Dr JBO Student ID Number: Model Answer Section: 01A / 01B Lecturer: Dr. Jamaludin Bin Omar. Name:

Size: px
Start display at page:

Download "Dr JBO Student ID Number: Model Answer Section: 01A / 01B Lecturer: Dr. Jamaludin Bin Omar. Name:"

Transcription

1 EEEB273 - Quiz 5 [Question Set 1] Section: 01A / 01B For the class AB output stage in, given that V CC = 12 V and V BB = 1.44 V. R L = 1 k. The reverse-bias saturation current for the transistors, I S = 2.2 x A. Assume >> 1. For the output voltage v O = -9.5 V: (i) Determine i L, i Cn, and i Cp. (ii) Find the power dissipated in transistor Q n. v O = -9.5 V = i L R L i L = v O /R L = (-9.5 V) /(1 k) = -9.5 ma [1] V EBP = V T ln(i Cp / I S ) = 26m ln(9.5m / 2.2x10-15 ) = V [1.5] V BEN = V BB - V EBP = = V [2] i Cn = I S exp(v BEN /V T ) = 2.2x10-15 exp(0.6838/26m) = µa [1] Actual value of i Cp = i Cn i L = 575.9µ - (-9.5m) = ma [1] V CEn = +V CC - v O = +12 (-9.5) = 21.5 V [1] P Qn = (575.9 µa)(21.5 V) = mw [0.5]

2 EEEB273 - Quiz 5 [Question Set 1] For the class AB output stage in, given that V CC = 12 V and V BB = 1.42 V. R L = 1 k. The For the output voltage v O = V: (iii)determine i L, i Cn, and i Cp. (iv) Find the power dissipated in transistor Q n. v O = V = i L R L i L = v O /R L = (-10.5 V) /(1 k) = ma [1] V EBP = V T ln(i Cp / I S ) = 26m ln(10.5m / 2.4x10-15 ) = V [1.5] V BEN = V BB - V EBP = = V [2] i Cn = I S exp(v BEN /V T ) = 2.4x10-15 exp(0.6632/26m) = µa [1] Actual value of i Cp = i Cn i L = 287.3µ - (-10.5m) = ma [1] V CEn = +V CC - v O = +12 (-10.5) = 22.5 V [1] P Qn = (283.7 µa)(22.5 V) = 6.47 mw [0.5]

3 EEEB273 - Quiz 5 [Question Set 2] For the class AB output stage in, given that V CC = 14 V and V BB = 1.46 V. R L = 1 k. The For the output voltage v O = -10 V: (v) Determine i L, i Cn, and i Cp. (vi) Find the power dissipated in transistor Q n. v O = -10 V = i L R L i L = v O /R L = (-10 V) /(1 k) = -10 ma [1] V EBP = V T ln(i Cp / I S ) = 26m ln(10m / 2.4x10-15 ) = V [1.5] V BEN = V BB - V EBP = = V [2] i Cn = I S exp(v BEN /V T ) = 2.4x10-15 exp(0.7045/26m) = µa [1] Actual value of i Cp = i Cn i L = µ - (-10m) = ma [1] V CEn = +V CC - v O = +14 (-10) = 24 V [1] P Qn = ( µa)(24 V) = mw [0.5]

4 EEEB273 - Quiz 5 [Question Set 3] For the class AB output stage in, given that V CC = 12 V and V BB = 1.4 V. R L = 1 k. The For the output voltage v O = -8.5 V: (vii) Determine i L, i Cn, and i Cp. (viii) Find the power dissipated in transistor Q n. v O = -8.5 V = i L R L i L = v O /R L = (-8.5 V) /(1 k) = -8.5 ma [1] V EBP = V T ln(i Cp / I S ) = 26m ln(8.5m / 2.4x10-15 ) = V [1.5] V BEN = V BB - V EBP = = V [2] i Cn = I S exp(v BEN /V T ) = 2.4x10-15 exp(0.6487/26m) = µa [1] Actual value of i Cp = i Cn i L = 164.5µ - (-8.5m) = ma [1] V CEn = +V CC - v O = +12 (-8.5) = 20.5 V [1] P Qn = (164.5 µa)(20.5 V) = 3.37 mw [0.5]

