Where A is the plate area and d is the plate separation.

Size: px
Start display at page:

Download "Where A is the plate area and d is the plate separation."

Transcription

1 DIELECTRICS Dielectrics an the parallel plate capacitor When a ielectric is place between the plates of a capacitor is larger for the same value of voltage. From the relation C = /V it can be seen that the capacitance must also increase. The ratio of the capacitance of the capacitor with the ielectric to the capacitance of the capacitor without the ielectric is calle the ielectric constant κ of the material. If the same charge is maintaine on the capacitor with an without the ielectric then the potential ifference between the plates of the capacitor with the ielectric, V will be less than that without the ielectric V by a factor of 1/κ. V = V /κ C= V EAε = = E Aε Where A is the plate area an is the plate separation. Therefore: C= A κε Dielectric materials - a escription Dielectrics can be of two types, those which possess permanent ipole moments such as water an those which obtain an inuce ipole. When an electric fiel is applie to these materials the ipoles ten to align themselves to the fiel - this is not a perfect alignment ue to thermal effects. The alignment is improve by either increasing the fiel or by ecreasing the temperature. The alignment is ue to the electric ipole moment p which is proportional to the electric fiel.

2 To illustrate the ipole effects taking place within a slab of ielectric, we can take a charge parallel plate capacitor (battery isconnecte) which has a fixe charge an provies a uniform electric fiel E. When the ielectric is place between the plates then the ipoles align with the electric fiel an the centre of positive charge separates from the centre of negative charge i.e. the ielectric becomes polarise while remaining electrically neutral. This separation of charge is on the atomic scale an it shoul be note that the charge oes not move as it woul if the slab were mae from a conuctor - no charge movement over macroscopic istances. The effect of this charge separation is the introuction of a electric fiel E which opposes the external fiel E, the resultant fiel E is therefore the vector sum of these two fiels: E = E + E which is smaller than the original fiel. From the euation for a parallel plate resistor (V = E) it can be seen that the fiel is irectly proportional to the potential ifference an therefore the reuction in the overall fiel results in a reuction in the potential ifference between the plates, an: E /E = V /V = κ If the battery is left connecte uring the introuction of the ielectric, then the above euation oes not hol. The potential ifference now remains constant but the charge on the plates increases by a factor of κ. The use of Gauss s law for capacitors with a ielectric

3 If no ielectric is present then Gauss s law gives: ε E.A = ε EA = E = D1 ε A With the ielectric present then Gauss s law gives: ε E.A = ε EA = ' E ' = εa εa D Using E = E /κ an substituting in D1 we get: E E = = κ κε A By combining this euation with D we fin: ' = κε A ε A ε A ' = 1 1 κ the surface inuce charge, is shown to be always less than the magnitue of the free charge an is eual to zero when there is no ielectric i.e. κ = 1. Returning to the integral for the case with a ielectric it can be shown that: ε κ E.A = This euation generally hols for all capacitors an is use when a ielectric is present.

4 Energy within a capacitor Work must be one to separate two eual an opposite charges an this energy can be store in the system i.e. on the capacitor plates. The energy can be recovere if the charges are allowe to come back together. If a capacitor is initially uncharge, then the work W one to charge the capacitor is eual to the electric potential energy U store by the charge capacitor. This can be visualise as pulling electrons from one plate an epositing them onto the other plate. If at time t a charge has been transferre from one plate to the other plate of a capacitor, then the potential ifference V will be eual to /C. If now, an extra small amount of charge is transferre, then the extra work neee to o this will be eual to: W = V = ( /C) If this process is continue until the total charge is, then the total work one will be: W ' = W = C ' = 1 C Substituting for using the stanar relation, = CV we obtain: W = U = 1 CV The energy store in a capacitor is sai to resie in the electric fiel. In a parallel plate capacitor, if we neglect fringing at the eges, then the electric fiel has the same value for all points between the plates. Therefore the energy store per unit volume (the energy ensity) is uniform an is given by: U u = = A 1 CV A where A is the area of the plates an is the plate separation: A is therefore the volume If we remember that the capacitance C for a parallel plate capacitor is: A C = κε then by substitution: u = κε V Now the electric fiel E = V/ so:

5 u = 1 κε E This euation was erive for the parallel plate capacitor but it also hols true for all capacitors. In general, if we have an electric file E at any point in space, we can think that at that point there is a site of store energy of magnitue u = 1 κε E per unit volume.

