I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. Cells Manipulation and Detection.

Size: px
Start display at page:

Download "I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. Cells Manipulation and Detection."

Transcription

1 March 2011 Laboratory-on-hip : Outline I. Introduction II. Biochemistry III. Microfluidic Packaging IV. apacitive Sensors V. ells Manipulation and Detection. GBM Dispositifs Médicaux Intelligents 2 Laboratory-on-hip : apacitive sensors GBM Dispositifs Médicaux Intelligents 3 1

2 Laboratory-on-hip : apacitor sensors apacitive sensors for Lo applications do not require determining a single value of the sensing capacitance, but to distinguish between the device behavior in the presence rather than in the absence of analyte in microfluidic channel. 3D ccelerometer Low complexity rray of capacitive sensors Offset cancellation Sandia National Laboratories, SUMMiT TM Technologyies apacitive sensor LO E.coli Bacteria Ghafar-Zadeh & Sawan, IEEE-IMST3W 2008 GBM Dispositifs Médicaux Intelligents 4 Lo : harge-based apacitive Measurement Interconnect or sensing capacitance can be retrieved/measured from the following equation: (I S! I R ) = f "V dd " # where Originated = s - 0, and 0 = R U Berkeley Year 1997 External tools Main application Resolution Frequency! D mmeter apacitance characterization Sub femtofarad <15 MHz! R M3 BM M1 Is B S M4 M2 GBM Dispositifs Médicaux Intelligents 5 Lo : BM-based capacitive sensor urrent mirror and integrating capacitor instead of dc mmeter. (! VTP ) S VS = (! VTP )! dv K x (! VTP ) t + S S 2 S = K x!( Vgs " VTP ) -Vs=Vgs 2 dt [(! VTP ) S ] K x I 1 I( S, t) " 2,! Low [ K x (! VTP ) t + S ] V d d V d d Is M 3 M 4 I(s,t) I S Is M 1 M 1 Vs in in s M 2 M 2 Ghafar-zadeh, Sawan, IEEE TBioS, 2007 GBM Dispositifs Médicaux Intelligents 6 2

3 Lo : BM-based capacitive sensor in d dt = I S dv S dt s = S I! + 0 = I " ( # VTP ) + V0 in ancellation of 0 (0 >>! ) ccurate reference current is needed. V out = I! s (V dd " V TP ) + V off in Voff = f(mismatch in process, remnant in channel), Voff does not affect the accuracy, but large Voff may limit the dynamic range, then Voff should be minimized.! << p, the effect of p is almost cancelled by measuring S-R before converting to voltage. I M 1 M 2 V d d I S Is/I Reset mode harging mode Sampling Is GBM Dispositifs Médicaux Intelligents 7 Lo : BM-based capacitive sensor M3!! M5! 1.5!=3fF BM*! ID1!!! M1! S! M13!! Is! k5! int!! M10!! (V) 1.3!=2fF m!=1fF 700m!=0 500m 300m µ 200µ 300µ 400µ Time (s) GBM Dispositifs Médicaux Intelligents 8 Lo : BM-based capacitive sensor In agreement with the calculation and simulation; Higher dielectric constant of organic solvent, higher output voltage. M3! M5! Dichloromethane Injection!!! BM*! M1!!! M13!! ID1!! S!! Is! M7! Vb1!! int!! Is-! M10! Methanol Injection!!! GBM Dispositifs Médicaux Intelligents 9 3

