Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability

Size: px
Start display at page:

Download "Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability"

Transcription

1 Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability A. Asenov 1,2, E. A. Towie 1!! 1 Gold Standard Simulations Ltd 2 Glasgow University!

2 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs!! 10nm FinFETs: Si vs. Ge!! Conclusions!

3 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs!! 10nm FinFETs: Si vs. Ge!! Conclusions!

4 The semiconductor industry is facing atomic scale limitations!!! The simulation! Paradigm now A 22 nm MOSFET! In production 2013 A. Asenov 1998! A 4.2 nm MOSFET! In production????

5 Statistical variability is one of the major challenges associated with scaling! After K. Takeuchi (NEC)! Variability results in higher parametric yield loss!

6 Main sources of statistical variability Random dopants! Metal Gate Granularity! Line edge roughness!

7 Statistical variability in 20nm CMOS σv T [mv] RDD NMOS PMOS LER MGG RDD+LER Gate Last COMBINED Gate First Drain Bias [V] P. Zuber, IMEC!

8 Saturation in performance and increasing variability drives the CMOS innovations! M Bohr (Intel)! FinFETs improve performance and can reduce statistical variability!

9 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs!! 10nm FinFETs: Si vs. Ge!! Conclusions!

10 Intel 22nm FinFETs

11 Intel 22nm FinFETs

12 3D Ensemble MC simulation provide predictability Quantum confinement! is important! Non-equilibrium transport! is also important! DD! MC! Electron energy! Electron velocity!

13 Intel 22nm FinFETs

14 Intel 22nm FinFETs

15 Intel 22nm FinFETs I ON [μa] Fin 1 Fin 2 Fin 3 Rect (W=10nm) Rect (W=8nm) L [nm] Rectangular fins have 15% higher performance for equivalent width and height.!

16 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs! " Predictive TCAD simulation! " Statistical CM extraction! " Statistical Circuit simulation!! 10nm FinFETs: Si vs. Ge!! Conclusions!

17 The GSS Tool Suite that enables the Design Technology Co-Optimization flow FLOW CONTROL! Input files generator, job submission, execution monitoring! MONOLITH! GARAND! MYSTIC! RANDOM SPICE! Structure! translator from! TCAD process! simulator! 3D! DD/MC/NEGF! Simulator!! Statistical Compact Model Extractor! Statistical Circuit Simulator! DATABASE CONTROL! Data harvesting, annotation, storage! 8!

18 The GSS Tool Suite that enables the Design Technology Co-Optimization flow FLOW CONTROL! Input files generator, job submission, execution monitoring! MONOLITH! GARAND! MYSTIC! RANDOM SPICE! Structure! translator from! TCAD process! simulator! 3D! DD/MC/NEGF! Simulator!! Statistical Compact Model Extractor! Statistical Circuit Simulator! DATABASE CONTROL! Data harvesting, annotation, storage! 8!

19 The statistical device simulator GARAND

20 14nm DG FinFET specification GATE HM DRAIN Dimension! Min (nm)! Max (nm)! H fin W fin SOURCE tox L G BURIED OXIDE Fin Width! 8! 12! Fin Height! 22! 28! Gate Length! 18! 22! SUBSTRATE " Double gate FinFETs targeted at 14nm technology node. " Devices targeted for high performance SRAM application. " Process variation aware design. T=85 C V DD = 0.9V! NMOS! PMOS! I ON (ma/µm )! 0.9! 0.8! I OFF (na/µm )! 10! 10! DIBL(mV/V)! 56! 65! SS(mV/Dec)! 86! 88! 10!

21 The role of predictive MC simulations I D [ma/ m] L G = 20nm MC DD (calibrated) DD (default) Velocity [x10 7 cm s -1 ] DD MC V G [V] X Position [nm] " Only EMC simulations can predict performance. " Quantum corrections are essential. " DD simulations can be calibrated to EMC. Quantum effects are very important 11!

22 Process induced variability Fin width (nm) IODsat (ma) Gate length (nm) " Captured by experiment design. " Dependence on L, H F, W F, T OX. 12!

23 Statistical Variability Simulations RDD! MGG! GER+FER! 15!

24 Nominal Device Statistical Variability! Correlation between subthreshold figure of merits, such as I OFF and DIBL, can be a good indicator to show whether MGG is an active variability source. 17!

25 Correlation between process and statistical variability 18!

26 Statistical aspects of Reliability Fresh! Normal Quantile Trapping Density (cm -2 ) 0 1E11 5E11 1E V T (V) With degradation! 19!

