Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Size: px
Start display at page:

Download "Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics."

Transcription

1 PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, an the role of ielectrics - How to use electric potential to move opposite signe charges to two ifferent conuctors? Using an external electric potential sources (batteries, power supply etc) In general, any two separate conuctors coul be use in above schematics capacitor is compose of a pair of conuctors insulate from each other capacitor coul be use to store opposite signe of electric charges on the two ifferent conuctors Capacitor is represente as the following symbols when raw in circuit - How much charge coul be store? (relate to the efinition of Capacitance) Capacitance is efine as how much charge coul be store in the capacitor per unit volt: C= Q V ab NOTE: The unit use for capacitance is Fara (F) an is efine as F= C V NOTE #2: Please pay attention that on't be confuse with to the notation use for capacitance (C) an the unit for charge (Q): coulomb (C)

2 - Capacitance calculation for few ifferent types of capacitors Parallel-plate capacitor C= Q =ϵ V 0 ab Spherical capacitor (Do Example 243 (page 792)) Cylinrical capacitor (Do Example 244 (page 792)) - Multiple capacitors in circuit equivalent capacitance When two capacitors are in series, the amount of charge is the same = + C eq C C 2 When two capacitors are in parallel, the electric potential is the same C eq =C +C 2 Equivalent capacitance is the capacitance that you measure from the two terminals regarless how complex the real capacitor collection is In other wors, when analyzing circuit, you can simplify multiple capacitors into one equivalent capacitor Do example 246 (page 796) - How much energy is store in capacitors? W =V q= q C q (Remember: C= Q V ) Q W = W = 0 q C q= Q 2 2 C = 2 CV 2 = 2 QV - Electric-fiel energy The energy store in capacitors coul be consiere as the form of electric fiel

3 We know that electric fiel is istribute all over the vacuum space between the two conuctors (of the capacitor) Thus, we coul fin out the energy ensity that is store in the form of electric fiel as (take parallel-plate capacitor as example): total energy u=energy per unit volumn= total volumn = 2 CV 2 Note that C= for parallel-plate capacitors Electric-fiel energy ensity in vacuum: u= 2 E 2 (This will be use again in Chapter 32) Do Example 247 (page 798) - How to increase the capacitance without changing the imension of the capacitor? The answer is to a insulating materials between the two conuctors to replace vacuum This insulating material is calle ielectric material How oes that work? () charges in the ielectric material near the conuctors will be inuce; (2) the inuce charges prouce electric fiel with OPPOSITE irection to the original one; (3) to maintain the same electric potential (V), the conuctors nee more charge Q; thus the capacitance increase; (3') or if charge (Q) oes not change, the electric fiel is lowere (as mentione in (2)), thus the electric potential (V) ecreases, which increases the capacitance C The change of the capacitance epens on the selection of the ielectric materials The key property of the ielectric material here is the Dielectric Constant, K (see Table 24 on page 80 for various types of ielectric materials) Quantitatively, the ielectric constant coul be efine as: K = C C 0 Remember, when without the ielectric material, C 0 = Thus, C=K C 0 =K =ϵ Here, we efine K =ϵ, where ϵ is calle the permittivity of the ielectric material

4 NOTE: Engineers use K more; while scientists use ϵ more NOTE #2: In many cases, K is also enote as ϵ r, means relative permittivity, ue to the relationship: K = ϵ =ϵ r Electric-fiel energy ensity in ielectric material: u= 2 K E 2 = 2 ϵ E 2 - Is there a maximum energy storage (or maximum voltage) in capacitor? Yes, there is a maximum value The threshol comes from the ielectric breakown when the electric fiel is stronger than the ielectric strength Dielectric strength refers to the maximum electric fiel the ielectric material coul withstan without breakown - Free charge vs Boun charge (Let's assume the charge on the conucting plates o not change): Free charge ( σ 0 ): charges that are free to move Boun charge ( σ i ): charges that are boune to molecules an cannot move freely They typically will form electric ipole in electric fiel (See Fig 249 on page 806) Total charge ( σ total ): the combination of free an boun charges: σ total =σ 0 σ i Note here that charge ensity, σ, only take care of the magnitue From Gauss's Law we learne: E 0 = σ 0 ; an E= σ 0 σ i ensity, σ, only take care of the magnitue Remember, capacitance is efine: C= Q V charge: C= Q free V Note here that charge, an the charge Q is actually the free In other wors, for the two situations above We know C=K C 0 =K Q free = Q free V V 2 where V is the voltage ifference in the left conition (without ielectric material), while V 2 is the voltage ifference in the right conition (with ielectric V material) This leas to: K =V 2 n we know in this parallel-plate conition, V = E That leas us to the