4 M2 M1 Laboratory-on-hip : Outline Large interdigitated electrode BM structure. Sensing electrodes Microchannel M1!2 Process Outlet!1 Inlet!1!2 0.18!m MOS M2 Interdigitated electrode BM Sensing electrode 100"750 µm# Frequency (f) BM 1.8 Volt 100Hz-1MHz p1 s E1 E2 s/2 E2 p1 nalyte Passivation layers p1 E1 p1 s/2 p1 E2 p2 M-S BM p2 M-s p2 Ghafar-Zadeh, E., Sawan, M., IEEE TBioS, 2007 GBM Dispositifs Médicaux Intelligents 10 Lo : BM-based capacitive sensor Microscopic images of chip. Interdigitated electrodes Passivation layer removal Reference and sensing electrodes. Ghafar-Zadeh et al, Sensors and ctuators : Physical, 2008 GBM Dispositifs Médicaux Intelligents 11 Sensing capacitances values for different analytes; Parasitic capacitances of different chip samples; verage of recorded samples from 3 electrodes. $ (pf) Lo : BM-based capacitive sensor Dielectric constant 0 (pf) Measured chips Dichloromethane (D) 10.8 cetone () 20.0 Methanol (M) 32.0 Deionised water (W) 80.8 Saline water (S) conductive The recorded data for a particular organic solvent shows a decoded output of a 6-bit resolution. GBM Dispositifs Médicaux Intelligents 12 4

5 Lo : BM : Linearity & mismatch error Mismatch only affects an offset voltage M7 M4 M2 M5 IS M3 M1 Vb1 Vb1 M6 R M8 S int % change of 1100 W1 W2 W3 W4 (mv) 900 W5 W6 W7 W % change in Wi Reset mode Sampled voltage s (ff) GBM Dispositifs Médicaux Intelligents 13 Lo : BM-based capacitive sensor ancellation of Vos through Rp; replica of sensing circuit is employed to generate reference current. M8 R M7 M5 M6 M1 ID2 ID1 IS M2 s M4 M3 SR IS - in M10 M9 Rp FPG Vo GBM Dispositifs Médicaux Intelligents 14 Laboratory-on-hip : Outline Non-linearity of output voltage versus Rp1 and Rp Rp1 Rp2 Vo (V) 1.1 Rp2 M8 M7 M2 1.0 R B M Rp1/2 (kohms) M10 M9 GBM Dispositifs Médicaux Intelligents 15 5

6 Laboratory-on-hip : Outline djustable current mirror gain (D1-Dm) Three stages unity current mirror. M13 BM Q2 Q1 M 1 3 BM V d d B V a V b I s S 1 V c M 14 I M 5 V o u t B M 10 M c m M c 1 M 15 S W 1 M 6 M 9 D m D 1 M 8 M 7 GBM Dispositifs Médicaux Intelligents 16 Laboratory-on-hip : Outline djustable current mirror gain (D1-Dm) 1-bit D alibration circuit MD MM M1 M6 M4 M3 M5 SD SM S1 qn Dm D1 ID Vb1 M8 Vb2 M10 R ID1 Is BM M7 M2 M1 k1 Vb1 M13 M14 S k2 Vb2 M9 int M11 Is- k3 M12 I R = I R0 (1 + 2 m-1 D m-k D k + + D M ). M10 GBM Dispositifs Médicaux Intelligents 17 Laboratory-on-hip : Outline By adding a voltage comparator and a switch in series with a current source, a D input sigma delta can be realized. V R x n + LPF q n I x 1-bit D I s Xn q n = x I x Sw1 I x - + V R I(s, t) V o i n Sw2 F 1 F n Q 1 Q 2 Ghafar-zadeh & Sawan, J. of IEEE Sensors, no.4, 2008 GBM Dispositifs Médicaux Intelligents 18 6