27 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs! " Predictive TCAD simulation! " Statistical CM extraction! " Statistical Circuit simulation!! 10nm FinFETs: Si vs. Ge!! Conclusions!

28 The GSS Tool Suite that enables the Design Technology Co-Optimization flow FLOW CONTROL! Input files generator, job submission, execution monitoring! MONOLITH! GARAND! MYSTIC! RANDOM SPICE! Structure! translator from! TCAD process! simulator! 3D! DD/MC/NEGF! Simulator!! Statistical Compact Model Extractor! Statistical Circuit Simulator! DATABASE CONTROL! Data harvesting, annotation, storage! 8!

29 Statistical Compact Modeling Procedure! Process Variaiton Aware Device TCAD Design Process Variation Aware Statistical Device Simulation Extended Uniform Device Compact Modelling Extended Statistical Device Compact Modelling Unified Statistical Compact Model Libraries 21!

30 The Statistical Compact Model Extractor Mystic Device Measurement Mystic Device Database Statistical Device Measurement Advanced Data Preprocessing Advanced Data Preprocessing Multi-Stage Fitting Strategy P P P Mystic Optimisation Engine P O P O O P Statistical Fitting Strategy Uniform Compact Model Averaged Compact Model Uniform Compact RandomSpice Uniform Compact Model Model Library Model

31 Extended Uniform Model Group 1 Parameter! 22!

32 Statistical Compact Modeling! Strong correlation between statistical compact model parameter and device figure of merit demonstrates that extraction is physics based! 25!

33 Statistical Compact Modeling Group 2 parameter! 27!

34 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs! " Predictive TCAD simulation! " Statistical CM extraction! " Statistical Circuit simulation!! 10nm FinFETs: Si vs. Ge!! Conclusions!

35 The GSS Tool Suite that enables the Design Technology Co-Optimization flow FLOW CONTROL! Input files generator, job submission, execution monitoring! MONOLITH! GARAND! MYSTIC! RANDOM SPICE! Structure! translator from! TCAD process! simulator! 3D! DD/MC/NEGF! Simulator!! Statistical Compact Model Extractor! Statistical Circuit Simulator! DATABASE CONTROL! Data harvesting, annotation, storage! 8!

36 The Statistical Circuit Simulation Engine RandomSpice Statistical Parameter Generation Template Circuit Compact Model Library RandomSpice Engine Statistical Enhancement Engine SPICE + - Database Analysis Power Performance Yield

37 FinFET based SRAM design Cell! Cell! 29!

38 Cell design trade off Metal Gate Work-Function Engineering! 31!

39 Interplay between CD and statistical variation! " Slow corner has the best SNM performance. " CD variation can introduce 10% degradation on standard deviation of SNM. 34!

40 Reliability Aspect of SRAM Performance! " Under N/PBTI stress condition, SNM can be degraded by more than 25% " However, write operation can be improved under stress condition 35!

41 Summary!! Introduction!! FinFET complexity Motivates DTCO!! DTCO flow at 14nm FinFETs!! 10nm FinFETs: Si vs. Ge!! Conclusions!

42 10nm FinFET options: FinFET design GATE DRAIN SOURCE H fin W fin tox L G STI SUBSTRATE

43 First-Principles Informed Simulations Band structure in UTB devices (in collaboration with A. Asluger & P. Sushko, UCL) 1.2 nm! 2.9 nm! 12.1 nm!

44 DG quantum corrections Base on 1D Poisson-Schrodinger solver

45 Performance based on MC simulations

46 Carrier velocities

47 Simulation of statistical variability

48 Simulation of statistical variability

49 Nominal compact models

50 Impact of Extraction and Wire-load Normalized+Delay+ 4" 3.5" 3" 2.5" 2" 1.5" 1" Si" Ge" Ge is 0.38% faster Ge is 2.26% slower Normalized+Delay+ 4.5" 4" 3.5" 3" 2.5" 2" 1.5" 1" Si" Ge" Ge is 2% faster Ge is 3.5% slower 0.5" 0.5" 0" Intrinsic" Transistors" Extracted" netlists" 100"M1" track"wire" load" 500"M1" track"wire" load" 0" Intrinsic" Transistors" Extracted" netlists" 100"M1" track"wire" load" 500"M1" track"wire" load" Inverter+ 23Input+NOR+ Extracted netlists generated using the ARM 10nm Predictive Technology Modeling toolset!!!