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical CAPACITANCE: CHAPTER 24 ELECTROSTATIC ENERGY an CAPACITANCE Capacitance an capacitors Storage of electrical energy Energy ensity of an electric fiel Combinations of capacitors In parallel In series Dielectrics

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

( ) Energy storage in CAPACITORs. q C

( ) Energy storage in CAPACITORs. q C Energy storage in CAPACITORs Charge capacitor by transferring bits of charge q at a time from bottom to top plate. Can use a battery to o this. Battery oes work which increase potential energy of capacitor.

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 9 Chapter 24 sec. 3-5 Fall 2017 Semester Professor Koltick Parallel Plate Capacitor Area, A C = ε 0A Two Parallel Plate Capacitors Area, A 1 C 1 = ε 0A 1 Area,

More information

ABCD42BEF F2 F8 5 4D658 CC89

ABCD42BEF F2 F8 5 4D658 CC89 ABCD BEF F F D CC Vetri Velan GSI, Physics 7B Miterm 2: Problem Solution. Outsie sphere, E looks like a point charge. E = The total charge on the sphere is Q sphere = ρ 4 3 πr3 Thus, outsie the sphere,

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE. Define electric potential at a point. *Electric potential at a point is efine as the work one to bring a unit positive charge from infinity to that point.

More information

Electrical apacity Synopsis Electrical apacity i) Electrical capacity of a conuctor is its ability to store electric charge i The potential acuire by a conuctor is irectly proportional to the charge given

More information

V q.. REASONING The potential V created by a point charge q at a spot that is located at a

V q.. REASONING The potential V created by a point charge q at a spot that is located at a 8. REASONING The electric potential at a istance r from a point charge q is given by Equation 9.6 as kq / r. The total electric potential at location P ue to the four point charges is the algebraic sum

More information

PHYS 221 General Physics II

PHYS 221 General Physics II PHYS 221 General Physics II Capacitance, Dielectrics, Lightning Spring 2015 Assigne Reaing: 18.4 18.6 Lecture 5 Recap: PHYS 221 Last Lecture Electric force is conservative Electric potential energy Potential

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics anubhavclasses.worpress.com CBSE Solve Test Papers PHYSICS Class XII Chapter : Electrostatics anubhavclasses.worpress.com CBSE TEST PAPER-05 CLASS - XII PHYSICS (Unit Electrostatics). The Plates of a charge

More information

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV SPH4UW Capacitors! Capacitance: The ability to store separate charge C=Q/V Charge Q on plates V = V V B = E 0 Charge 2Q on plates V = V V B =2E 0 E=E 0 B E=2E 0 B Physics 102: Lecture 4, Slie 1 Potential

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F Phys10 Secon Major-1 Zero Version Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters.

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

6. The total charge will be conserved, and the final potential difference across the capacitors will be the same. Q Q Q Q C C C + C C C

6. The total charge will be conserved, and the final potential difference across the capacitors will be the same. Q Q Q Q C C C + C C C Homework for the week of October. 4th week of classes. h. 4: 6, 5, 8, 7, 9,, 4, 44, 49, 58, 6 h. 5: 7, 8, 9 6. The total charge will be conserve, an the final potential ifference across the capacitors

More information

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1 Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters. Initially the electrostatic force

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

Physics 2212 GJ Quiz #4 Solutions Fall 2015

Physics 2212 GJ Quiz #4 Solutions Fall 2015 Physics 2212 GJ Quiz #4 Solutions Fall 215 I. (17 points) The magnetic fiel at point P ue to a current through the wire is 5. µt into the page. The curve portion of the wire is a semicircle of raius 2.

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Capacitors Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 12 Capacitors are evices that can store electrical energy Capacitors are use in many every-ay applications Heart efibrillators

More information

qq 1 1 q (a) -q (b) -2q (c)

qq 1 1 q (a) -q (b) -2q (c) 1... Multiple Choice uestions with One Correct Choice A hollow metal sphere of raius 5 cm is charge such that the potential on its surface to 1 V. The potential at the centre of the sphere is (a) zero

More information

Hollow Conductors. A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = -Q; Q(O1) = Q(O2)= +Q

Hollow Conductors. A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = -Q; Q(O1) = Q(O2)= +Q O2 I2 O1 I1 Hollow Conductors A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = -Q; Q(O1) = Q(O2)= +Q 2. Q(I1) = Q(I2) = +Q; Q(O1) = Q(O2)= -Q 3.

