Compact Modeling of Graphene Barristor for Digital Integrated Circuit Design

Size: px
Start display at page:

Download "Compact Modeling of Graphene Barristor for Digital Integrated Circuit Design"

Transcription

1 Compact Moeling of Graphene Barristor for Digital Inteate Circuit Design Zhou Zhao, Xinlu Chen, Ashok Srivastava, Lu Peng Division of Electrical an Computer Engineering Louisiana State University Baton Rouge, LA 70803, U.S.A. {zzhao13, xchen67, eesriv, Saraju. P. Mohanty Department of Computer Science an Engineering University of North Texas Denton, TX 76207, U.S.A. Abstract Graphene barristor, in which a Schottky barrier forme between aphene layer an silicon layer can wien the bangap with the control of gate voltage, is a promising metho to enhance on/off current ratio in igital circuit esign. In this work, a theoretical stuy is presente base on analog behavior moeling in SPICE. We have evelope a compact evice moel to evaluate the performance of aphene barristors. The evice simulation results show the on/off current ratio nearly 10 5 uner the voltage variation which aees closely with the reporte experimental results. A complementary inverter is esigne using the evelope moel to prove the feasibility of aphene barristor for use in future igital VLSI esign. The energy per switching is between 1.1~0.52fJ uner voltage variation. Fig. 1. Cross section view of aphene barrister. Keywors Graphene Barristor, Schottky Barrier, Transistor Moeling, IC Design I. INTRODUCTION Graphene-base evices have been recently propose an can work uner a very low power supply with much higher mobility than the wiely use silicon evices [1, 2, 3]. However, the property of zero bangap is a major problem blocking aphene to be inteate in current igital IC esign [4]. The suitability of a transistor use for igital circuits epens on that the transistor channel to be semiconucting so as to provie a large on/off current ratio. Both aphene nanoribbon an bilayer aphene have emonstrate to be semiconucting with a esirable bangap for transistor switching action. Graphene nanoribbon FET an bilayer aphene FET have been reporte [5, 6]. The aphene nanoribbon FET can be use for the igital circuit esign for low-power operation [7]. But the current fabrication process cannot support complex nanoribbon embee into chips an the ege effect can largely influence the practical performance. Bilayer aphene FET nees high voltage to get the require bangap which is not suitable for energy saving esign. A new aphene base evice, aphene barristor, has been introuce recently [8, 9]. The ifference between a aphene barristor an a normal aphene transistor is that a Schottky barrier, forme by the aphene layer an the silicon layer, is ae to generate barrier height between the gate noe an the source noe. This barrier height can largely wien the bangap (a) (b) (c) Fig. 2. Energy ban iaam of aphene/n-type silicon uner a) zero bias, b) forwar bias an c) reverse bias.

2 Fig. 3. Equivalent circuit of a aphene barrister. so that the evice can be use for igital logic. Design an analysis of aphene barrier-base inteate circuits require a physical evice moel which can be use either in SPICE or Verilog-A for simulations. In this work, we have use analog behavior moeling in SPICE to moel the aphene barristor an its circuits. The analog behavior moeling metho can ynamically ajust each current an voltage in the evice accoring to the variation of voltage. At the same time the parasite passive evices can be change ue to voltage/current variation an at the same time increase the simulation accuracy. Using analog behavior moeling, we have evelope an accurate evice moel incluing source block an passive evices to simulate aphene barristor. We have emonstrate the feasibility of use of aphene barristers through the esign of a complementary inverter. The paper is organize as follows. Section II presents physics behin the moeling of aphene barrister, the equivalent circuit moel an analog behavior moeling in SPICE. Section III presents esign of a complementary inverter base on aphene barrister followe by the conclusion in Section IV. II. MODELING GRAPHENE BARRISTOR The cross section view of a aphene barristor is shown in Fig. 1. It can be seen that there is a aphene-silicon Schottky barrier forme aroun the source noe an the gate noe. The stuy regaring the aphene-silicon junction has been reporte in [10]. For the analysis, it is efine that forwar bias an reverse bias are positive voltage applie in aphene layer an silicon layer, respectively. Taking the aphene/n-type silicon junction as an example, the energy ban iaams uner thermal equilibrium, forwar bias an reverse bias conitions are shown in Fig. 2. When forwar bias is applie as shown in Fig. 2 (b), the built-in potential will be reuce so that electrons are easy to go from silicon to aphene generating a forwar bias current. A very ifferent phenomenon compare to the traitional metalsilicon Schottky junction is that the Fermi level of aphene in this case will be move own ue to negative charges in aphene which nee to mirror positive charges in silicon. While in the case of reverse bias, the tenency of aphene Fermi level Fig. 4. Graphene capacitor variation versus gate voltage for ifferent rain-source voltages. Current Density, A/m 2 Current Density, A/m (a) Vg=0.4V Vg=0.6V Vg=0.8V Vg=1V Vg=1V, reporte in [5] Vs, V (b) Fig. 5. The simulate current: a) gate voltage epenence an b) rain-source voltage epenence. an built-in potential are opposite. The essence of the aphene/silicon junction is formation of a ioe with two noes. To achieve a three-noe evice neee for a igital circuit, a rain noe is ae to exten the ioe to a FET-like structure. The potential of the rain can control the whole