5 EEEB273 - Quiz 5 [Question Set 4] For the class AB output stage in, given that V CC = 12.5 V and V BB = 1.48 V. R L = 1 k. The For the output voltage v O = -9.5 V: (ix) Determine i L, i Cn, and i Cp. (x) Find the power dissipated in transistor Q n. v O = -9.5 V = i L R L i L = v O /R L = (-9.5 V) /(1 k) = -9.5 ma [1] V EBP = V T ln(i Cp / I S ) = 26m ln(9.5m / 2.4x10-15 ) = V [1.5] V BEN = V BB - V EBP = = V [2] i Cn = I S exp(v BEN /V T ) = 2.4x10-15 exp(0.7258/26m) = µa [1] Actual value of i Cp = i Cn i L = µ - (-9.5m) = ma [1] V CEn = +V CC - v O = (-9.5) = 22 V [1] P Qn = ( µa)(22 V) = mw [0.5]

Class AB Output Stage

Class AB Output Stage Class AB Output Stage Class AB amplifier Operation Multisim Simulation - VTC Class AB amplifier biasing Widlar current source Multisim Simulation - Biasing 1 Class AB Operation v I V B (set by V B ) Basic

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:

More information

Chapter 13 Problem Solutions Computer Simulation Computer Simulation ma/ V 80. r I (120)(0.026)

Chapter 13 Problem Solutions Computer Simulation Computer Simulation ma/ V 80. r I (120)(0.026) Chapter 3 Pblem lutions 3. Computer Simulation 3. Computer Simulation 3.3 (a) ( Ri) g 0 C m T 0.0 r 80 o MΩ C 0 r 80 o MΩ C 0 0.79 m/ Ri + ( + βn) R 7 (0)(0.0) 7 5. kω 0. BE ( on) 0. C 0.030 m R 0 (0)(0.0)

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

Lecture 14. Ozgur Aktas. March 20, 2006

Lecture 14. Ozgur Aktas. March 20, 2006 Lecture 14 Ozgur Aktas aktas@ee.bilkent.edu.tr March 20, 2006 What we have learnt up to now? Basic semiconductor equations Drawing band diagrams for pn junctions, and npn/pnp transistors RTL/DTL/TTL/ATTL/STTL

More information

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Bipolar Junction Transistors Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of Precedent Class Explain the Operation of the Zener Diode Explain Applications

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

(e V BC/V T. α F I SE = α R I SC = I S (3)

(e V BC/V T. α F I SE = α R I SC = I S (3) Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L15 05Mar02 1 Charge components in the BJT From Getreau,

More information

B C E. absolute maximum ratings at 25 C ambient temperature (unless otherwise noted )

B C E. absolute maximum ratings at 25 C ambient temperature (unless otherwise noted ) Designed Specifically for High Frequency Electronic Ballasts up to 5 W h FE 6 to at = V, = A Low Power Losses (On-state and Switching) Key Parameters Characterised at High Temperature Tight and Reproducible

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Lesson 7: Linear Transformations Applied to Cubes

Lesson 7: Linear Transformations Applied to Cubes Classwork Opening Exercise Consider the following matrices: AA = 1 2 0 2, BB = 2, and CC = 2 2 4 0 0 2 2 a. Compute the following determinants. i. det(aa) ii. det(bb) iii. det(cc) b. Sketch the image of

More information

Dual JK Flip-Flop IW4027B TECHNICAL DATA PIN ASSIGNMENT LOGIC DIAGRAM FUNCTION TABLE. Rev. 00

Dual JK Flip-Flop IW4027B TECHNICAL DATA PIN ASSIGNMENT LOGIC DIAGRAM FUNCTION TABLE. Rev. 00 TECHNICAL DATA IW027B Dual JK Flip-Flop The IW027B is a Dual JK Flip-Flop which is edge-triggered and features independent Set, Reset, and Clock inputs. Data is accepted when the Clock is LOW and traferred

More information

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208   Department of EECE lectronic ircuits Transistor Bias ircuits Manar Mohaisen Office: F208 mail: manar.subhi@kut.ac.kr Department of Review of the Precedent Lecture Bipolar Junction Transistor (BJT) BJT haracteristics and