51 Delay vs. Supply Voltage Si Ge Normalized Delay Supply Voltage (V)

52 Conclusions! FinFET complexity Motivates Design/Technology Co-! Development.! 22nm Intel FinFET example!!!! We have studied in detail a full DTCO flow for 14nm FinFETs, showing how GSS simulation platform can help designers from process to devices up to circuit level.!! We have show an example of applicability of GSS platform for evaluating different option for future! FinFETs technology generations.!

53 Thanks for your attention! You will find this presentation and additional material on our webpage

Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET

Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET X. Wang 1, D. Reid 2, L. Wang 1, A. Burenkov 3, C. Millar 2, B. Cheng 2, A. Lange 4, J. Lorenz 3, E. Baer 3, A. Asenov 1,2! 1 Device Modelling

More information

Advanced Statistical Strategy for Generation of Non-Normally distributed PSP Compact Model Parameters and Statistical Circuit Simulation

Advanced Statistical Strategy for Generation of Non-Normally distributed PSP Compact Model Parameters and Statistical Circuit Simulation Advanced Statistical Strategy for Generation of Non-Normally distributed PSP Compact Model Parameters and Statistical Circuit Simulation Asen Asenov*,**, Urban Kovac*, Craig Alexander**, Daryoosh Dideban**,

More information

This is the author s final accepted version.

This is the author s final accepted version. Al-Ameri, T., Georgiev, V.P., Adamu-Lema, F. and Asenov, A. (2017) Does a Nanowire Transistor Follow the Golden Ratio? A 2D Poisson- Schrödinger/3D Monte Carlo Simulation Study. In: 2017 International

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout B.Doyle, J.Kavalieros, T. Linton, R.Rios B.Boyanov, S.Datta, M. Doczy, S.Hareland, B. Jin, R.Chau Logic Technology Development Intel

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

Ultimately Scaled CMOS: DG FinFETs?

Ultimately Scaled CMOS: DG FinFETs? Ultimately Scaled CMOS: DG FinFETs? Jerry G. Fossum SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130 J. G. Fossum / 1 Outline Introduction -

More information

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS 34 CHAPTER 3 EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS In this chapter, the effect of structural and doping parameter variations on

More information

Nanometer Transistors and Their Models. Jan M. Rabaey

Nanometer Transistors and Their Models. Jan M. Rabaey Nanometer Transistors and Their Models Jan M. Rabaey Chapter Outline Nanometer transistor behavior and models Sub-threshold currents and leakage Variability Device and technology innovations Nanometer

More information

From Physics to Power, Performance, and Parasitics

From Physics to Power, Performance, and Parasitics From Physics to Power, Performance, and Parasitics The GTS-Team Global TCAD Solutions GmbH, Böserndorferstraße 1/12, 1010 Vienna, Austria O. Baumgartner et al. (GTS) GTS 1 / 25 Scales, methods, hierarchies

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping

Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping Yangang Wang Mark Zwolinski Michael A Merrett E-mail: yw2@ecs.soton.ac.uk University of Southampton, UK 26 th Sep.

More information

Keywords MOSFET, FinFET, Silicon, Germanium, InGaAs, Monte Carlo, Drift Diffusion.

Keywords MOSFET, FinFET, Silicon, Germanium, InGaAs, Monte Carlo, Drift Diffusion. Predicting Future Technology Performance Asen Asenov and Craig Alexander Gold Standard Simulations The Rankine Building, Oakfield Avenue Glasgow G12 8LT +44 ()141 33 479 a.asenov@goldstandardsimulations.com

More information

A Decade of Driving Innovation Physics-based DTCO Full-Cell 3D TCAD. Predictions based on physics.

A Decade of Driving Innovation Physics-based DTCO Full-Cell 3D TCAD. Predictions based on physics. A Decade of Driving Innovation Physics-based DTCO Full-Cell 3D TCAD Predictions based on physics. Today's semiconductor industry is facing unprecedented challenges. To survive in highly competitive markets

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages) EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 12: SRAM Design ECC Timing Announcements Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

More information

Dideban, Daryoosh (2012) Statistical modelling of nano CMOS transistors with surface potential compact model PSP.

