Automotive Power CAD. Statistical Simulation Methodology for a Smart Power Technology

Size: px
Start display at page:

Download "Automotive Power CAD. Statistical Simulation Methodology for a Smart Power Technology"

Transcription

1 Automotive Power CAD Infineon Statistical Simulation Methodology for a Smart Power Technology 2007, Oct 19 th AK Bipolar 2007 / Munich Dr. Elmar Gondro Page 1

2 Outline Motivation Modeling Flow Model Quality Conclusion Page 2

3 Motivation / Wake-Up Zero Zero Defect Defect TD Design Design 4 Manufacturability Yield Yield Enhancemen tt CAD Automotive Excellence PD Flow Quality Model Quality Nominal & statistical Representation of all future Fab Outputs Page 3

4 Five Steps Extraction Process of Electrical Parameters Extraction Centering µ Nominal Parameters PCM Spec Limits Deviations σ Correlations Statistical Parameters Mismatch Testchip Matching Consts Page 4

5 Step 1: Nominal Parameters 1e I C meas simu I B meas simu 100 PCM Limits Mismatch I [µa] e 6 PCM parameters: Vbe Ic β Ib Vbd none 1e V BE [V] source: /EP/-Docu (Bipolar / Tempsense) Page 5

6 Step 1: Nominal Parameters PCM Limits Mismatch Re-Simulation Schematics SMART5 PCM: 41 of 75 device types covered 143 of 194 PCM setups can be re-simulated simultaneously source: /PCM/-Docu (Bipolar) Page 6

7 Step 2: Parameter Centering past (T7) PCM Limits Mismatch propability density µ Page 7

8 Step 2: Parameter Centering PCM Limits Mismatch propability density Definition!!! µ=target Page 8

9 Step 2: Parameter Centering PCM Limits Mismatch propability density Nom µ=target Page 9

10 Step 2: Parameter Centering PCM Limits Mismatch propability density µ=target=nom Page 10

11 Step 3: Process Deviations PCM Limits Mismatch propability density 6 σ 6 σ Centering and ±6σ cpk=2 Definition!!! µ=target=nom Page 11

12 Step 3: Process Deviations today past (T7) PCM Limits Mismatch propability density µ=target=nom Page 12

13 Step 3: Process Deviations today past (T7) future PCM Limits Mismatch propability density µ=target=nom Page 13

14 Step 3: Process Deviations PCM Limits Mismatch propability density µ=target=nom Page 14

15 Step 3: Process Deviations PCM Limits Mismatch propability density µ=target=nom Page 15

16 Step 3: Process Deviations PCM Limits Mismatch propability density Centering and ±3σ cpk=1 Definition!!! 3 σ 3 σ µ=target=nom Page 16

17 Step 3: Process Deviations Normalized PCM Window with 3 σ Process Variations Parameter Classification Vt MNLE2 YY simu PCM Limits G MNLE2 MM Mismatch Ron MNLE2 MM Isat MNLE2 YY MOSFET Target source: /MQ/-Docu (Low Volt NMOS) Page 17

18 Step 3: Process Deviations Normalized PCM Window with 3 σ Process Variations Parameter B QNBH 200n Classification MM simu B QNBH 20u YM PCM Limits B QNBH 200u MM VBE QNBH 1m MM Mismatch VBE QNBH 50u MM VCEO QNBH no simulation possible RM VCB QNBH no simulation possible RM VEB QNBH no simulation possible RM Bipolar Target source: /MQ/-Docu (qnbh Bipolar) Page 18

19 Step 3: Process Deviations PCM Limits I [µa] Gummel Poon and beta Plot e 6 I C meas simu I B meas simu meas simu Ic=200n, 20u, 200u Mismatch 1e Ic=50u, 1m V BE [V] β [ ] Bipolar e I C [µa] source: /EP/-Docu (qnbh Bipolar) Page

20 Step 4: Correlation Table PCM Limits Mismatch Page 20

21 Step 4: Correlations Nom=0.838 = PCM: c = Sim: c = PCM Limits Mismatch Target=0.852 Vt MNNE2 [V] Nom= = =0.738 Target=0.834 Vt MNLE2 [V] 0.9 =0.93 source: /PCM/-Docu Page 21

22 Step 5: Mismatch Parameters Special Device Pair Measurements on Testchip required PCM Limits Mismatch σ mismatch = const mismatch 2 Area Threshold voltages of MOS transistors Current gains of bipolar Sheet resistances of poly resistors Page 22

23 Monte Carlo Sections Comment Distribution nom Gaussian distribution of samples µ = Target = (+)/2 σ = (-µ)/3 = (-)/6 unif uniform distribution of samples µ = Target = (+)/2 σ = (- µ)/sqrt(3) = σ[nom]*sqrt(3) Page 23