3 Resistance, Ohms/m 2 Fig. 6. Output resistance variation versus gate voltage. current going through the evice. When the potential of the rain is the same as of source, from the view of the evice, the net current will be zero since there is no voltage ifference between the source an the rain. Thus, with the gate control an rainsource control the aphene barristor can perform like a typical FET with three noes that can be use in igital circuit esign. The following section mathematically analyzes the I-V characteristics an parasite passive evices existing in aphene barristor. We make few practical assumptions base on the imensional restriction of aphene barrister which are as follows. 1) The aphene layer in a aphene barristor is not as narrow as in a aphene nanoribbon, we can use ballistic irecte moments for 3D carriers to analyze the current transport an ignore ege effects. 2) The aphene layer of the barristor is over the silicon substrate, we can ignore the surface states an other effects like crystal efects, an traps between the interface an substrate. 3) The effective length of aphene layer forming the Schottky junction is very short. We o not take scattering effect into consieration. 4) The current through the evice is in horizontal irection. Thus, the image force existe in vertical irection can be neglecte. Accoring to Fig. 1, the equivalent circuit of aphene barristor can be shown as in Fig. 3. Once each parameter in equivalent circuit is etermine, the moel in SPICE using analog behavior moeling can be evelope. For the calculation of capacitor in a aphene barristor, first start with the charge balance consiering metal, silicon, an oxie silicon [11] which can be expresse by the Eq. (1) as follows: Qm + Q + Qsi = 0 ε m( Vg V ) Qm = tox 2 2q kt qv qv Q = ζ 1 ζ 1 π v f kt kt 2 Φ qφ qφ ni qφ qφ Qsi = 2ε siktn + exp + 1 exp 1 2 Φ kt kt N kt kt where ε m an ε si are the permittivity constants of metal contact an silicon, respectively. t ox is the thickness of silicon ioxie, V g is the external gate voltage, V is the potential of aphene surface, q is the unit electron charge, k is the Boltzmann constant, T is the temperature (efault temperature is 300K for the following analysis), is the reuce plank constant, Φ is the potential of silicon surface, v f is the Fermi velocity in aphene, n i is the intrinsic carrier concentration in silicon, N is the oping concentration in silicon. ζ 1 is the Fermi-Dirac inteal of orer one. To obtain the value of capacitor, it is obvious that in above equations both Φ an V nee to be obtaine. The function Φ with these two parameters can be expresse as follows: Φ = Φ bo V + V s (1) 3 kt 1 Nh + ζ (2) 1/ 2 3/ 2 q 2( 2.16πmokT ) Where Φ bo is the barrier height for the evice uner zero bias, an is set to 0.5V in the case of aphene/silicon junction. h is the Planck s Constant, an m o is the unit electron mass. An 1 ζ is the inverse Fermi-Dirac inteal with orer of / 2 The next step is to transfer charge value to a capacitance value. The silicon oxie capacitor is contribute by the voltage ifference between the gate an aphene layer. The aphene capacitor is contribute by the potential of the aphene layer. Using above analysis with t ox=1nm, T=300K, an N =10 22 m -3, the aphene capacitor epenence on the gate voltage for four rain-source voltages is shown in Fig. 4. We can see that aphene capacitor is below 0.25pF/µm 2 with voltage variations. The aphene capacitor is proportional to the rain-source voltage, meaning that when rain-source voltage increases, the control ability for logic switch will be stronger from the perspective of circuit esign. Another capacitor, silicon ioxie capacitor also exists in the silicon oxie layer, which epens upon the gate voltage. In the analysis regaring capacitance, we can get potentials of the aphene surface an the silicon layer, which are neee to calculate the current. The original current ensity function can be expresse as follows [11]: * 2 qφ b qv s, (3) J = A T exp exp 1 exp kt kt where A * is the effective Richarson constant. For Φ b, the barrier height, it can be expresse by the following: Φ = Φ V. (4) b bo