More information

1/7/2018. A model of the mechanism for electrostatic interactions. GRAVITATIONAL FORCE vs. ELECTROSTATCS FORCE OBJECT WITH MASS

1/7/2018. A model of the mechanism for electrostatic interactions. GRAVITATIONAL FORCE vs. ELECTROSTATCS FORCE OBJECT WITH MASS UNIT 3 Electrostatics: electric force, electric fiel, an electric potential. CHAPTER 15 THE ELECTRIC FIELD AP PHYSICS A moel of the mechanism for electrostatic interactions A moel for electric interactions,

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH -A Spring 15 Capacitance Lecture 7 Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 5 Capacitance In this chapter we will cover the following topics: -Capacitance

More information

2013 Feb 13 Exam 1 Physics 106. Physical Constants:

2013 Feb 13 Exam 1 Physics 106. Physical Constants: 203 Feb 3 xam Physics 06 Physical onstants: proton charge = e =.60 0 9 proton mass = m p =.67 0 27 kg electron mass = m e = 9. 0 3 kg oulomb constant = k = 9 0 9 N m 2 / 2 permittivity = ǫ 0 = 8.85 0 2

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

Sharpen thinking about connections among electric field, electric potential difference, potential energy

Sharpen thinking about connections among electric field, electric potential difference, potential energy PHYS 2015 -- Week 6 Sharpen thinking about connections among electric field, electric potential difference, potential energy Apply the ideas to capacitance and the parallel plate capacitor For exclusive

More information

Capacitance and Dielectrics

Capacitance and Dielectrics 6 Capacitance an Dielectrics CHAPTER OUTLINE 6. Definition of Capacitance 6. Calculating Capacitance 6.3 Combinations of Capacitors 6.4 Energy Store in a Charge Capacitor 6.5 Capacitors with Dielectrics

More information

It's often useful to find all the points in a diagram that have the same voltage. E.g., consider a capacitor again.

It's often useful to find all the points in a diagram that have the same voltage. E.g., consider a capacitor again. 17-7 (SJP, Phys 22, Sp ') It's often useful to fin all the points in a iagram that have the same voltage. E.g., consier a capacitor again. V is high here V is in between, here V is low here Everywhere

More information

A capcitor is a divice which stores electric energy. It is also named as condenser.

A capcitor is a divice which stores electric energy. It is also named as condenser. PITNE PITNE. capcitor is a ivice which stores electric energy. It is also name as conenser. When charge is given to a conuctor, its potential increases in the ratio of given charge. The charge given to

More information

Conductors & Capacitance

Conductors & Capacitance Conuctors & Capacitance PICK UP YOUR EXAM;; Average of the three classes is approximately 51. Stanar eviation is 18. It may go up (or own) by a point or two once all graing is finishe. Exam KEY is poste

More information

Get Solution of These Packages & Learn by Video Tutorials on

Get Solution of These Packages & Learn by Video Tutorials on Get Solution of These Packages & Learn by Vieo Tutorials on www.mathsbysuhag.com FREE Downloa Stuy Package from website: www.tekolasses.com & www.mathsbysuhag.com. INTRODUTION APAIT ITANE A capacitor can

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics Lecture 1 Energy, Force, an ork in Electro an MagnetoQuasistatics n this lecture you will learn: Relationship between energy, force, an work in electroquasistatic an magnetoquasistatic systems ECE 303

More information

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106.

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106. and in and Energy Winter 2018 Press CTRL-L to view as a slide show. From last time: The field lines are related to the field as follows: What is the electric potential? How are the electric field and the

More information

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2?