More information

Electronics II Physics 3620 / 6620

Electronics II Physics 3620 / 6620 Electronics II Physics 3620 / 6620 Jan 28, 2009 Part 1 Operational Amplifiers 2/3/2009 1 Some History Fairchild 0.60 Inches 1964: The First Linear IC The µa702 Op-Amp 12 Transistors Designer: Bob Widlar

More information

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises Page Microelectronic Circuit esign Fourth Edition - Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or ) 5.V 3.95 V V

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS , A, B, C Designed for Complementary Use with the BD26 Series W at 25 C Case Temperature 0 A Continuous Collector Current 5 A Peak Collector Current Customer-Specified Selections Available B C E SOT-9

More information

AN8814SB. 4-channel driver IC for optical disk drive. ICs for Compact Disc/CD-ROM Player. Overview. Features. Applications.

AN8814SB. 4-channel driver IC for optical disk drive. ICs for Compact Disc/CD-ROM Player. Overview. Features. Applications. AN884SB 4-channel driver IC for optical disk drive Overview The AN884SB is a BTL system 4-channel driver and is encapsulated in the SMD package which excels in heat radiation characteristic. 8.4±0. (5.5)

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005 6.012 - Microelectronic Devices and ircuits - Fall 2005 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) ontents: 1. Regimes of operation. Regimes of Operation November 10, 2005 2. Large-signal

More information

CLASS 3&4. BJT currents, parameters and circuit configurations

CLASS 3&4. BJT currents, parameters and circuit configurations CLASS 3&4 BJT currents, parameters and circuit configurations I E =I Ep +I En I C =I Cp +I Cn I B =I BB +I En -I Cn I BB =I Ep -I Cp I E = I B + I C I En = current produced by the electrons injected from

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

Power and Temperature

Power and Temperature Power and Temperature TIPL 1160 TI Precision Labs Op Amps Presented by Ian Williams Prepared by Art Kay, Ian Williams and Miro Oljaca Power Dissipation Quiescent Current V IN V CC 15V - V EE -15V OPA87

More information

DATA SHEET. PH2369 NPN switching transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Apr Oct 11.

DATA SHEET. PH2369 NPN switching transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Apr Oct 11. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1999 Apr 27 2004 Oct 11 FEATURES Low current (max. 200 ma) Low voltage (max. 15 V). APPLICATIONS High-speed switching. PINNING

More information

UNISONIC TECHNOLOGIES CO., LTD U74HC164

UNISONIC TECHNOLOGIES CO., LTD U74HC164 UNISONIC TECHNOLOGIES CO., LTD 8-BIT SERIAL-IN AND PARALLEL-OUT SHIFT REGISTER DIP-14 DESCRIPTION The is an 8-bit edge-triggered shift registers with serial input and parallel output. A LOW-to-HIGH transition

More information

COMPLEMENTARY NPN/PNP TRANSISTOR

COMPLEMENTARY NPN/PNP TRANSISTOR SEMICONDUCTOR DATA SHEET COMPLEMENTARY NPN/PNP TRANSISTOR FEATURES Complementary Pair One 3904-Type NPN, One 3906-Type PNP Epitaxial Planar Die Construction Ideal for Low Power Amplification and Switching

More information

ECE 2210 Final given: Spring 15 p1

ECE 2210 Final given: Spring 15 p1 ECE 2 Final given: Spring 15 Closed Book, Closed notes except preprinted yellow sheet, Calculators OK. Show all work to receive credit. Circle answers, show units, and round off reasonably 1. (15 pts)

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

absolute maximum ratings at 25 C case temperature (unless otherwise noted)

absolute maximum ratings at 25 C case temperature (unless otherwise noted) ,, B, C, D Designed for Complementary Use with BDW84, BDW84A, BDW84B, BDW84C and BDW84D W at C Case Temperature A Continuous Collector Current Minimum h FE of 70 at 3, 6 A B C E SOT-93 PACKAGE (TOP IEW)

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006 Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide

More information

DISCRETE SEMICONDUCTORS DATA SHEET. PMBT3906 PNP switching transistor. Product specification Supersedes data of 1999 Apr 27.