7 Laboratory-on-hip : Sigma-Delta D Xn Post-layout simulation results Unique sequence. Sw1 I x - + V R I(s, t) V o i n Sw2 (output pulse) Q 1 Q 2 (V) $ = 0.22 ff 0 $ = 0.3 ff Time (msec) GBM Dispositifs Médicaux Intelligents 19 Laboratory-on-hip : Outline n array of capacitive sensors. djustable reference current. Sigma-Delta D /D converter Offset cancellation procedure ( FPG). O f f - c h i p F P G S y s t e m F 1 F 2 Stop calibration & recording D1-m S1 S2 S3 N o Reset U < V t h D 1 - m = D 1 - m + 1 Y e s D f s S1 V o u t UI1 S 1 B u f f e r VR S2 I s in R UI2 S 2 S3 UI3 S 3 I R justable urrent Mirror D 1-8 On-chip circuit GBM Dispositifs Médicaux Intelligents 20 Laboratory-on-hip : Measurement set-up GBM Dispositifs Médicaux Intelligents 21 7

8 Laboratory-on-hip : Outline ( I! I ) = f " V " # S R dd log( I! I ) = log f + log( V "# ) 2 1 dd % where s=%+0 Extraction of sensing capacitance variation 10 Log (I2-I1) Dichloromethane cetone Methanol DI water ( 0: Parasitic capacitance) -110 D -120 B E1 1E2 1E3 f(hz) 1E4 1E5 1E6 GBM Dispositifs Médicaux Intelligents 22 Laboratory-on-hip : Outline Microscopic image of fabricated chip (a) Die including the electrodes and sigma delta sensor, (b) Interdigitated electrode. Ghafar-Zadeh et al, Sensors and ctuators : Physical, 2008 GBM Dispositifs Médicaux Intelligents 23 Laboratory-on-hip : Bacteria growth monitoring GBM Dispositifs Médicaux Intelligents 24 8

9 Laboratory-on-hip : Outline Illustration of the proposed system for Bacteria-on- hip monitoring: LB : medium for bacteria Bacteria settles on the surface of chip which results in a capacitive element. GBM Dispositifs Médicaux Intelligents 25 Laboratory-on-hip : Bacteria growth monitoring 1 V = T Output of sensor versus parameters! 2t! t T RB1 RL B (1 / 2)! VTP e e # " I "(! 0 in RB RL = )dt T >> 0 ( / 2! /2) 1 B 1 (V dd! VTP )" I " + in + V Instead of Impedance measurement with R, we measure here only s. V OS OS GBM Dispositifs Médicaux Intelligents 26 Laboratory-on-hip : Bacteria growth monitoring GBM Dispositifs Médicaux Intelligents 27 9

10 Laboratory-on-hip : Magnetic manipulation arbon array of electrodes used to push the bacteria toward the sensing electrode for measurement. GBM Dispositifs Médicaux Intelligents 28 Laboratory-on-hip : ells Detection/manipulation Lo Implantable devices Neurotransmitter detection & separation High sensitivity / selectivity Intracortical neural ontrol Data acquisition Target diseases: Epilepsy lzheimer Parkinson GBM Dispositifs Médicaux Intelligents 29 Laboratory-on-hip : ells Detection/manipulation ctuation electrode matrix Sensing electrodes: capacitive sensor * DEP force Output signal referring to liquid concentration MOS chip ** (0.18!m) cquisition module: BM technique Quadrature signals MOS chip ** (0.18!m) ctuation module: Frequency / Magnitude control * Technology: Mixed MOS-Microfluidic ** The same MOS chip include both the acquisition and actuation module. GBM Dispositifs Médicaux Intelligents 30 10