5 conclusion of E 0 K = E, an thus σ i =σ 0 ( K ) - Moification of Gauss's Law with the presence of ielectric materials Originally, E = Q encl Q = Q +Q free boun = Q free K Note here, the sign of charge is in K E = Q encl free or ϵ E =Q encl free Note that when oing the integration, the ϵ is epening on the materials where the Gauss's surfaces locate For a close Gauss's surface, ifferent part of the close surfaces might immerse in ifferent materials Typically, we only care about free charge, that's why in the moifie Gauss's Law, we only relate it to the free charge Math Preview for Chapter 25: Derivative Question to think: Let's focus on a conucting wire that connects to the capacitors During the charging/ischarging process (moving an removing charges in the capacitors, respectively), there is a voltage ifference How to escribe the process of the charge movement?

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical CAPACITANCE: CHAPTER 24 ELECTROSTATIC ENERGY an CAPACITANCE Capacitance an capacitors Storage of electrical energy Energy ensity of an electric fiel Combinations of capacitors In parallel In series Dielectrics

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 9 Chapter 24 sec. 3-5 Fall 2017 Semester Professor Koltick Parallel Plate Capacitor Area, A C = ε 0A Two Parallel Plate Capacitors Area, A 1 C 1 = ε 0A 1 Area,

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Capacitors Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 12 Capacitors are evices that can store electrical energy Capacitors are use in many every-ay applications Heart efibrillators

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

( ) Energy storage in CAPACITORs. q C

( ) Energy storage in CAPACITORs. q C Energy storage in CAPACITORs Charge capacitor by transferring bits of charge q at a time from bottom to top plate. Can use a battery to o this. Battery oes work which increase potential energy of capacitor.

More information

Where A is the plate area and d is the plate separation.

Where A is the plate area and d is the plate separation. DIELECTRICS Dielectrics an the parallel plate capacitor When a ielectric is place between the plates of a capacitor is larger for the same value of voltage. From the relation C = /V it can be seen that

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE. Define electric potential at a point. *Electric potential at a point is efine as the work one to bring a unit positive charge from infinity to that point.

More information

PHYS 221 General Physics II

PHYS 221 General Physics II PHYS 221 General Physics II Capacitance, Dielectrics, Lightning Spring 2015 Assigne Reaing: 18.4 18.6 Lecture 5 Recap: PHYS 221 Last Lecture Electric force is conservative Electric potential energy Potential

More information

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2?

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2? Secon Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of.77 µf. What is C? C 4.0 µf.0 µf A) 7 µf B) µf C) 4 µf D) 3 µf E) 6 µf Q. When the potential ifference across

More information

Get Solution of These Packages & Learn by Video Tutorials on

Get Solution of These Packages & Learn by Video Tutorials on Get Solution of These Packages & Learn by Vieo Tutorials on www.mathsbysuhag.com FREE Downloa Stuy Package from website: www.tekolasses.com & www.mathsbysuhag.com. INTRODUTION APAIT ITANE A capacitor can

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16 EECS 16A Designing Information Devices an Systems I Spring 218 Lecture Notes Note 16 16.1 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV SPH4UW Capacitors! Capacitance: The ability to store separate charge C=Q/V Charge Q on plates V = V V B = E 0 Charge 2Q on plates V = V V B =2E 0 E=E 0 B E=2E 0 B Physics 102: Lecture 4, Slie 1 Potential

More information

PARALLEL-PLATE CAPACITATOR

PARALLEL-PLATE CAPACITATOR Physics Department Electric an Magnetism Laboratory PARALLEL-PLATE CAPACITATOR 1. Goal. The goal of this practice is the stuy of the electric fiel an electric potential insie a parallelplate capacitor.