DISCRETE SEMICONDUCTORS DATA SHEET. PMBT3906 PNP switching transistor. Product specification Supersedes data of 1999 Apr 27. DISCRETE SEMICONDUCTORS DATA SHEET Supersedes data of 1999 Apr 27 2004 Jan 21 FEATURES Collector current capability I C = 200 ma Collector-emitter voltage V CEO = 40 V. APPLICATIONS General amplification

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

MATHS (O) NOTES. SUBJECT: Maths LEVEL: Ordinary Level TEACHER: Jean Kelly. The Institute of Education Topics Covered: Complex Numbers

MATHS (O) NOTES. SUBJECT: Maths LEVEL: Ordinary Level TEACHER: Jean Kelly. The Institute of Education Topics Covered: Complex Numbers MATHS (O) NOTES The Institute of Education 07 SUBJECT: Maths LEVEL: Ordinary Level TEACHER: Jean Kelly Topics Covered: COMPLEX NUMBERS Strand 3(Unit ) Syllabus - Understanding the origin and need for complex

More information

AK AJ AT AR DETAIL "A" N M L K B AB (6 PLACES) DETAIL "B" TH1 (11) TH2 (10) NTC *ALL PIN DIMENSIONS WITHIN A TOLERANCE OF ±0.5

AK AJ AT AR DETAIL A N M L K B AB (6 PLACES) DETAIL B TH1 (11) TH2 (10) NTC *ALL PIN DIMENSIONS WITHIN A TOLERANCE OF ±0.5 Powerex, Inc., 73 Pavilion Lane, Youngwood, Pennsylvania 5697 (724) 925-7272 www.pwrx.com Six IGBTMOD + Brake NX-S Series Module AH AN AC AD AE H AK AJ A D E F G AK AJ AP AT AR AQ AS C AX BB BC BD DETAIL

More information

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09 CLASS 6&7 p-n junction biasing, p-n I-V characteristics, p-n currents 1 p-n junction biasing Unbiased p-n junction: the potential barrier is 0.7 V for Si and 0.3 V for Ge. Nett current across the p-n junction

More information

Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

More information

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit.

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit. 14ECEI302/EC 212 1. Answer all questions (1X12=12 Marks) a What are the applications of linked list? b Compare singly linked list and doubly linked list. c Define ADT. d What are the basic operations of

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

IX. TRANSISTOR CIRCUITS

IX. TRANSISTOR CIRCUITS IX. TRANSISTOR CIRCUITS Prof. H. J. Zimmermann J. Blair C. T. Kerk Prof. R. B. Adler J. B. Cruz R. B. Martindale Prof. S. J. Mason J. Gross R. F. Meyer C. R. Hurtig A. VOLTAGE-REGULATED POWER SUPPLIES

More information

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn ) The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max = - φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

ECE2210 Final given: Fall 13

ECE2210 Final given: Fall 13 ECE22 Final given: Fall 3. (23 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided. You must show the steps

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C PNP Silicon Digital Transistor Switching circuit, inverter, interface circuit, driver circuit Built in bias resistor (R = kω, R = kω ) For 6PIN packages: two (galvanic) internal isolated transistors with

More information

MM74C14 Hex Schmitt Trigger

MM74C14 Hex Schmitt Trigger MM74C14 Hex Schmitt Trigger General Description The MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The

More information

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state Rev. 7 4 March 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an 8-bit positive-edge triggered D-type flip-flop with 3-state outputs. The device

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D)

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) Most of the content is from the textbook: Electronic devices and circuit theory, Robert

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

MM74C14 Hex Schmitt Trigger

MM74C14 Hex Schmitt Trigger MM74C14 Hex Schmitt Trigger General Description The MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The

More information

Quad 2-Input Data Selectors/Multiplexer High-Performance Silicon-Gate CMOS

Quad 2-Input Data Selectors/Multiplexer High-Performance Silicon-Gate CMOS TECNICAL DATA IN74CT157A Quad 2-Input Data Selectors/Multiplexer igh-performance Silicon-ate CMOS The IN74CT157A is identical in pinout to the LS/ALS157. This device may be used as a level converter for

More information

ECE2210 Final given: Spring 08

ECE2210 Final given: Spring 08 ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that