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2? Secon Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of.77 µf. What is C? C 4.0 µf.0 µf A) 7 µf B) µf C) 4 µf D) 3 µf E) 6 µf Q. When the potential ifference across

More information

A-level PHYSICS A PHYA4/1. Unit 4 Fields and Further Mechanics. Section A. Monday 20 June 2016 Morning

A-level PHYSICS A PHYA4/1. Unit 4 Fields and Further Mechanics. Section A. Monday 20 June 2016 Morning Please write clearly in block capitals. entre number aniate number Surname Forename(s) aniate signature -level PHYSIS Unit 4 Fiels an Further Mechanics Section Monay 20 June 2016 Morning Materials In aition

More information

Chapter 26 - Capacitance

Chapter 26 - Capacitance Chapter 26 Capacitance Probem Set #5 ue: Ch 26 2, 3, 5, 7, 9, 5, 22, 26, 29, 6, 63, 64 The ieas of energy storage in fies can be carrie a step further by unerstaning the concept of "Capacitance." Lecture

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 1 1. Capacitors A capacitor is a twoterminal device that stores electric energy. 2 2. Capacitance The figure shows the basic elements of any capacitor two isolated conductors of

More information

PERMANENT MAGNETS CHAPTER MAGNETIC POLES AND BAR MAGNETS

PERMANENT MAGNETS CHAPTER MAGNETIC POLES AND BAR MAGNETS CHAPTER 6 PERAET AGET 6. AGETIC POLE AD BAR AGET We have seen that a small current-loop carrying a current i, prouces a magnetic fiel B o 4 ji ' at an axial point. Here p ia is the magnetic ipole moment

More information

Physics 142 Electrostatics 3 Page 1. Electrostatics 3. Get your facts first; then you can distort them as you please. Mark Twain

Physics 142 Electrostatics 3 Page 1. Electrostatics 3. Get your facts first; then you can distort them as you please. Mark Twain Physics 142 Electrostatics 3 Page 1 Electrostatics 3 Get your facts first; then you can distort them as you please. Mark Twain The E-field has energy stored in it that can be useful Like other forms of

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors

W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Reading Assignment Course Notes: Sections 3.3, 4.5, 5.1-5.4 1 Outline Conductors and Insulators Conductors as

More information

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2 = Chapter 21 Chapter 25 Capacitance K = C / C o V = V o / K 1 / Ceq = 1 / C 1 + 1 / C 2 Ceq = C 1 + C 2 Copyright 25-2 Capacitance 25.01 Sketch a schematic diagram of a circuit with a parallel-plate capacitor,

More information

From last time. Attention. Capacitance. Spherical capacitor. Energy stored in capacitors. How do we charge a capacitor? Today:

From last time. Attention. Capacitance. Spherical capacitor. Energy stored in capacitors. How do we charge a capacitor? Today: Attention From last time More on electric potential an connection to Efiel How to calculate Efiel from V Capacitors an Capacitance switch off computers in the room an be prepare to a very lou noise Toay:

More information

Exam #2, Electrostatics

Exam #2, Electrostatics Exam #2, Electrostatics Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Stuent # NOTE: There are 5 questions. You have until 9 pm to finish. You

More information

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9 Oregon State University PH 213 Spring Term 2018 Prep 1 Suggeste finish ate: Monay, April 9 The formats (type, length, scope) of these Prep problems have been purposely create to closely parallel those

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

Capacitance and Dielectrics

Capacitance and Dielectrics 3/30/05 apacitance an Dielectrics Goals of this Lecture To unerstan capacitors an calculate capacitance To analyze networks of capacitors To calculate the enery store in a capacitor To examine ielectrics

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16 EECS 16A Designing Information Devices an Systems I Spring 218 Lecture Notes Note 16 16.1 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the E-field.

Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the E-field. Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the E-field. 1.! Questions about charging and discharging capacitors. When an uncharged capacitor is connected

More information

EMF 2005 Handout 5: Capacitance 1 CAPACITANCE. Q Coulombs. Volts

EMF 2005 Handout 5: Capacitance 1 CAPACITANCE. Q Coulombs. Volts MF 005 Hanut 5: apacitance APAITAN Definitin f capacitance Recall: Fr a pint charge r a charge sphere V 4πε r In general, POTNTIAL HARG fr any size r shape f cnuctr. Definitin: The cnstant f prprtinality

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field Slie 1 / 29 Slie 2 / 29 lectric Potential Slie 3 / 29 Work one in a Uniform lectric Fiel Slie 4 / 29 Work one in a Uniform lectric Fiel point a point b The path which the particle follows through the uniform

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Definition of Capacitance

Definition of Capacitance Definition of Capacitance The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors Q C = ΔV The SI

More information

Physics (

Physics ( Exercises Question 2: Two charges 5 0 8 C and 3 0 8 C are located 6 cm apart At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero

More information

Chapter 17 ELECTRIC POTENTIAL

Chapter 17 ELECTRIC POTENTIAL Chapter 17 ELECTRIC POTENTIAL Conceptual Questions 1. (a) The electric fiel oes positive work on q as it moves closer to +Q. (b) The potential increases as q moves closer to +Q. (c) The potential energy

More information

Problem Set 2: Solutions

Problem Set 2: Solutions UNIVERSITY OF ALABAMA Department of Physics an Astronomy PH 102 / LeClair Summer II 2010 Problem Set 2: Solutions 1. The en of a charge rubber ro will attract small pellets of Styrofoam that, having mae

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Physics 2102 Gabriela González

Physics 2102 Gabriela González Physics 2102 Gabriela González Any two charged conductors form a capacitor. Capacitance : C= Q/V Simple Capacitors: Parallel plates: C = ε 0 A/d Spherical : C = ε 0 4πab/(b-a) Cylindrical: C = ε 0 2πL/ln(b/a)

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

2. Feynman makes a remark that matter is usually neutral. If someone. creates around 1% disturbance of a charge imbalance in a human

2. Feynman makes a remark that matter is usually neutral. If someone. creates around 1% disturbance of a charge imbalance in a human Physics 102 Electromagnetism Practice questions an problems Tutorial 1 a 2 1. Consier a vector fiel F = (2xz 3 +6y)î)+()6x 2yz)ĵ +(3x 2 z 2 y 2 )ˆk. Prove this is a conservative fiel. Solution: prove the

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

More information

Exam 2 Practice Problems Part 1

Exam 2 Practice Problems Part 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam 2 Practice Problems Part 1 Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z ) is described

More information

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q =

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q = Andres La Rosa Portland State University Lecture Notes PH212 CAPACITANCE Parallelplates capacitor 1 2 Q Q E V 1 V 2 V 2 V 1 = 2 E E is assumed to be uniform between the plates Q Q V (Battery) V 2 V 1 =

More information

Class 5 : Conductors and Capacitors

Class 5 : Conductors and Capacitors Class 5 : Conductors and Capacitors What is a conductor? Field and potential around conductors Defining and evaluating capacitance Potential energy of a capacitor Recap Gauss s Law E. d A = Q enc and ε

More information

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE ELECTRIC CHARGE Introuction: Orinary matter consists of atoms. Each atom consists of a nucleus, consisting of protons an neutrons, surroune by a number of electrons. In electricity, the electric charge

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 25.2: Capacitance: 25.2: Capacitance: When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: q+ and q-. However, we refer to the charge of a

More information

Our next test will be on Tuesday, March 14

Our next test will be on Tuesday, March 14 Physics 2212G/H Test form Name Spring 2017 Test 2 Recitation Section (see back of test): 1) Print your name, test form number (above), an nine- igit stuent number in the section of the answer car labele

More information

= (series) Capacitors in series. C eq. Hence. Capacitors in parallel. Since C 1 C 2 V 1 -Q +Q -Q. Vab V 2. C 1 and C 2 are in series

= (series) Capacitors in series. C eq. Hence. Capacitors in parallel. Since C 1 C 2 V 1 -Q +Q -Q. Vab V 2. C 1 and C 2 are in series Capacitors in series V ab V + V Q( + C Vab + Q C C C Hence C C eq eq + C C C (series) ) V ab +Q -Q +Q -Q C and C are in series C V V C +Q -Q C eq C eq is the single capacitance equivalent to C and C in

More information

Physics 24 Exam 2 March 18, 2014

Physics 24 Exam 2 March 18, 2014 Exam Total / 200 Physics 24 Exam 2 March 18, 2014 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. You need to store electrical

More information

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont.

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont. Chapter 6 Capacitance and Dielectrics Capacitors! Capacitors are devices that store electric charge! Examples of where capacitors are used include:! radio receivers (tune frequency)! filters in power supplies!

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 4.1 Capacitors A capacitor is a system of two conductors that carries equal and opposite charges A capacitor stores charge and energy in the

More information

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics. Slide 1 / 39 Slide 2 / 39 P Physics & M apacitance and ielectrics 20151205 www.njctl.org Slide 3 / 39 apacitors capacitor is any two conductors seperated by an insulator, such as air or another material.