11 Laboratory-on-hip : References 1.. Romani et al apacitive sensor array for localization of bioparticles in MOS lab-on-achip, Digest of Technical Papers, IEEE ISS onf., 2004, pp D. Sylvester et al, Investigation of interconnect capacitance characterization using BM technique and three-dimensional simulation, IEEE JSS, Vol. 33, no. 3, Guiducci,. Stagni, G. Zuccheri, "DN detection by integrable electronics," J.. Biosensors and Bioelectronics, vol. 19, no. 9, Hierlemann, Integrated hemical Microsensor Systems in MOS Technology, New York: Springer-Verlag, E. Ghafar-Zadeh, M. Sawan and D. Therriault, Novel direct-write MOS-based laboratoryon-chip: Design, assembly and experimental results, Sensors and ctuators : Physical, Volume 134, Issue 1, 28 February 2007, Pages E. Ghafar-Zadeh, M. Sawan, ore-bm Sigma Delta apacitive Sensor rray Dedicated to Lab-on-hip pplications, In press in Sensors & ctuators:. Physical 7. E. Ghafar-Zadeh, M. Sawan and D. Therriault, Microfluidic Packaging Technique for Labon-hip pplications, In press IEEE Trans. on dvanced Packaging. 8. E. Ghafar-Zadeh, M. Sawan, harge-based apacitive Sensor rray for MOS-Based Laboratory-On-hip pplications, IEEE Sensors, Vol. 8, No. 4, pril 2008, pp E. Ghafar-Zadeh, M. Sawan, Hybrid Microfluidic/MOS apacitive Sensor Dedicated to Lab-on-hip pplications, IEEE TBioS, Vol. 1, No. 4, December 2007, pp GBM Dispositifs Médicaux Intelligents 31 11

Laboratory-on-chip based sensors Part 2: Capacitive measurements

Laboratory-on-chip based sensors Part 2: Capacitive measurements GBM8320 Dispositifs Médicaux Intelligents Laboratory-on-chip based sensors Part 2: Capacitive measurements Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!!! http://www.cours.polymtl.ca/gbm8320/!

More information

I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. On-Chip Cells Detection and Manipulation.

I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. On-Chip Cells Detection and Manipulation. 25 février 2010 Laboratory-on-Chip : Outline I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. On-Chip Cells Detection and Manipulation. GBM8320 - Dispositifs Médicaux

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz. Sept Hui Wang and Patrick P.

A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz. Sept Hui Wang and Patrick P. A 51pW Reference-Free apacitive-discharging Oscillator Architecture Operating at 2.8Hz Sept. 28 2015 Hui Wang and Patrick P. Mercier Wireless Sensing Platform Long-Term Health Monitoring - Blood glucose

More information

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Main CMOS design rules & basic circuits GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

Nyquist-Rate A/D Converters

Nyquist-Rate A/D Converters IsLab Analog Integrated ircuit Design AD-51 Nyquist-ate A/D onverters כ Kyungpook National University IsLab Analog Integrated ircuit Design AD-1 Nyquist-ate MOS A/D onverters Nyquist-rate : oversampling

More information

A novel Capacitor Array based Digital to Analog Converter

A novel Capacitor Array based Digital to Analog Converter Chapter 4 A novel Capacitor Array based Digital to Analog Converter We present a novel capacitor array digital to analog converter(dac architecture. This DAC architecture replaces the large MSB (Most Significant

More information

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L5: Fabrication and Layout -2 (12.8.2013) B. Mazhari Dept. of EE, IIT Kanpur 44 Passive Components: Resistor Besides MOS transistors, sometimes one requires to implement passive

More information

Discrete-Time Filter (Switched-Capacitor Filter) IC Lab

Discrete-Time Filter (Switched-Capacitor Filter) IC Lab Discreteime Filter (Switchedapacitor Filter) I Lab Discreteime Filters AntiAliasing Filter & Smoothing Filter f pass f stop A attenuation FIR Filters f max Windowing (Kaiser), Optimization 0 f s f max

More information

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Honeyeh Matbaechi Ettehad *, Subhajit Guha, Christian Wenger IHP, Im Technologiepark 25, 15236 Frankfurt

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Markus Bingesser austriamicrosystems AG Rietstrasse 4, 864 Rapperswil, Switzerland

More information

Exercise 1: Capacitors

Exercise 1: Capacitors Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

More information

Analog and Mixed-Signal Center, TAMU

Analog and Mixed-Signal Center, TAMU Analog and MixedSignal enter, TAMU SampleandHold ircuit S/H: S H S H S H S H S t i S/H circuit o o S/H command i Block Diagram Idealized Response t Performances of S & H Realistic Transient Response: Input