4 Fig. 7. Moeling of a aphene barristor. Thus, the current ensity can be shown as follows: ( Φ ) q V * 2 bo qv s J = A T exp 1 exp (5) kt kt To verify the current analysis, first we use the gate voltage as the variable uner fixe rain-source voltage to calculate the current ensity. Then take the rain-source voltage as a variable uner the fixe gate voltage to simulate the current ensity. Both results are shown in Fig. 5, which are in aeement to the reporte results in [8] from the quantitative view. It can be seen that the ratio of switch-on current to switch-off current is close to 10 5, which is a practical value to use with aphene barristor base igital circuit esign. The output resistor between the rain an the source can be obtaine by taking a erivative of current function with respect to rain-source voltage. The simulate result is shown in Fig. 6. We observe from Fig. 6 that the output resistance of aphene barristor is not sensitive to the rain-source voltage. This fact is ue to the moulation by the potential of the silicon layer an the potential of the aphene layer. The resistance of the substrate can be calculate by [12]: R 2t sub sub =, (6) qμen Acont where t sub is the thickness of substrate, μ e is the electron mobility in silicon substrate, an A cont is the effective contact area between silicon substrate an aphene layer contributing current channel. The resistance of metal/aphene contact, which connects the rain, source, an gate noes also contributes to the performance of circuit operation. We extract the experimental result from [13] for the case of monolayer aphene contacting with metal. The contact resistance is set to 800Ω for our moeling. It can be seen that I-V characteristics presente in Fig. 5 aees with the experimental results of [8] which proves the valiity of the current transport moel of aphene barrister presente in this work. The evice moeling in SPICE can be one by a controlle source (e.g. VCCS, CCCS, VCVS, an CCVS), a look-up table, an fixe passive evices. However, the controlle source provie by SPICE only can implement simple linear calculations to get approximate voltage/current results. But emerging novel evices require much non-linear analysis to accurately narrate evice characteristic. The look-up table is an efficient metho to moel a novel evice. This metho can also reuce simulation time since there is only rea an write request. Going to circuit esign, imperfect logic transferring ue to clock skew an inaequate charge/ischarge will cause large pulse currents or voltages. In this case, if an overlarge voltage or current is not store in the look-up table, the simulation will fail ue to lack of enough information to be searche. The unwante pulse current or voltage is also ranomly generate accoring to circuit structures. Thus, it is very ifficult to calculate an store all neee information in the look-up table ealing with various circuits. Analog behavior moeling [14, 15] is a moule in SPICE, which can implement complex non-linear calculations regaring both voltage an current. The etaile calculation function inclues aition, subtraction, multiplication, ivision, calculus, absolute function an exponential function, all of which can well satisfy our moeling nees accoring to the previous analysis. With the help of these calculation functions, analog behavior moeling can solve non-linear equations. Besies, analog behavior moeling has a limitation block which can restrict input signal in a reasonable range to avoi unwante signal processing reucing the simulation accuracy. For the transmission between voltage an current to achieve the voltagecontrol evice an capacitor, analog behavior moeling has an evaluate block which can transfer voltage to current uner selfefine principles. Analog behavior moeling has the function of parameter statement, which means that all constants can be state globally, an use for the entire moeling. This function largely improves the esign efficiency. For the moeling of aphene barristor with our previous analysis, we can fin both potentials of the aphene surface an the silicon surface, two important variables which are relate to aphene capacitance, silicon oxie capacitance, output resistance, an evice current. When these two parameters are solve, with the efinition of other constants an the input voltage such as gate voltage an rain-source voltage, require aphene capacitance, silicon oxie capacitance, output resistance, the evice current can be solve smoothly. For other parameters serving for moeling, substrate resistance an aphene/metal resistance, these can be easily calculate by constants without variables. In our moeling, the imension of aphene layer is set to be the same as in [9]. The length is 20nm an with is 1µm. The