More information

BCD-TO-DECIMAL DECODER HIGH-VOLTAGE SILICON-GATE CMOS IW4028B TECHNICAL DATA

BCD-TO-DECIMAL DECODER HIGH-VOLTAGE SILICON-GATE CMOS IW4028B TECHNICAL DATA TECHNICAL DATA BCD-TO-DECIMAL DECODER HIGH-OLTAGE SILICON-GATE CMOS IW4028B The IW4028B types are BCD-to-decimal or binary-tooctal decoders consisting of buffering on all 4 inputs, decoding-logic gates,

More information

AN80xx/AN80xxM Series

AN80xx/AN80xxM Series oltage Regulators AN80xx/AN80xxM Series 3-pin, positive output, low dropout voltage regulator (50 type) Overview The AN80xx series and the AN80xxM series are 3- pin, low dropout, fixed positive output

More information

OP550, OP552, OP555, OP560, OP565, OP750 Series

OP550, OP552, OP555, OP560, OP565, OP750 Series OP552 Features: Wide receiving angle Four sensitivity ranges Sidelooking package Ideal for spacelimited applications Ideal for PCBoard mounting Choice of clear, opaque or bluetinted package OP550 OP5 OP750

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD COMPLEMENTARY OUTPUTS HALL EFFECT LATCH IC DESCRIPTION The UTC UH276 is a Latch-Type Hall Effect sensor with built-in complementary output drivers. It s designed with internal

More information

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Mar 27 FEATURES Low current (max. 100 ma) Low voltage (max. 65 V). APPLICATIONS General purpose switching and amplification.

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD COMPLEMENTARY OUTPUTS HALL EFFECT LATCH IC DESCRIPTION The UTC UH277 is a Latch-Type Hall Effect sensor with built-in complementary output drivers. It s designed with internal

More information

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package. Rev. 02 14 July 2005 Product data sheet 1. Product profile 1.1 General description NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD)

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Presettable 4-Bit Binary UP/DOWN Counter High-Performance Silicon-Gate CMOS

Presettable 4-Bit Binary UP/DOWN Counter High-Performance Silicon-Gate CMOS TECHNICAL DATA IN74HC193A Presettable 4-Bit Binary UP/DOWN Counter High-Performance Silicon-Gate CMOS The IN74HC193A is identical in pinout to the LS/ALS193. The device inputs are compatible with standard

More information

J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125

J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 WINNER-TAKE-ALL NETWORKS OF O(N) COMPLEXITY J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 ABSTRACT We have designed, fabricated, and tested

More information

MM74C90 MM74C93 4-Bit Decade Counter 4-Bit Binary Counter

MM74C90 MM74C93 4-Bit Decade Counter 4-Bit Binary Counter 4-Bit Decade Counter 4-Bit Binary Counter General Description The MM74C90 decade counter and the MM74C93 binary counter and complementary MOS (CMOS) integrated circuits constructed with N- and P-channel

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C)

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C) TOSHIBA Power Transistor Module Silicon Epitaxial Type (Darlington power transistor in ) High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Industrial Applications

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

Hexadecimal and Numeric Indicators. Technical Data

Hexadecimal and Numeric Indicators. Technical Data exadecimal and Numeric Indicators Technical Data 582-7 582-72 582-7 582-7 Features Numeric 582-7/-72-9, Test State, Minus Sign, Blank States Decimal Point 7 Right and D.P. 72 eft and D.P. exadecimal 582-7

More information

BC546 / 547 / 548. Small Signal Transistors (NPN) Vishay Semiconductors

BC546 / 547 / 548. Small Signal Transistors (NPN) Vishay Semiconductors Small Signal Transistors (NPN) Features NPN Silicon Epitaxial Planar Transistors These transistors are subdivided into three groups A, B, and C according to their current gain. The type BC546 is available

More information

MOC8111 MOC8112 MOC8113

MOC8111 MOC8112 MOC8113 PACKAGE SCHEMATIC ANODE 6 N/C 6 6 CATHODE 2 5 COLLECTOR N/C 3 4 EMITTER 6 DESCRIPTION The MOC8X series consists of a Gallium Arsenide IRED coupled with an NPN phototransistor. The base of the transistor

More information

74HC573; 74HCT573. Octal D-type transparent latch; 3-state. The 74HC573; 74HCT573 is functionally identical to:

74HC573; 74HCT573. Octal D-type transparent latch; 3-state. The 74HC573; 74HCT573 is functionally identical to: Product data sheet 1. General description The is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). The has octal D-type transparent latches featuring separate

More information

MathB65 Ch 4 VII, VIII, IX.notebook. November 06, 2017

MathB65 Ch 4 VII, VIII, IX.notebook. November 06, 2017 Chapter 4: Polynomials I. Exponents & Their Properties II. Negative Exponents III. Scientific Notation IV. Polynomials V. Addition & Subtraction of Polynomials VI. Multiplication of Polynomials VII. Greatest

More information

Junction Bipolar Transistor. Characteristics Models Datasheet

Junction Bipolar Transistor. Characteristics Models Datasheet Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,

More information

Chapter 9 Bipolar Junction Transistor

Chapter 9 Bipolar Junction Transistor hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

CM1000DUC-34SA. Mega Power Dual IGBT 1000 Amperes/1700 Volts

CM1000DUC-34SA. Mega Power Dual IGBT 1000 Amperes/1700 Volts CM1DUC-34SA Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com 1 Amperes/17 Volts A P D (8 PLACES) G U H H N S L K C2 C2E1 C1 W X J F BB G2 E2 E1 G1 Y C B Z E CC

More information

12-Stage Binary Ripple Counter High-Voltage Silicon-Gate CMOS

12-Stage Binary Ripple Counter High-Voltage Silicon-Gate CMOS TECHNICAL DATA IW4040B 2-Stage Binary Ripple Counter High-oltage Silicon-Gate CMOS The IW4040B is ripple-carry binary counter. All counter stages are masterslave flip-flops. The state of a counter advances

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package. Rev. 03 11 December 2009 Product data sheet 1. Product profile 1.1 General description NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc E-MAIL: Features - On-chip Hall sensor with two different sensitivity and hysteresis settings for - 3.5V to 2V operating voltage - 4mA (avg) output sink current - Build-in protecting diode only for chip

More information

LB1846M, 1848M. Low-Voltage/Low Saturation Voltage Type Bidirectional Motor Driver

LB1846M, 1848M. Low-Voltage/Low Saturation Voltage Type Bidirectional Motor Driver Ordering number : ENN5339A Monolithic Digital IC LB1846M, 1848M Low-Voltage/Low Saturation Voltage Type Bidirectional Motor Driver Overview The LB1846M and LB1848M are 2-channel low-voltage, low saturation

More information

Switching Regulators MC33063A SOP

Switching Regulators MC33063A SOP MC0A Features Operation from.0 to 0 Input Low Standby Current Current Limiting Output oltage Adjustable Frequency Operation to 00 khz Pb Free Packages are Available Output Current to. A SOP- 0. 0.0-0.0.0

More information

74HC573; 74HCT573. Octal D-type transparent latch; 3-state. The 74HC573; 74HCT573 is functionally identical to:

74HC573; 74HCT573. Octal D-type transparent latch; 3-state. The 74HC573; 74HCT573 is functionally identical to: Product data sheet 1. General description The is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). The has octal D-type transparent latches featuring separate

More information

L4970A 10A SWITCHING REGULATOR

L4970A 10A SWITCHING REGULATOR L4970A 10A SWITCHING REGULATOR 10A OUTPUT CURRENT.1 TO 40 OUTPUT OLTAGE RANGE 0 TO 90 DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REGULA- TION INTERNAL CURRENT LIMITING PRECISE.1 ± 2 ON CHIP REFERENCE

More information

DATA SHEET. PEMD48; PUMD48 NPN/PNP resistor-equipped transistors; R1 = 47 kω, R2 = 47 kω and R1 = 2.2 kω, R2 = 47 kω DISCRETE SEMICONDUCTORS

DATA SHEET. PEMD48; PUMD48 NPN/PNP resistor-equipped transistors; R1 = 47 kω, R2 = 47 kω and R1 = 2.2 kω, R2 = 47 kω DISCRETE SEMICONDUCTORS DISCRETE SEMICONDUCTORS DATA SHEET NPN/PNP resistor-equipped transistors; R1 = 47 kω, R2 = 47 kω and R1 = 2.2 kω, R2 = 47 kω Supersedes data of 2004 Jun 02 2004 Jun 24 FEATURES Built-in bias resistors

More information