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13 EES 6A Designing Information Devices an Systems I Spring 27 Official Lecture Notes Note 3 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

(3-3) = (Gauss s law) (3-6)

(3-3) = (Gauss s law) (3-6) tatic Electric Fiels Electrostatics is the stuy of the effects of electric charges at rest, an the static electric fiels, which are cause by stationary electric charges. In the euctive approach, few funamental

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

Conductors & Capacitance

Conductors & Capacitance Conuctors & Capacitance PICK UP YOUR EXAM;; Average of the three classes is approximately 51. Stanar eviation is 18. It may go up (or own) by a point or two once all graing is finishe. Exam KEY is poste

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

It's often useful to find all the points in a diagram that have the same voltage. E.g., consider a capacitor again.

It's often useful to find all the points in a diagram that have the same voltage. E.g., consider a capacitor again. 17-7 (SJP, Phys 22, Sp ') It's often useful to fin all the points in a iagram that have the same voltage. E.g., consier a capacitor again. V is high here V is in between, here V is low here Everywhere

More information

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics Generate by Foxit PDF Creator Foxit oftware 5/9/216 3332 lectromagnetic II Chapter 9 Maxwell s quations Islamic University of Gaza lectrical ngineering Department Prof. Dr. Hala J l-khozonar 216 1 2 Review

More information

V q.. REASONING The potential V created by a point charge q at a spot that is located at a

V q.. REASONING The potential V created by a point charge q at a spot that is located at a 8. REASONING The electric potential at a istance r from a point charge q is given by Equation 9.6 as kq / r. The total electric potential at location P ue to the four point charges is the algebraic sum

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9 Oregon State University PH 213 Spring Term 2018 Prep 1 Suggeste finish ate: Monay, April 9 The formats (type, length, scope) of these Prep problems have been purposely create to closely parallel those

More information

Physics 2212 GJ Quiz #4 Solutions Fall 2015

Physics 2212 GJ Quiz #4 Solutions Fall 2015 Physics 2212 GJ Quiz #4 Solutions Fall 215 I. (17 points) The magnetic fiel at point P ue to a current through the wire is 5. µt into the page. The curve portion of the wire is a semicircle of raius 2.

More information

Capacitance and Dielectrics

Capacitance and Dielectrics 6 Capacitance an Dielectrics CHAPTER OUTLINE 6. Definition of Capacitance 6. Calculating Capacitance 6.3 Combinations of Capacitors 6.4 Energy Store in a Charge Capacitor 6.5 Capacitors with Dielectrics

More information

8.022 (E&M) Lecture 19

8.022 (E&M) Lecture 19 8. (E&M) Lecture 19 Topics: The missing term in Maxwell s equation Displacement current: what it is, why it s useful The complete Maxwell s equations An their solution in vacuum: EM waves Maxwell s equations

More information

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1 Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters. Initially the electrostatic force

More information

qq 1 1 q (a) -q (b) -2q (c)

qq 1 1 q (a) -q (b) -2q (c) 1... Multiple Choice uestions with One Correct Choice A hollow metal sphere of raius 5 cm is charge such that the potential on its surface to 1 V. The potential at the centre of the sphere is (a) zero

More information

Energy Stored in Capacitors

Energy Stored in Capacitors Energy Stored in Capacitors U = 1 2 qv q = CV U = 1 2 CV 2 q 2 or U = 1 2 C 37 Energy Density in Capacitors (1) We define the, u, as the electric potential energy per unit volume Taking the ideal case

More information

2013 Feb 13 Exam 1 Physics 106. Physical Constants:

2013 Feb 13 Exam 1 Physics 106. Physical Constants: 203 Feb 3 xam Physics 06 Physical onstants: proton charge = e =.60 0 9 proton mass = m p =.67 0 27 kg electron mass = m e = 9. 0 3 kg oulomb constant = k = 9 0 9 N m 2 / 2 permittivity = ǫ 0 = 8.85 0 2

More information

Electric Potential & Potential Energy

Electric Potential & Potential Energy Electric Potential & Potential Energy I) ELECTRIC POTENTIAL ENERGY of a POINT CHARGE Okay, remember from your Mechanics: Potential Energy (U) is gaine when you o work against a fiel (like lifting a weight,

More information

1/7/2018. A model of the mechanism for electrostatic interactions. GRAVITATIONAL FORCE vs. ELECTROSTATCS FORCE OBJECT WITH MASS