24 Monte Carlo Sections nom unif Comment Gaussian distribution of samples µ = Target = (+)/2 σ = (-µ)/3 = (-)/6 uniform distribution of samples µ = Target = (+)/2 σ = (-µ)/sqrt(3) = σ[nom]*sqrt(3) Distribution unif2s3s uniform distribution of samples within 2σ and 3σ µ = Target = (+)/2 σ (-µ)*0.84 = σ[nom]*2.5 speclimits parameters shifted to their Spec Limits ( or ) µ = Target = (+)/2 σ = -µ = σ[nom]*3 Page 24

25 Monte Carlo Sections w/ Parasitics w/o Parasitics Comment Distribution nom nom_nopar Gaussian distribution of samples µ = Target = (+)/2 σ = (-µ)/3 = (-)/6 unif unif_nopar uniform distribution of samples µ = Target = (+)/2 σ = (-µ)/sqrt(3) = σ[nom]*sqrt(3) unif2s3s unif2s3s_nopar uniform distribution of samples within 2σ and 3σ µ = Target = (+)/2 σ (-µ)*0.84 = σ[nom]*2.5 speclimits speclimits_nopar parameters shifted to their Spec Limits ( or ) µ = Target = (+)/2 σ = -µ = σ[nom]*3 Page 25

26 Example 1: PCM Par Vt_MNLE2 MC Section nom Nom=0.838 PCM µ=0.836 σ= N =1677 Sim µ=0.84 σ=0.032 N =1000 Spec µ=0.834 σ=0.032 propability density [%] = Target= =0.93 V th [V] source: /PCM/-Docu Page 26

27 Example 2: PCM Par Vt_MNLE2 MC Section unif Nom=0.838 PCM µ=0.836 σ= N =1677 Sim µ=0.838 σ= N =1000 Spec µ=0.834 σ= propability density [%] = Target= =0.93 V th [V] Page 27

28 Example 3: PCM Par Vt_MNLE2 MC Section unif2s3s Nom=0.838 PCM µ=0.836 σ= N =1677 Sim µ=0.838 σ= N =1000 Spec µ=0.834 σ=0.081 propability density [%] = Target= =0.93 V th [V] Page 28

29 Example 4: PCM Par Vt_MNLE2 MC Section speclimits Nom=0.838 PCM µ=0.836 σ= N =1677 Sim µ=0.838 σ= N =1000 Spec µ=0.834 σ=0.096 propability density [%] = Target= =0.93 V th [V] Page 29

30 Corner Sections Comment depfast_dmosfast depslow_dmosfast depfast: dmosfast: δv th (MNND)=-0.139V δv th (MNND2)=-0.154V δl cap (MNTE, MNSE2)=-0.25µm depfast_dmosslow depslow_dmosslow depslow: dmosslow: δv th (MNND, MNND2)=0.243V δl cap (MNTE, MNSE2)=0.32µm There are no universally valid worst cases in BCD Technologies Corners have to be defined by Device Team according to the needs of Product Development! Page 30

31 Corner Sections Comment depfast_dmosfast depslow_dmosfast depfast: dmosfast: δv th (MNND)=-0.139V δv th (MNND2)=-0.154V δl cap (MNTE, MNSE2)=-0.25µm depfast_dmosslow depslow_dmosslow depslow: dmosslow: δv th (MNND, MNND2)=0.243V δl cap (MNTE, MNSE2)=0.32µm FastFast SlowFast FastFast: SlowFast: δv th (NMOS)=-3σ δt ox =-3σ δl int =-3σ δc j =-3σ δv th (NMOS)=3σ δv th (PMOS)=3σ δw int =+3σ δv th (PMOS)=3σ FastSlow SlowSlow SlowSlow: FastSlow: δv th (NMOS)=3σ δt ox =+3σ δl int =+3σ δc j =+3σ δv th (NMOS)=-3σ δv th (PMOS)=-3σ δ w int =-3σ δv th (PMOS)=-3σ Page 31

32 Model Sections 8 Monte Carlo Sections 4 sections with different distributions 4 no Parasitics sections (nopar) with neglect of: - (substrate) parasitic devices - voltage/current/power warnings - paramtests (geometry checks) Corresponding nopar sections speed up simulation by 25%. No section toggle required for nominal and Gaussian MC simulation 8 Corner Sections 4 corners for NMOS/PMOS speed 4 corners for leakage current of depletion MOS and slew rate of DMOS Performing Monte Carlo analysis issues an error. Page 32