5 tox (nm) Lch (nm) V (V) Table I. Comparison between aphene barristor an emerging technologies. FinFET Bilayer This work By the Year Graphene FET By the Supplie Voltage V 0.8V 0.6V N/A Ion/Ioff Cg (ff) Eswitch (fj) Power issipation, nw Fig. 8. Graphene barrister base inverter performance: power issipation epenence on frequency. thickness of the silicon oxie an the substrate are 1nm an 0.3mm, respectively. The moeling flow of aphene barristor is shown in Figure 7 an escribe as follows: 1) State all constants which will be use for the mathematical analysis. 2) Calculate both potentials of silicon surface an aphene surface. These two parameters can be solve with a set of Eq. (1) an Eq. (2). 3) Using state constants an both potentials of silicon surface an aphene surface calculate in Step 2, calculate aphene capacitance, silicon oxie capacitance, an evice current. Two kins of capacitors are outputte by the variable capacitor. The current of aphene barristor is outputte by GEVALUATE which is a block an can transfer voltage to current by a self-efine equation in SPICE. At the same time, using constants, calculate substrate resistance an aphene/metal contact resistance. 4) Combine all calculate parameters in Step 3 following the equivalent circuit moel in Fig. 3. Using moeling flow in Fig. 7, we can moel both n-type an p-type aphene barristors with ifferent oping categories. III. GRAPHENE BARRISTOR BASED CIRCUIT DESIGN The analyses of the current means that both forwar bias an reverse bias conitions have a current to achieve a igital logic. We notice that the current uner reverse bias is smaller than uner the forwar bias. An the on/off current ratio uner the forwar bias is larger than uner the reverse bias, which means that using aphene barristor uner the forwar bias is more suitable for the igital logic esign. We use both forwar bias an reverse bias operation to esign a circuit fining that even though the power issipate in reverse bias conition is smaller than in the forwar bias conition, the signal inteity in reverse bias conition is much worse than in the forwar bias conition. Thus, we choose the way of forwar biasing to buil the circuit. With this metho, the logic esign using aphene barristors is same as in traitional CMOS an FinFET, which has both pullown n-type tree an pull-up p-type tree combine to obtain a complementary topology. For low power esign, in the simulation, we set 1V, 0.8V, an 0.6V as three supply voltages cases to stuy. To evaluate the performance of igital circuit using the propose moel of aphene barristor, we esigne a complementary inverter for power issipation versus frequency epenence. Figure 8 shows the simulation results. From the simulation results, we can see that in most of the cases gate logic uner 1V supply issipates more power than uner the reuce supply voltages. To evaluate the feasibility of the propose evice, we compare few parameters, on/off current ratio, gate capacitance an switching energy with other emerging evices [16, 17, 18]. The results are summarize in Table I. From Table I, we can observe that the barristor uses relatively large channel length an I on/i off ratio is

6 within the acceptable range; an from the view of power issipation an gate capacitance, aphene barristor is a competitive caniate which can be use for the igital circuit esign. IV. CONCLUSION In this work, a compact an simple current transport moel of a aphene barristor is presente. Using analog behavior moeling, an accurate SPICE moel is propose. The propose moel can be ajuste ynamically by the voltage variation for accurate simulations. The simulation results show that aphene barristor can be use for low power igital circuit esign. The future work woul focus on the scaling of evice imension an improvement in I on/i off ratio. ACKNOWLEDGMENT Part of work is supporte uner NSF Grant No REFERENCES [1] A. K. Geim an K. S. Novoselov, The rise of aphene, Nature materials, vol. 6, pp , Mar [2] S. P. Mohanty, Nanoelectronic Mixe-Signal System Design, McGraw-Hill, 2015, ISBN-10: , ISBN- 13: [3] S. Joshi, S. P. Mohanty, an E. Kougianos, Simscape base Ultra-Fast Design Exploration: Graphene- Nanoelectronic Circuit Case Stuies, Springer Analog Inteate Circuits an Signal Processing Journal, Volume 87, Issue 3, June 2016, pp [4] F. Schwierz, Graphene transistors, Nature Nanotechnology, vol. 5, pp , May [5] M. Chouhury et al., Technology exploration for aphene nanoribbon FETs, Proc. of 45th Design Automation Conference (DAC), 2008, pp [6] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, an L. M. K. Vanersypen, Gate-inuce insulating state in bilayer aphene evices, Nature Materials, vol. 7, pp , Dec [7] S. Joshi, S. P. Mohanty, E. Kougianos, an V. P. Yanambaka, Graphene Nanoribbon Fiel Effect Transistor base Ultra-Low Energy SRAM Design, in Proceeings of the 2n IEEE International Symposium on Nanoelectronic an Information Systems (inis), 2016, pp [8] H. Yang et al., Graphene barristor, a trioe evice with a gate-controlle Schottky barrier, Science, vol. 336, pp , Jun [9] J. Noh, K. E. Chang, C. H. Shim, S. Kim, an B. H. Lee, Performance prospect of aphene barristor with high onoff ratio (~10 7 ), Proc. of Silicon Nanoelectronics Workshop (SNW), 2014, pp [10] D. Sinha an J. U. Lee, Ieal aphene/silicon Schottky junction ioes, Nano Letters, vol. 14, pp , Jul [11] G. Giusi an I. Giuseppe Iannaccone, Moeling of nanoscale evices with carriers obeying a three-imensional ensity of states, Journal of Applie Physics, vol. 113, Apr [12] B. L. Sharma, Metal-Semiconuctor Schottky Barrier Junctions an Their Applications, NY: Springer Science & Business Meia, [13] A. Venugopal, L. Colombo, an E. M. Vogel, Contact resistance in few an multilayer aphene evices, Applie Physics Letters, vol. 96, Jan [14] PSPICE User Guie, 2000, [online]: CAD.pf, Last Accesse on 03/12/2017. [15] PSPICE Reference Guie, 2000, [online]: ieorcad.pf, Last Accesse on 03/12/2017. [16] ITRS for Semiconuctor, 2013, [online]: hnology/itrs/2013/2013pids.pf, Last Accesse on 03/12/2017. [17] ITRS for Semiconuctor, 2015, [online]: hnology/itrs/2015/0_2015%20itrs%202.0%20executive %20Report%20(1).pf, Last Accesse on 03/12/2017. [18] T. K. Agarwal et al., Bilayer aphene tunneling FET for sub-0.2 V igital CMOS logic applications, IEEE Electron Device Letters, vol. 35, pp , Dec