1/7/2018. A model of the mechanism for electrostatic interactions. GRAVITATIONAL FORCE vs. ELECTROSTATCS FORCE OBJECT WITH MASS UNIT 3 Electrostatics: electric force, electric fiel, an electric potential. CHAPTER 15 THE ELECTRIC FIELD AP PHYSICS A moel of the mechanism for electrostatic interactions A moel for electric interactions,

More information

Capacitance and Dielectrics

Capacitance and Dielectrics 3/30/05 apacitance an Dielectrics Goals of this Lecture To unerstan capacitors an calculate capacitance To analyze networks of capacitors To calculate the enery store in a capacitor To examine ielectrics

More information

A capcitor is a divice which stores electric energy. It is also named as condenser.

A capcitor is a divice which stores electric energy. It is also named as condenser. PITNE PITNE. capcitor is a ivice which stores electric energy. It is also name as conenser. When charge is given to a conuctor, its potential increases in the ratio of given charge. The charge given to

More information

Capacitors. January 2002 Number 29

Capacitors. January 2002 Number 29 PhysicsFactsheet January 22 Number 29 Capacitors Introuction Capacitors are wiely use in electrical engineering an electronics hey are important in any physics course because of the variety of uses they

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed?

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? 1 iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? q A: C->2 C0 B: C-> C0 C: C-> C0/2 D: C->- C0 E: C->-2 C0 2 iclicker A metal ball of

More information

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F Phys10 Secon Major-1 Zero Version Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters.

More information

From last time. Attention. Capacitance. Spherical capacitor. Energy stored in capacitors. How do we charge a capacitor? Today:

From last time. Attention. Capacitance. Spherical capacitor. Energy stored in capacitors. How do we charge a capacitor? Today: Attention From last time More on electric potential an connection to Efiel How to calculate Efiel from V Capacitors an Capacitance switch off computers in the room an be prepare to a very lou noise Toay:

More information

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics. Slide 1 / 39 Slide 2 / 39 P Physics & M apacitance and ielectrics 20151205 www.njctl.org Slide 3 / 39 apacitors capacitor is any two conductors seperated by an insulator, such as air or another material.

More information

AP Physics C: Electricity and Magnetism 2004 Free-Response Questions

AP Physics C: Electricity and Magnetism 2004 Free-Response Questions AP Physics C: Electricity an Magnetism 004 Free-Response Questions The materials inclue in these files are intene for noncommercial use by AP teachers for course an exam preparation; permission for any

More information

CURRENT ELECTRICITY Q.1

CURRENT ELECTRICITY Q.1 CUENT EECTCTY Q. Define Electric current an its unit.. Electric Current t can be efine as the time rate of flow of charge in a conuctor is calle Electric Current. The amount of flow of charge Q per unit

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics anubhavclasses.worpress.com CBSE Solve Test Papers PHYSICS Class XII Chapter : Electrostatics anubhavclasses.worpress.com CBSE TEST PAPER-05 CLASS - XII PHYSICS (Unit Electrostatics). The Plates of a charge

More information

Experiment I Electric Force

Experiment I Electric Force Experiment I Electric Force Twenty-five hunre years ago, the Greek philosopher Thales foun that amber, the harene sap from a tree, attracte light objects when rubbe. Only twenty-four hunre years later,

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

General Physics ph 213 Midterm Exam II (Ch 24 27) November 14, False, they don t have to be flat but they must be perpendicular to E-field.

General Physics ph 213 Midterm Exam II (Ch 24 27) November 14, False, they don t have to be flat but they must be perpendicular to E-field. General Phsics ph 13 Miterm am II Ch 7 November 1, 005 Name: Tpe am is close boo an close notes. Use onl our note car. Write all wor an answers in the papers provie. Show all our wor an eplain our reasoning

More information

Experimental Studies and Parametric Modeling of Ionic Flyers

Experimental Studies and Parametric Modeling of Ionic Flyers 1 Experimental Stuies an Parametric Moeling of Ionic Flyers Chor Fung Chung an Wen J. Li* Centre for Micro an Nano Systems, Faculty of Engineering The Chinese University of Hong Kong *Contact Author: wen@mae.cuhk.eu.hk