33 Model Quality The SMART5 PCM comprises 194 measurements (ASM52). 143 of them can be re-simulated. PCM evaluations may serve as a testbench to quantify the model quality (w/o correlation and mismatch). 1. Does the nominal simulation reproduce the PCM Target? nom = Target 2. Does the mean value of the Monte Carlo simulation reproduce the nominal value? µ = nom 3. Does the standard deviation of the Monte Carlo simulation reproduce one third of the distance between the PCM Upper Spec Limit and the PCM Target (cpk=1)? 3 σ = -Target Page 33

34 Model Quality source: /MQ/-Docu Page 34

35 Model Quality Parameter Classification Vt MNLE2 G MNLE2 YY MM simu meas Ron MNLE2 MM Isat MNLE2 YY Target source: /MQ/-Docu Page 35

36 Conclusion PCM: not only Process Monitoring (TD), but also Device Monitoring (CAD) Recommended Usage of Monte Carlo Section nom with 100 runs for small circuits Monte Carlo Section unif2s3s_nopar with 100 runs for large circuits Corner Sections only if you know what you are doing (worst-worst case) Reproduction of Correlations Monte Carlo Section nom Monte Carlo Section unif, unif2s3s, speclimits Corner Sections To be discussed Benefits of Quarterly Monitoring? Device type coverage (SMART5 PCM: 41 of 75 types)? PCM measuring regions? PCM AC and Temp measurements needed? Page 36

Different Strategies for Statistical Compact Modeling MOS-AK Dresden

Different Strategies for Statistical Compact Modeling MOS-AK Dresden Different Strategies for Statistical Compact Modeling MOS-AK Dresden 18.3. Dr. Marat Yakupov (MunEDA) Dr. Michael Pronath (MunEDA) Dr. Elmar Gondro (Infineon Technologies) Overview Process Manufacturing

More information

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC

More information

Statistical modeling with backward propagation of variance and covariance equation

Statistical modeling with backward propagation of variance and covariance equation Statistical modeling with backward propagation of variance and covariance equation Klaus-Willi Pieper and Elmar Gondro Device Characterization and Modeling Infineon Technologies AG Outline n Introduction

More information

DC and AC modeling of minority carriers currents in ICs substrate

DC and AC modeling of minority carriers currents in ICs substrate DC and AC modeling of minority carriers currents in ICs substrate Camillo Stefanucci, Pietro Buccella, Maher Kayal and Jean-Michel Sallese Swiss Federal Institute of Technology Lausanne, Switzerland MOS-AK

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA Wolfgang Kraus Atmel Germany wolfgang.kraus@hno.atmel.com 6th HICUM Workshop, Heilbronn (Germany), June 2006 c WK Jun 12th, 2006

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

N-Channel Enhancement-Mode Vertical DMOS FET

N-Channel Enhancement-Mode Vertical DMOS FET N-Channel Enhancement-Mode Vertical DMOS FET Features Free from secondary breakdown Low power drive requirement Ease of paralleling Low C ISS and fast switching speeds Excellent thermal stability Integral

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer? EE 330 Exam 1 Spring 2017 Name Instructions: Students may bring 1 page of notes (front and back) to this exam and a calculator but the use of any device that has wireless communication capability is prohibited.

More information

LAYOUT TECHNIQUES. Dr. Ivan Grech

LAYOUT TECHNIQUES. Dr. Ivan Grech LAYOUT TECHNIQUES OUTLINE Transistor Layout Resistor Layout Capacitor Layout Floor planning Mixed A/D Layout Automatic Analog Layout Layout Techniques Main Layers in a typical Double-Poly, Double-Metal

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i- EECS40 Spring 010 Lecture 1: Matching Elad Alon Dept. of EECS Offset V i+ V i- To achieve zero offset, comparator devices must be perfectly matched to each other How well-matched can the devices be made?

More information

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors CMOS Devices PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors PN Junctions Diffusion causes depletion region D.R. is insulator and establishes barrier

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

Random Offset in CMOS IC Design

Random Offset in CMOS IC Design Random Offset in CMOS C esign ECEN487/587 Analog C esign October 19, 007 Art Zirger, National Semiconductor art.zirger@nsc.com 303-845-404 Where to start? How do we choose what transistor sizes to use

More information

N-Channel Enhancement-Mode Vertical DMOS FETs

N-Channel Enhancement-Mode Vertical DMOS FETs VN16 N-Channel Enhancement-Mode Vertical DMOS FETs Features Free from secondary breakdown Low power drive requirement Ease of paralleling Low C ISS and fast switching speeds High input impedance and high

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

Chapter 2 Switched-Capacitor Circuits

Chapter 2 Switched-Capacitor Circuits Chapter 2 Switched-Capacitor Circuits Abstract his chapter introduces SC circuits. A brief description is given for the main building blocks of a SC filter (operational amplifiers, switches, capacitors,

More information

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies Hans Tuinhout, The Netherlands motivation: from deep submicron digital ULSI parametric spread