Dideban, Daryoosh (2012) Statistical modelling of nano CMOS transistors with surface potential compact model PSP. Dideban, Daryoosh (01) Statistical modelling of nano CMOS transistors with surface potential compact model PSP. PhD thesis http://theses.gla.ac.uk/357/ Copyright and moral rights for this thesis are retained

More information

ENABLEMENT OF COMPACT MODELS FOR

ENABLEMENT OF COMPACT MODELS FOR ENABLEMENT OF COMPACT MODELS FOR ULTRA-SCALED CMOS TECHNOLOGIES D. YAKIMETS, P. SCHUDDINCK, D. JANG, M. GARCIA BARDON, N. SHARAN, B. PARVAIS*, P. RAGHAVAN, AND A. MOCUTA IMEC, KAPELDREEF 75, 3001 LEUVEN,

More information

OVERVIEW OF THE SUPERTHEME PROJECT

OVERVIEW OF THE SUPERTHEME PROJECT OVERVIEW OF THE SUPERTHEME PROJECT Conference Sponsors: OUTLINE 1. Introduction 2. Background pillars: Process and device 3. Consortium and project data 4. Project structure 5. Methodology used 6. Example:

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information

Lecture 25. Semiconductor Memories. Issues in Memory

Lecture 25. Semiconductor Memories. Issues in Memory Lecture 25 Semiconductor Memories Issues in Memory Memory Classification Memory Architectures TheMemoryCore Periphery 1 Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies Hans Tuinhout, The Netherlands motivation: from deep submicron digital ULSI parametric spread

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction

DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction DKDT: A Performance Aware Dual Dielectric Assignment for Tunneling Current Reduction Saraju P. Mohanty Dept of Computer Science and Engineering University of North Texas smohanty@cs.unt.edu http://www.cs.unt.edu/~smohanty/

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Simulation of statistical variability in nano-cmos transistors using drift-diffusion, Monte Carlo and non-equilibrium Green s function techniques

Simulation of statistical variability in nano-cmos transistors using drift-diffusion, Monte Carlo and non-equilibrium Green s function techniques J Comput Electron (2009) 8: 349 373 DOI 10.1007/s10825-009-0292-0 Simulation of statistical variability in nano-cmos transistors using drift-diffusion, Monte Carlo and non-equilibrium Green s function

More information

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University NAME: PUID: : ECE 305 Exam 5 SOLUTIONS: April 17, 2015 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the

More information

Intrinsic variability of nanoscale CMOS technology for logic and memory

Intrinsic variability of nanoscale CMOS technology for logic and memory UNIVERSITY OF PISA Engineering PhD School Leonardo da Vinci PhD Course in Applied Electromagnetism in Electrical and Biomedical Engineering, Electronics, Smart Sensors, Nano-Technologies PhD Thesis Intrinsic

More information

Recent Development of FinFET Technology for CMOS Logic and Memory

Recent Development of FinFET Technology for CMOS Logic and Memory Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley Why FinFET Outline FinFET process Unique features of FinFET Mobility,

More information

CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY

CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY 15 CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY In this chapter TCAD and the various modules available in the TCAD simulator have been discussed. The simulation methodologies to extract

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC

More information

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. References IEICE Electronics Express, Vol.* No.*,*-* Effects of Gamma-ray radiation on

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Thin Film Transistors (TFT)

Thin Film Transistors (TFT) Thin Film Transistors (TFT) a-si TFT - α-si:h (Hydrogenated amorphous Si) deposited with a PECVD system (low temp. process) replaces the single crystal Si substrate. - Inverted staggered structure with

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield Xi Zhang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

Physics-based compact model for ultimate FinFETs

Physics-based compact model for ultimate FinFETs Physics-based compact model for ultimate FinFETs Ashkhen YESAYAN, Nicolas CHEVILLON, Fabien PREGALDINY, Morgan MADEC, Christophe LALLEMENT, Jean-Michel SALLESE nicolas.chevillon@iness.c-strasbourg.fr Research

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VIII Semiconductor Memory (chapter 12 in textbook) 1 Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance 1 Seminar Spacer Lithography for Reduced Variability in MOSFET Performance Prof. Tsu-Jae King Liu Electrical Engineering & Computer Sciences Dept. University of California at Berkeley Graduate Student:

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

MOSFET SCALING ECE 663

MOSFET SCALING ECE 663 MOSFET SCALING Scaling of switches Moore s Law economics Moore s Law - #DRAM Bits per chip doubles every 18 months ~5% bigger chips/wafers ~5% design improvements ~50 % Lithography ability to print smaller

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 1 Hw 8 Posted Last one to be graded Due Friday April 30 Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 2 1 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 Frequency

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

SEMICONDUCTOR MEMORIES

SEMICONDUCTOR MEMORIES SEMICONDUCTOR MEMORIES Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH DRAM LIFO Shift Register CAM

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

Modeling and Simulation of Statistical Variability in Nanometer CMOS Technologies