More information

ABCD42BEF F2 F8 5 4D658 CC89

ABCD42BEF F2 F8 5 4D658 CC89 ABCD BEF F F D CC Vetri Velan GSI, Physics 7B Miterm 2: Problem Solution. Outsie sphere, E looks like a point charge. E = The total charge on the sphere is Q sphere = ρ 4 3 πr3 Thus, outsie the sphere,

More information

Chapter 17 ELECTRIC POTENTIAL

Chapter 17 ELECTRIC POTENTIAL Chapter 17 ELECTRIC POTENTIAL Conceptual Questions 1. (a) The electric fiel oes positive work on q as it moves closer to +Q. (b) The potential increases as q moves closer to +Q. (c) The potential energy

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Sharpen thinking about connections among electric field, electric potential difference, potential energy

Sharpen thinking about connections among electric field, electric potential difference, potential energy PHYS 2015 -- Week 6 Sharpen thinking about connections among electric field, electric potential difference, potential energy Apply the ideas to capacitance and the parallel plate capacitor For exclusive

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

Electrical apacity Synopsis Electrical apacity i) Electrical capacity of a conuctor is its ability to store electric charge i The potential acuire by a conuctor is irectly proportional to the charge given

More information

Electrostatics: Capacitor Examples

Electrostatics: Capacitor Examples Electrostatics: apacitor Examples EE3321 Electromagnetic Fiel Theory Outline Parallel plate capacitor How big is a Fara? oaxial capacitor RG-59 coax Inhomogeneous capacitor Electrostatics -- apacitor Examples

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

(3.5.1) V E x, E, (3.5.2)

(3.5.1) V E x, E, (3.5.2) Lecture 3.5 Capacitors Today we shall continue our discussion of electrostatics and, in particular, the concept of electrostatic potential energy and electric potential. The main example which we have

More information

Chapter 26 - Capacitance

Chapter 26 - Capacitance Chapter 26 Capacitance Probem Set #5 ue: Ch 26 2, 3, 5, 7, 9, 5, 22, 26, 29, 6, 63, 64 The ieas of energy storage in fies can be carrie a step further by unerstaning the concept of "Capacitance." Lecture

More information

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is apacitors and Dielectrics The ideas of energy storage in E-fields can be carried a step further by understanding the concept of "apacitance" onsider a sphere with a total charge, Q, and a radius, R From

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Capacitors (Chapter 26)

Capacitors (Chapter 26) Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device

More information

inflow outflow Part I. Regular tasks for MAE598/494 Task 1

inflow outflow Part I. Regular tasks for MAE598/494 Task 1 MAE 494/598, Fall 2016 Project #1 (Regular tasks = 20 points) Har copy of report is ue at the start of class on the ue ate. The rules on collaboration will be release separately. Please always follow the

More information

Figure 1: Capacitor circuit

Figure 1: Capacitor circuit Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field Slie 1 / 29 Slie 2 / 29 lectric Potential Slie 3 / 29 Work one in a Uniform lectric Fiel Slie 4 / 29 Work one in a Uniform lectric Fiel point a point b The path which the particle follows through the uniform

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 009: Using Capacitors SteveSekula, 15 February 2011 (created 14 February 2011) Discuss the energy stored in a capacitor Discuss how to use capacitors

More information

Physics 2112 Unit 5: Electric Potential Energy

Physics 2112 Unit 5: Electric Potential Energy Physics 11 Unit 5: Electric Potential Energy Toay s Concept: Electric Potential Energy Unit 5, Slie 1 Stuff you aske about: I on't like this return to mechanics an the potential energy concept, but this

More information

CHUCKING PRESSURES FOR IDEALIZED COULOMB-TYPE ELECTROSTATIC CHUCKS

CHUCKING PRESSURES FOR IDEALIZED COULOMB-TYPE ELECTROSTATIC CHUCKS Report No. Structural Engineering UCB/SEMM-2011/04 Mechanics an Materials CHUCKING PRESSURES FOR IDEALIZED COULOMB-TYPE ELECTROSTATIC CHUCKS By Ger Branstetter Dr. Sanjay Govinjee June 2011 Department

More information

Chapter 27: Current & Resistance

Chapter 27: Current & Resistance Chapter 27: Current & Resistance When motion takes place within a conucting path that forms a close loop, the path is calle an electric circuit. Funamentally, electric circuits are a means for transferring