Lecture contents. Metal-semiconductor contact

Lecture contents. Metal-semiconductor contact 1 Lecture contents Metal-semiconuctor contact Electrostatics: Full epletion approimation Electrostatics: Eact electrostatic solution Current Methos for barrier measurement Junctions: general approaches,

More information

SiC-based Power Converters for High Temperature Applications

SiC-based Power Converters for High Temperature Applications Materials Science orum Vols. 556-557 (7) pp 965-97 online at http://www.scientific.net (7) Trans Tech Publications Switzerlan Online available since 7/Sep/5 -base Power Converters for High Temperature

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes Capacitors Transistors

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes Capacitors Transistors EE 330 Lecture 13 evices in Semiconuctor Processes ioes Capacitors Transistors Review from Last Lecture pn Junctions Physical Bounary Separating n-type an p-type regions Extens farther into n-type region

More information

FET Inrush Protection

FET Inrush Protection FET Inrush Protection Chris Pavlina https://semianalog.com 2015-11-23 CC0 1.0 Universal Abstract It is possible to use a simple one-transistor FET circuit to provie inrush protection for low voltage DC

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes EE 330 Lecture 12 evices in Semiconuctor Processes ioes Review from Last Lecture http://www.ayah.com/perioic/mages/perioic%20table.png Review from Last Lecture Review from Last Lecture Silicon opants in

More information

EE 330 Lecture 15. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

EE 330 Lecture 15. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs EE 330 Lecture 15 evices in Semiconuctor Processes ioes Capacitors MOSFETs Review from Last Lecture Basic evices an evice Moels Resistor ioe Capacitor MOSFET BJT Review from Last Lecture Review from Last

More information

Electronic Devices and Circuit Theory

Electronic Devices and Circuit Theory Instructor s Resource Manual to accompany Electronic Devices an Circuit Theory Tenth Eition Robert L. Boylesta Louis Nashelsky Upper Sale River, New Jersey Columbus, Ohio Copyright 2009 by Pearson Eucation,

More information

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices Journal of Physics: Conference Series PAPER OPEN ACCESS Two Dimensional Numerical Simulator for Moeling NDC Region in SNDC Devices To cite this article: Dheeraj Kumar Sinha et al 2016 J. Phys.: Conf. Ser.

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation A Novel ecouple Iterative Metho for eep-submicron MOSFET RF Circuit Simulation CHUAN-SHENG WANG an YIMING LI epartment of Mathematics, National Tsing Hua University, National Nano evice Laboratories, an

More information

Harmonic Modelling of Thyristor Bridges using a Simplified Time Domain Method

Harmonic Modelling of Thyristor Bridges using a Simplified Time Domain Method 1 Harmonic Moelling of Thyristor Briges using a Simplifie Time Domain Metho P. W. Lehn, Senior Member IEEE, an G. Ebner Abstract The paper presents time omain methos for harmonic analysis of a 6-pulse