Modeling and Simulation of Statistical Variability in Nanometer CMOS Technologies Modeling and Simulation of Statistical Variability in Nanometer CMOS Technologies A. Asenov and B. Cheng 1 Introduction The years of happy scaling are over and the fundamental challenges that the semiconductor

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Bhadrinarayana L V 17 th July 2008 Microelectronics Lab, Indian

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

LEVEL 61 RPI a-si TFT Model

LEVEL 61 RPI a-si TFT Model LEVEL 61 RPI a-si TFT Model Star-Hspice LEVEL 61 is an AIM-SPICE MOS15 amorphous silicon (a-si) thin-film transistor (TFT) model. Model Features AIM-SPICE MOS15 a-si TFT model features include: Modified

More information

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY T. Poiroux, P. Scheer*, O. Rozeau, B. de Salvo, A. Juge*, J. C. Barbé, M. Vinet CEA-Leti,

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

Lecture 11: MOSFET Modeling

Lecture 11: MOSFET Modeling Digital Integrated Circuits (83-313) Lecture 11: MOSFET ing Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 18 June 2017 Disclaimer: This course was prepared, in its entirety,

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16] Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,

More information

Future trends in radiation hard electronics

Future trends in radiation hard electronics Future trends in radiation hard electronics F. Faccio CERN, Geneva, Switzerland Outline Radiation effects in CMOS technologies Deep submicron CMOS for radiation environments What is the future going to

More information

Introduction to Reliability Simulation with EKV Device Model

Introduction to Reliability Simulation with EKV Device Model Introduction to Reliability Simulation with Device Model Benoît Mongellaz Laboratoire IXL ENSEIRB - Université Bordeaux 1 - UMR CNRS 5818 Workshop november 4-5th, Lausanne 1 Motivation & Goal Introduced

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

Previously. ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Variation Types. Fabrication

Previously. ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Variation Types. Fabrication ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Previously Understand how to model transistor behavior Given that we know its parameters V dd, V th, t OX, C OX, W, L, N A Day

More information

ANALYSIS OF THE BUMP PROBLEM IN BSIM3 USING NOR GATE CIRCUIT AND IMPLEMENTATION OF TECHNIQUES IN ORDER TO OVERCOME THEM

ANALYSIS OF THE BUMP PROBLEM IN BSIM3 USING NOR GATE CIRCUIT AND IMPLEMENTATION OF TECHNIQUES IN ORDER TO OVERCOME THEM ANALYSIS OF THE BUMP PROBLEM IN BSIM3 USING NOR GATE CIRCUIT AND IMPLEMENTATION OF TECHNIQUES IN ORDER TO OVERCOME THEM A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY SUBRAMANIAM SANKARALINGAM

More information

Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies

Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies 1 Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies Steven P. Surgnier Abstract A timing simulation is presented for a MOSFET implemented

More information

SOI/SOTB Compact Models

SOI/SOTB Compact Models MOS-AK 2017 An Overview of the HiSIM SOI/SOTB Compact Models Marek Mierzwinski*, Dondee Navarro**, and Mitiko Miura-Mattausch** *Keysight Technologies **Hiroshima University Agenda Introduction Model overview

More information

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with

More information

ECE 305: Fall MOSFET Energy Bands

ECE 305: Fall MOSFET Energy Bands ECE 305: Fall 2016 MOSFET Energy Bands Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Pierret, Semiconductor Device Fundamentals

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

MODEL MECHANISM OF CMOS DEVICE FOR RELIBILITY ENHANCEMENT

MODEL MECHANISM OF CMOS DEVICE FOR RELIBILITY ENHANCEMENT MODEL MECHANISM OF CMOS DEVICE FOR RELIBILITY ENHANCEMENT Sandeep Lalawat and Prof.Y.S.Thakur lalawat_er2007@yahoo.co.in,ystgecu@yahoo.co.in Abstract This paper present specific device level life time

More information

Modeling and Simulation of Variations in Nano-CMOS Design. Yun Ye

Modeling and Simulation of Variations in Nano-CMOS Design. Yun Ye Modeling and Simulation of Variations in Nano-CMOS Design by Yun Ye A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2011 by the Graduate

More information

Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations

Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations Farshad Firouzi, Saman Kiamehr, Mehdi. B. Tahoori INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE

More information

CSE493/593. Designing for Low Power

CSE493/593. Designing for Low Power CSE493/593 Designing for Low Power Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.].1 Why Power Matters Packaging costs Power supply rail design Chip and system

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information