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes EE 434 Lecture 12 Process Flow (wrap up) Device Modeling in Semiconductor Processes Quiz 6 How have process engineers configured a process to assure that the thickness of the gate oxide for the p-channel

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

N-Channel Enhancement-Mode Vertical DMOS FET

N-Channel Enhancement-Mode Vertical DMOS FET N-Channel Enhancement-Mode Vertical DMOS FET Features Free from secondary breakdown Low power drive requirement Ease of paralleling Low C ISS and fast switching speeds Excellent thermal stability Integral

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements Analysis and Design of Analog Integrated Circuits Lecture 14 Noise Spectral Analysis for Circuit Elements Michael H. Perrott March 18, 01 Copyright 01 by Michael H. Perrott All rights reserved. Recall

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 5: Januar 6, 17 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation! Level

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

Supertex inc. TN0104. N-Channel Enhancement-Mode Vertical DMOS FET. Features. General Description. Applications. Ordering Information.

Supertex inc. TN0104. N-Channel Enhancement-Mode Vertical DMOS FET. Features. General Description. Applications. Ordering Information. TN1 N-Channel Enhancement-Mode Vertical DMOS FET Features Low threshold (1.6V max.) High input impedance Low input capacitance Fast switching speeds Low on-resistance Free from secondary breakdown Low

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:

More information

2. (2pts) What is the major reason that contacts from metal to poly are not allowed on top of the gate of a transistor?

2. (2pts) What is the major reason that contacts from metal to poly are not allowed on top of the gate of a transistor? EE 330 Exam 1 Spring 2018 Name Instructions: Students may bring 1 page of notes (front and back) to this exam and a calculator but the use of any device that has wireless communication capability is prohibited.

More information

About Modeling the Reverse Early Effect in HICUM Level 0

About Modeling the Reverse Early Effect in HICUM Level 0 About Modeling the Reverse Early Effect in HICUM Level 0 6 th European HICUM Workshop, June 12-13, 2006, Heilbronn Didier CELI, STMicroelectronics 1/21 D. Céli Purpose According to the bipolar models,

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model EE115C Winter 2017 Digital Electronic Circuits Lecture 2: MOS Transistor: IV Model Levels of Modeling Analytical CAD analytical Switch-level sim Transistor-level sim complexity Different complexity, accuracy,

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012 1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET D-FET (Depletion MOS) MOSFET (Enhancement E-FET) DC biasing Small signal

More information

Chapter 2 Process Variability. Overview. 2.1 Sources and Types of Variations

Chapter 2 Process Variability. Overview. 2.1 Sources and Types of Variations Chapter 2 Process Variability Overview Parameter variability has always been an issue in integrated circuits. However, comparing with the size of devices, it is relatively increasing with technology evolution,

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Barbow (Chapter 8), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and, therefore, its current-carrying

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

Variation-Resistant Dynamic Power Optimization for VLSI Circuits

Variation-Resistant Dynamic Power Optimization for VLSI Circuits Process-Variation Variation-Resistant Dynamic Power Optimization for VLSI Circuits Fei Hu Department of ECE Auburn University, AL 36849 Ph.D. Dissertation Committee: Dr. Vishwani D. Agrawal Dr. Foster

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360.

6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360. ME 360 Fall 2008 Semester Test #1 9/24/08 Closed book, closed notes portion of test. When you turn in this part of the test you will get the second part which allows a page of handwritten formulas. There

More information

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018 Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS and LDMOS Devices in 180 nm Technology Yu-Hsing Cheng ON Semiconductor October 15, 2018 Outline Overview and Background

More information

BIPOLAR JUNCTION TRANSISTOR MODELING

BIPOLAR JUNCTION TRANSISTOR MODELING BIPOLAR JUNCTION TRANSISTOR MODELING Introduction Operating Modes of the Bipolar Transistor The Equivalent Schematic and the Formulas of the SPICE Gummel-Poon Model A Listing of the Gummel-Poon Parameters

More information

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type WCM in Boston 15. June, 2011 M. Miura-Mattausch, M. Miyake, H. Kikuchihara, U. Feldmann and

More information

Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing

Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing John Keane, Hanyong Eom, ae-hyoung Kim, Sachin Sapatnekar, Chris Kim University of Minnesota Department of Electrical

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

Digital Integrated Circuits

Digital Integrated Circuits Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter :

More information

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33 Data Sheet Rev. 1.0, 2014-11-17 Automotive Power Table of Contents 1 Overview.......................................................................

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/30/2007 MOSFETs Lecture 4 Reading: Chapter 17, 19 Announcements The next HW set is due on Thursday. Midterm 2 is next week!!!! Threshold and Subthreshold

More information