More information

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs EE 330 Lecture 14 Devices in Semiconuctor Processes Dioes Capacitors MOSFETs Reminer: Exam 1 Friay Feb 16 Stuents may bring one page of notes (front an back) but no electronic ata storage or remote access

More information

24th European Photovoltaic Solar Energy Conference, September 2009, Hamburg, Germany

24th European Photovoltaic Solar Energy Conference, September 2009, Hamburg, Germany 4th European hotovoltaic Solar Energy Conference, 1-5 September 9, Hamburg, Germany LOCK-IN THERMOGRAHY ON CRYSTALLINE SILICON ON GLASS (CSG) THIN FILM MODULES: INFLUENCE OF ELTIER CONTRIBUTIONS H. Straube,

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16 EECS 16A Designing Information Devices an Systems I Spring 218 Lecture Notes Note 16 16.1 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

28.1 Parametric Yield Estimation Considering Leakage Variability

28.1 Parametric Yield Estimation Considering Leakage Variability 8.1 Parametric Yiel Estimation Consiering Leakage Variability Rajeev R. Rao, Aniruh Devgan*, Davi Blaauw, Dennis Sylvester University of Michigan, Ann Arbor, MI, *IBM Corporation, Austin, TX {rrrao, blaauw,

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

Thermal runaway during blocking

Thermal runaway during blocking Thermal runaway uring blocking CES_stable CES ICES_stable ICES k 6.5 ma 13 6. 12 5.5 11 5. 1 4.5 9 4. 8 3.5 7 3. 6 2.5 5 2. 4 1.5 3 1. 2.5 1. 6 12 18 24 3 36 s Thermal runaway uring blocking Application

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka

More information

Revisiting the Charge Concept in HBT/BJT Models

Revisiting the Charge Concept in HBT/BJT Models evisiting the Charge Concept in HBT/BJT Moels Zoltan Huska an Ehrenfrie Seebacher austriamicrosystems AG 23r Bipolar Arbeitkeis BipAK Meeting at STM Crolles, France, 5 October 2 Outline recalling the junction

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (

More information

PHYSICS BASED CHARGE AND DRAIN CURRENT MODEL FOR AlGaN/GaN HEMT DEVICES

PHYSICS BASED CHARGE AND DRAIN CURRENT MODEL FOR AlGaN/GaN HEMT DEVICES Journal of Electron Devices, ol. 14, 01, pp. 1155-1160 JED [ISSN: 168-347 ] PHYSICS BASED CHARGE AND DRAIN CURRENT MODEL FOR AlGaN/GaN HEMT DEICES Gowin Raj 1, Hemant Pareshi 1, Suhansu Kumar Pati 1, N

More information

PARALLEL-PLATE CAPACITATOR

PARALLEL-PLATE CAPACITATOR Physics Department Electric an Magnetism Laboratory PARALLEL-PLATE CAPACITATOR 1. Goal. The goal of this practice is the stuy of the electric fiel an electric potential insie a parallelplate capacitor.

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 4: Physics of Semiconductor iodes Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE. Define electric potential at a point. *Electric potential at a point is efine as the work one to bring a unit positive charge from infinity to that point.

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Moule 2 DC Circuit Lesson 9 Analysis of c resistive network in presence of one non-linear element Objectives To unerstan the volt (V ) ampere ( A ) characteristics of linear an nonlinear elements. Concept

More information

An inductance lookup table application for analysis of reluctance stepper motor model

An inductance lookup table application for analysis of reluctance stepper motor model ARCHIVES OF ELECTRICAL ENGINEERING VOL. 60(), pp. 5- (0) DOI 0.478/ v07-0-000-y An inuctance lookup table application for analysis of reluctance stepper motor moel JAKUB BERNAT, JAKUB KOŁOTA, SŁAWOMIR

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

Design and Application of Fault Current Limiter in Iran Power System Utility

Design and Application of Fault Current Limiter in Iran Power System Utility Australian Journal of Basic an Applie Sciences, 7(): 76-8, 13 ISSN 1991-8178 Design an Application of Fault Current Limiter in Iran Power System Utility M. Najafi, M. Hoseynpoor Department of Electrical

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

Model for Dopant and Impurity Segregation During Vapor Phase Growth

Model for Dopant and Impurity Segregation During Vapor Phase Growth Mat. Res. Soc. Symp. Proc. Vol. 648, P3.11.1-7 2001 Materials Research Society Moel for Dopant an Impurity Segregation During Vapor Phase Growth Craig B. Arnol an Michael J. Aziz Division of Engineering

More information

Transmission Line Matrix (TLM) network analogues of reversible trapping processes Part B: scaling and consistency

