are kept (virtually) constant kept (virtually) constant 9/8/4 VLSI esign I;. Milenkovic 3..5 Static CMOS Logic
9 CMOS Circuit Styles Static complementary CMOS  except during switching, output connected to either V or via a lowresistance path high noise margins full rail to rail swing VOH and VOL are at V and, respectively low output impedance, high input impedance no steady state path between V and (no static power consumption) delay a function of load capacitance and transistor resistance comparable rise and fall times (under the appropriate transistor sizing conditions) ynamic CMOS  relies on temporary storage of signal values on the capacitance of highimpedance circuit nodes simpler, faster gates increased sensitivity to noise 9/8/4 VLSI esign I;. Milenkovic 5 Static Complementary CMOS Pullup network (PUN) and pulldown network (PN) In In In N In In In N PUN PN PMOS transistors only pullup: make a connection from to F when F(In,In, In N ) = F(In,In, In N ) pulldown: make a connection from F to when F(In,In, In N ) = NMOS transistors only PUN and PN are dual logic networks 9/8/4 VLSI esign I;. Milenkovic 6 Threshold rops PUN PN 9/8/4 VLSI esign I;. Milenkovic 7
10 Threshold rops PUN S V GS S  V Tn PN V Tp V GS S S 9/8/4 VLSI esign I;. Milenkovic 8 Construction of PN NMOS devices in series implement a NN function NMOS devices in parallel implement a NOR function + 9/8/4 VLSI esign I;. Milenkovic 9 ual PUN and PN PUN and PN are dual networks emorgan s theorems + = = + [!( + ) =!! or!( ) =! &!] [!( ) =! +! or!( & ) =!!] a parallel connection of transistors in the PUN corresponds to a series connection of the PN Complementary gate is naturally inverting (NN, NOR, OI, OI) Number of transistors for an Ninput logic gate is N 9/8/4 VLSI esign I;. Milenkovic 3
11 CMOS NN F 9/8/4 VLSI esign I;. Milenkovic 3 CMOS NN NN F = NN(,) F = F= = F= = F= = F= = = = = 9/8/4 VLSI esign I;. Milenkovic 3 CMOS NOR + F 9/8/4 VLSI esign I;. Milenkovic 33
12 CMOS NOR NOR F = NOR(,) F = = = = = = = = F= F= F= F= 9/8/4 VLSI esign I;. Milenkovic 34 Complex CMOS Gate OUT =!( + ( + C)) C 9/8/4 VLSI esign I;. Milenkovic 35 Complex CMOS Gate C OUT =!( + ( + C)) C 9/8/4 VLSI esign I;. Milenkovic 36
CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.
CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University
More informationVLSI Design I; A. Milenkovic 1
PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka ) www. ece.uah.edu/~milenka/cpe573f
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka )
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: omplementary MO Logic Gates epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationCPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationCPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationCourse Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance
Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationCMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits
Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationCMOS Technology for Computer Architects
CMOS Technology for Computer Architects Recap Technology Trends Lecture 2: Transistor Inverter Iakovos Mavroidis Giorgos Passas Manolis Katevenis FORTHICS (University of Crete) 1 2 Recap Threshold Voltage
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationVLSI Design I; A. Milenkovic 1
Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (
More informationCPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline
CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe5705f
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationVLSI Design and Simulation
VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter FirstOrder DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationDigital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo
Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More informationCOMP 103. Lecture 16. Dynamic Logic
COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More information4.10 The CMOS Digital Logic Inverter
11/11/2004 section 4_10 The CMOS Digital Inverter blank.doc 1/1 4.10 The CMOS Digital Logic Inverter Reading Assignment: pp. 336346 Complementary MOSFET (CMOS) is the predominant technology for constructing
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationLecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:308:00pm in 105 Northgate
EE4Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:308:00pm in 05 Northgate Exam is
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationDC & Transient Responses
ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = > = When = > = In between, depends on transistor size and current
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationEECS 141 F01 Lecture 17
EECS 4 F0 Lecture 7 With major inputs/improvements From MaryJane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationLecture 12 Circuits numériques (II)
Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationPassTransistor Logic
all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationBased on slides/material by. Topic 34. Combinational Logic. Outline. The CMOS Inverter: A First Glance
ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationLecture 14  Digital Circuits (III) CMOS. April 1, 2003
6.12  Microelectronic Devices and Circuits  Spring 23 Lecture 141 Lecture 14  Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model
ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM
More informationImportant! EE141 Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model
 Fall 00 Lecture 5 CMO Inverter MO Transistor Model Important! Lab 3 this week You must show up in one of the lab sessions this week If you don t show up you will be dropped from the class» Unless you
More informationEE40 Lec 20. MOS Circuits
EE40 Lec 20 MOS Circuits eading: Chap. 12 of Hambley Supplement reading on MOS Circuits http://www.inst.eecs.berkeley.edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Bias circuits OUTLINE Smallsignal
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More informationDigital EE141 Integrated Circuits 2nd Combinational Circuits
Digital Integrated Circuits Designing i Combinational Logic Circuits 1 Combinational vs. Sequential Logic 2 Static CMOS Circuit t every point in time (except during the switching transients) each gate
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018
ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationDigital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman
Digital Microelectronic Circuits (3611301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»
More informationVLSI Design I; A. Milenkovic 1
The bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka
More informationTHE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design
chapter5.fm Page 176 Friday, January 18, 2002 9:01 M CHPTER 5 THE CMOS INVERTER Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design 5.1 Introduction
More informationEE115C Digital Electronic Circuits Homework #3
Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard
More informationVLSI Design I; A. Milenkovic 1
Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationMOS Inverters. Digital Electronics  INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario
MOS Inverters igital Electronics  INE 407 Prof. Manuel Jiménez With contributions by: Rafael A. Arce Nazario Objectives: Introduce MOS Inverter Styles Resistor oad Enhancement oad Saturated / ear epletion
More informationCheck course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory
EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More informationDigital Integrated Circuits 2nd Inverter
Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response
More informationStatic CMOS Circuits. Example 1
Static CMOS Circuits Conventional (ratioless) static CMOS Covered so far Ratioed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15
ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS 1 VDD Vout Vin Ideal VTC Logic 0 = 0 V Logic 1 = VDD 0 2 VOH VDD VOL 0 o.c. Cout For DC steadystate Cout is open circuit. VDD 0 VDD VOL VT0n
More informationTopics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut
Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance
More informationLecture 4: Implementing Logic in CMOS
Lecture 4: Implementing Logic in CMOS Mark Mcermott Electrical and Computer Engineering The University of Texas at ustin Review of emorgan s Theorem Recall that: () = + and = ( + ) (+) = and + = ( ) ()
More informationCMOS Logic Gates. University of Connecticut 181
CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O pchannel enhancementtype MOSFET; V T < 0 nchannel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and
More informationLecture 13  Digital Circuits (II) MOS Inverter Circuits. March 20, 2003
6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationWhere Does Power Go in CMOS?
Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking
More information