More information

Physics 2 for students of Mechanical Engineering

Physics 2 for students of Mechanical Engineering Homework #5 203-1-1721 Physics 2 for students of Mechanical Engineering Part A *Note that in all questions the symbol p (such as in pc or pf) represents pico=10-12, the symbol n represents nano=10-9, and

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies energy-storing

More information

Capacitors. January 2002 Number 29

Capacitors. January 2002 Number 29 PhysicsFactsheet January 22 Number 29 Capacitors Introuction Capacitors are wiely use in electrical engineering an electronics hey are important in any physics course because of the variety of uses they

More information

Review from yesterday. Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A

Review from yesterday. Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A Review from yesterday Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A to B 1 Review from yesterday Please answer PROBLEM 17 in

More information

Electric Charge and Electrostatic Force

Electric Charge and Electrostatic Force PHY 049 Lecture Notes Chapter : Page 1 of 8 Electric Charge an Electrostatic Force Contemporary vision: all forces of nature can be viewe as interaction between "charges", specific funamental properties

More information

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is apacitors and Dielectrics The ideas of energy storage in E-fields can be carried a step further by understanding the concept of "apacitance" onsider a sphere with a total charge, Q, and a radius, R From

More information

Electricity. Revision Notes. R.D.Pilkington

Electricity. Revision Notes. R.D.Pilkington Electricity Revision Notes R.D.Pilkington DIRECT CURRENTS Introduction Current: Rate of charge flow, I = dq/dt Units: amps Potential and potential difference: work done to move unit +ve charge from point

More information

FIITJEE PET XII (EXTENDED-2)

FIITJEE PET XII (EXTENDED-2) FIITJEE PET XII (EXTENDED-) MAINS DATE: 5..07 Time: 3 hours Maximum Marks: 360 INSTRUCTIONS: Instructions to the Caniates. This Test Booklet consists of 90 questions. Use Blue/Black ball Point Pen only

More information

Capacitors (Chapter 26)

Capacitors (Chapter 26) Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device

More information

Energy Stored in Capacitors

Energy Stored in Capacitors Energy Stored in Capacitors U = 1 2 qv q = CV U = 1 2 CV 2 q 2 or U = 1 2 C 37 Energy Density in Capacitors (1) We define the, u, as the electric potential energy per unit volume Taking the ideal case

More information

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT 9 Dielectrics 9.1 INTRODUCTION A dielectric is an insulating material in which all the electrons are tightly bound to the nuclei of the atoms and there are no free electrons available for the conduction

More information

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13 EES 6A Designing Information Devices an Systems I Spring 27 Official Lecture Notes Note 3 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

PH213 Chapter 24 Solutions

PH213 Chapter 24 Solutions PH213 Chapter 24 Solutions 24.12. IDENTIFY and S ET UP: Use the expression for derived in Example 24.4. Then use Eq. (24.1) to calculate Q. E XECUTE: (a) From Example 24.4, The conductor at higher potential

More information

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitance and Dielectrics Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitors Capacitors are devices that store electric charge and energy Examples of where capacitors are used include: radio

More information

Can current flow in electric shock?

Can current flow in electric shock? Can current flow in electric shock? Yes. Transient current can flow in insulating medium in the form of time varying displacement current. This was an important discovery made by Maxwell who could predict

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN -3: CAPACITANCE Questions From Reading Activity? Essential Idea: Capacitors can be used to store electrical energy for later use. Nature Of Science:

More information

Chapter 2: Capacitor And Dielectrics

Chapter 2: Capacitor And Dielectrics hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Chapter 24: Magnetic Fields and Forces Solutions

Chapter 24: Magnetic Fields and Forces Solutions Chapter 24: Magnetic iels an orces Solutions Questions: 4, 13, 16, 18, 31 Exercises & Problems: 3, 6, 7, 15, 21, 23, 31, 47, 60 Q24.4: Green turtles use the earth s magnetic fiel to navigate. They seem

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Circuits and Circuit Elements Electric circuits are the basis for the vast majority of the devices used in society. Circuit elements can be connected with wires to

More information

Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei. Osvaldo Domann

Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei. Osvaldo Domann Gravitation as the result of the reintegration of migrate electrons an positrons to their atomic nuclei. Osvalo Domann oomann@yahoo.com (This paper is an extract of [6] liste in section Bibliography.)

More information