Transmission Line Matrix (TLM) network analogues of reversible trapping processes Part B: scaling and consistency Transmission Line Matrix (TLM network analogues of reversible trapping processes Part B: scaling an consistency Donar e Cogan * ANC Eucation, 308-310.A. De Mel Mawatha, Colombo 3, Sri Lanka * onarecogan@gmail.com

More information

Istituto di Fotonica e Nanotecnologie

Istituto di Fotonica e Nanotecnologie Istituto i Fotonica e Nanotecnologie Atomic Scale Nanoelectronics Enrico Prati, PhD Research Scientist at Istituto i Fotonica e Nanotecnologie Milano, Italy Visiting Scholar Wasea University Tokyo, Japan

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

A Parametric Device Study for SiC Power Electronics

A Parametric Device Study for SiC Power Electronics A Parametric evice Stuy for SiC Power Electronics Burak Ozpineci urak@ieee.org epartment of Electrical an Computer Engineering The University of Tennessee Knoxville TN 7996- Leon M. Tolert tolert@utk.eu

More information

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Kai Tak Lam, Gyungseon Seol and Jing Guo Department of Electrical and Computer Engineering,

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Electrical Characteristics of Multilayer MoS 2 FET s

Electrical Characteristics of Multilayer MoS 2 FET s Electrical Characteristics of Multilayer MoS 2 FET s with MoS 2 /Graphene Hetero-Junction Contacts Joon Young Kwak,* Jeonghyun Hwang, Brian Calderon, Hussain Alsalman, Nini Munoz, Brian Schutter, and Michael

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

ELECTRONIC SYSTEMS. Real operational amplifiers. Electronic Systems - C2 28/04/ DDC Storey 1

ELECTRONIC SYSTEMS. Real operational amplifiers. Electronic Systems - C2 28/04/ DDC Storey 1 Politecnico i Torino ICT school Lesson C2 Real Op mp parameters an moel ELECTRONIC SYSTEMS C OPERTIONL MPLIFIERS C.2 Real Op mp an examples» Real Op mp parameters an moel» Static an ynamic parameters»

More information

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13 EES 6A Designing Information Devices an Systems I Spring 27 Official Lecture Notes Note 3 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

FIELD EFFECT TRANSISTORS:

FIELD EFFECT TRANSISTORS: Chapter 10 FIEL EFFECT TRANITOR: MOFET The following overview gures describe important issues related to the most important electronic device. NUMBER OF ACTIVE EVICE/CHIP MOORE' LAW Gordon Moore, co-founder

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Alpha Particle scattering

Alpha Particle scattering Introuction Alpha Particle scattering Revise Jan. 11, 014 In this lab you will stuy the interaction of α-particles ( 4 He) with matter, in particular energy loss an elastic scattering from a gol target

More information

Modeling time-varying storage components in PSpice

Modeling time-varying storage components in PSpice Moeling time-varying storage components in PSpice Dalibor Biolek, Zenek Kolka, Viera Biolkova Dept. of EE, FMT, University of Defence Brno, Czech Republic Dept. of Microelectronics/Raioelectronics, FEEC,

More information

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments Problem F U L W D g m 3 2 s 2 0 0 0 0 2 kg 0 0 0 0 0 0 Table : Dimension matrix TMA 495 Matematisk moellering Exam Tuesay December 6, 2008 09:00 3:00 Problems an solution with aitional comments The necessary

More information

Approaches for Predicting Collection Efficiency of Fibrous Filters

Approaches for Predicting Collection Efficiency of Fibrous Filters Volume 5, Issue, Summer006 Approaches for Preicting Collection Efficiency of Fibrous Filters Q. Wang, B. Maze, H. Vahei Tafreshi, an B. Poureyhimi Nonwovens Cooperative esearch Center, North Carolina State

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Yin Li, Stuent Member, IEEE, Lingling Fan, Senior Member, IEEE Abstract This paper proposes a robust power system stabilizer (PSS)

More information

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0 Extinction, σ/area 1.5 1.0 t = t 0 t = 0.7 t 0 t = t 0 t = 1.3 t 0 t = 1.5 t 0 0.7 0.9 1.1 Energy (ev) = 20 nm t 1.3 Supplementary Figure 1: Plasmon epenence on isk thickness. We show classical calculations

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL SAMEER SHARMA

FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL SAMEER SHARMA FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL By SAMEER SHARMA Bachelor of Science in Electrical Engineering Punjab Engineering College Chanigarh, Inia 1994 Master of Science in Electrical