More information

Exam #2, Electrostatics

Exam #2, Electrostatics Exam #2, Electrostatics Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Stuent # NOTE: There are 5 questions. You have until 9 pm to finish. You

More information

Capacitance and capacitors. Dr. Loai Afana

Capacitance and capacitors. Dr. Loai Afana apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many every-day applications Heart defibrillators amera flash units apacitors are

More information

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2 = Chapter 21 Chapter 25 Capacitance K = C / C o V = V o / K 1 / Ceq = 1 / C 1 + 1 / C 2 Ceq = C 1 + C 2 Copyright 25-2 Capacitance 25.01 Sketch a schematic diagram of a circuit with a parallel-plate capacitor,

More information

I. Conductors and Insulators :

I. Conductors and Insulators : Chapter 6 : Conductors - Insulators - Capacitors We have, till now, studied the electric charges and the interactions between them but not evoked how the electricity can be transfered? which meterials

More information

Chapter 17 Electric Potential

Chapter 17 Electric Potential Chapter 17 Electric Potential Units of Chapter 17 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Equipotential Lines The Electron Volt, a Unit

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Units of Chapter 24 Capacitors (1, 2, & 3) Determination of Capacitance (4 & 5) Capacitors in Series and Parallel (6 & 7) Electric Energy Storage

More information

1. An electron moves from point i to point f, in the direction of a uniform electric eld. During this displacement: ² ² i

1. An electron moves from point i to point f, in the direction of a uniform electric eld. During this displacement: ² ² i Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric el During this isplacement: ² ² i f ~E A the work one by the el is positive an the potential

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Applications of First Order Equations

Applications of First Order Equations Applications of First Orer Equations Viscous Friction Consier a small mass that has been roppe into a thin vertical tube of viscous flui lie oil. The mass falls, ue to the force of gravity, but falls more

More information

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors

More information

SEMILINEAR DEGENERATE PARABOLIC SYSTEMS AND DISTRIBUTED CAPACITANCE MODELS. Brooke L. Hollingsworth and R.E. Showalter

SEMILINEAR DEGENERATE PARABOLIC SYSTEMS AND DISTRIBUTED CAPACITANCE MODELS. Brooke L. Hollingsworth and R.E. Showalter DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume, Number, January 995 pp. 59 76 SEMILINEAR DEGENERATE PARABOLIC SYSTEMS AND DISTRIBUTED CAPACITANCE MODELS Brooke L. Hollingsworth an R.E. Showalter Department

More information

Brooke L. Hollingsworth and R. E. Showalter Department of Mathematics The University of Texas at Austin Austin, TX USA

Brooke L. Hollingsworth and R. E. Showalter Department of Mathematics The University of Texas at Austin Austin, TX USA SEMILINEAR DEGENERATE PARABOLIC SYSTEMS AND DISTRIBUTED CAPACITANCE MODELS Brooke L. Hollingsworth an R. E. Showalter Department of Mathematics The University of Texas at Austin Austin, TX 7872 USA Abstract.

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

PhyzExamples: Advanced Electrostatics

PhyzExamples: Advanced Electrostatics PyzExaples: Avance Electrostatics Pysical Quantities Sybols Units Brief Definitions Carge or Q coulob [KOO lo]: C A caracteristic of certain funaental particles. Eleentary Carge e 1.6 10 19 C Te uantity

More information

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11 PHYS Look over hapter 5 section -8 examples,, 3, 5, 6 PHYS Look over hapter 7 section 7-9 Examples 8, hapter 9 section 5 Example 0, Things to Know ) How to find the charge on a apacitor. ) How to find

More information

Capacitors. HPP Activity 68v1. Charge Inside the Body A Close Look at Cell Membranes

Capacitors. HPP Activity 68v1. Charge Inside the Body A Close Look at Cell Membranes HPP Activity 68v1 Capacitors Charge Inside the Body A Close Look at Cell Membranes Our bodies store and use charge to transmit signals across nerves and to tell certain cells what to do and when to do

More information

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE ELECTRIC CHARGE Introuction: Orinary matter consists of atoms. Each atom consists of a nucleus, consisting of protons an neutrons, surroune by a number of electrons. In electricity, the electric charge

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 4.1 Capacitors A capacitor is a system of two conductors that carries equal and opposite charges A capacitor stores charge and energy in the

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information