More information

Patterns in bistable resonant-tunneling structures

Patterns in bistable resonant-tunneling structures PHYSICAL REVIEW B VOLUME 56, NUMBER 20 Patterns in bistable resonant-tunneling structures 15 NOVEMBER 1997-II B. A. Glavin an V. A. Kochelap Institute of Semiconuctor Physics, Ukrainian Acaemy of Sciences,

More information

Common-Centroid FinFET Placement Considering the Impact of Gate Misalignment

Common-Centroid FinFET Placement Considering the Impact of Gate Misalignment Common-Centroi FinFET Placement Consiering the Impact of Gate Misalignment Po-Hsun Wu, Mark Po-Hung Lin 2, X. Li 3, an Tsung-Yi Ho 4 epartment of Computer Science an Information Engineering, National Cheng

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters 1 Scaling of MOS Circuits CONTENTS 1. What is scaling?. Why scaling? 3. Figure(s) of Merit (FoM) for scaling 4. International Technology Roadmap for Semiconductors (ITRS) 5. Scaling models 6. Scaling factors

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

(3-3) = (Gauss s law) (3-6)

(3-3) = (Gauss s law) (3-6) tatic Electric Fiels Electrostatics is the stuy of the effects of electric charges at rest, an the static electric fiels, which are cause by stationary electric charges. In the euctive approach, few funamental

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Lecture 8. MOS (Metal Oxide Semiconductor) Structures

Lecture 8. MOS (Metal Oxide Semiconductor) Structures Lecture 8 MOS (Metal Oie Semiconuctor) Structure In thi lecture you will learn: The funamental et of equation governing the behavior of MOS capacitor Accumulation, Flatban, Depletion, an Inverion Regime

More information

Electrical Characteristics of MOS Devices

Electrical Characteristics of MOS Devices Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Threshold-voltage

More information

A Quantitative Analysis of Coupling for a WPT System Including Dielectric/Magnetic Materials

A Quantitative Analysis of Coupling for a WPT System Including Dielectric/Magnetic Materials Progress In Electromagnetics Research Letters, Vol. 72, 127 134, 2018 A Quantitative Analysis of Coupling for a WPT System Incluing Dielectric/Magnetic Materials Yangjun Zhang *, Tatsuya Yoshiawa, an Taahiro

More information

Quasi optimal feedforward control of a very low frequency high-voltage test system

Quasi optimal feedforward control of a very low frequency high-voltage test system Preprints of the 9th Worl Congress The International Feeration of Automatic Control Quasi optimal feeforwar control of a very low frequency high-voltage test system W. Kemmetmüller S. Eberharter A. Kugi

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Control of a PEM Fuel Cell Based on a Distributed Model

Control of a PEM Fuel Cell Based on a Distributed Model 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 FrC1.6 Control of a PEM Fuel Cell Base on a Distribute Moel Michael Mangol Abstract To perform loa changes in proton

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Parameter Analysis of the Low-Power MCML

Parameter Analysis of the Low-Power MCML 20 International Conference on Circuit, Sytem an Simulation IPCSIT ol.7 (20) (20) IACSIT Pre, Singapore Parameter Analyi of the Low-Power MCML Dan Zhang, Wei Wu 2 an Yifei Wang 3 College of Science, Shanghai

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

The new concepts of measurement error s regularities and effect characteristics

The new concepts of measurement error s regularities and effect characteristics The new concepts of measurement error s regularities an effect characteristics Ye Xiaoming[1,] Liu Haibo [3,,] Ling Mo[3] Xiao Xuebin [5] [1] School of Geoesy an Geomatics, Wuhan University, Wuhan, Hubei,

More information

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems Construction of the Electronic Raial Wave Functions an Probability Distributions of Hyrogen-like Systems Thomas S. Kuntzleman, Department of Chemistry Spring Arbor University, Spring Arbor MI 498 tkuntzle@arbor.eu

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Adjoint Transient Sensitivity Analysis in Circuit Simulation

Adjoint Transient Sensitivity Analysis in Circuit Simulation Ajoint Transient Sensitivity Analysis in Circuit Simulation Z. Ilievski 1, H. Xu 1, A. Verhoeven 1, E.J.W. ter Maten 1,2, W.H.A. Schilers 1,2 an R.M.M. Mattheij 1 1 Technische Universiteit Einhoven; e-mail:

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 214 1145 A Semi-Analytical Thermal Moeling Framework for Liqui-Coole ICs Arvin Srihar, Member, IEEE,

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information