More information

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode CCS5M2CM2.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turn-off Tail Current High-Frequency Operation

More information

Electricity and Magnetism. Capacitance

Electricity and Magnetism. Capacitance Electricity and Magnetism apacitance Sources of Electric Potential A potential difference can be created by moving charge from one conductor to another. The potential difference on a capacitor can produce

More information

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen Lecture 040 Integrated Circuit Technology - II (5/11/03) Page 040-1 LECTURE 040 INTEGRATED CIRCUIT TECHNOLOGY - II (Reference [7,8]) Objective The objective of this presentation is: 1.) Illustrate and

More information

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Zhiheng Wei 1a), Keita Yasutomi ) and Shoji Kawahito b) 1 Graduate School of Science and Technology,

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 014 S. Hoyos-ECEN-610 1 Sample-and-Hold Spring 014 S. Hoyos-ECEN-610 ZOH vs. Track-and-Hold V(t)

More information

A Microfluidic Electroosmotic Mixer and the Effect of Potential and Frequency on its Mixing Efficiency

A Microfluidic Electroosmotic Mixer and the Effect of Potential and Frequency on its Mixing Efficiency Proceedings of the 009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 009 A Microfluidic Electroosmotic Mixer and the Effect of Potential and Frequency on

More information

IXTF1N450 = 4500V. High Voltage Power MOSFET = 0.9A 80. R DS(on) (Electrically Isolated Tab) N-Channel Enhancement Mode.

IXTF1N450 = 4500V. High Voltage Power MOSFET = 0.9A 80. R DS(on) (Electrically Isolated Tab) N-Channel Enhancement Mode. High Voltage Power MOSFET (Electrically Isolated Tab) S = 4500V I D25 = 0.9A 80 R DS(on) N-Channel Enhancement Mode ISOPLUS i4-pak TM Symbol Test Conditions Maximum Ratings S T J = 25 C to 50 C 4500 V

More information

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1 Lecture 400 DiscreteTime omparators (4/8/02) Page 4001 LETURE 400 DISRETETIME OMPARATORS (LATHES) (READING: AH 475483) Objective The objective of this presentation is: 1.) Illustrate discretetime comparators

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

DATASHEET CD4093BMS. Features. Pinout. Functional Diagram. Applications. Description. CMOS Quad 2-Input NAND Schmitt Triggers

DATASHEET CD4093BMS. Features. Pinout. Functional Diagram. Applications. Description. CMOS Quad 2-Input NAND Schmitt Triggers DATASHEET CD9BMS CMOS Quad -Input NAND Schmitt Triggers FN Rev. December 199 Features High Voltage Types (V Rating) Schmitt Trigger Action on Each Input With No External Components Hysteresis Voltage Typically.9V

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL Kevin Wang 1, Ashok Swaminathan 1,2, Ian Galton 1 1 University of California at San Diego, La Jolla, CA 2 NextWave

More information

Core Technology Group Application Note 3 AN-3

Core Technology Group Application Note 3 AN-3 Measuring Capacitor Impedance and ESR. John F. Iannuzzi Introduction In power system design, capacitors are used extensively for improving noise rejection, lowering power system impedance and power supply

More information

Successive Approximation ADCs

Successive Approximation ADCs Department of Electrical and Computer Engineering Successive Approximation ADCs Vishal Saxena Vishal Saxena -1- Successive Approximation ADC Vishal Saxena -2- Data Converter Architectures Resolution [Bits]

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

IXTH3N150 V DSS. High Voltage Power MOSFET = 1500V I D25 = 3A 7.3. R DS(on) N-Channel Enhancement Mode. Avalanche Rated. Fast Intrinsic Diode TO-247

IXTH3N150 V DSS. High Voltage Power MOSFET = 1500V I D25 = 3A 7.3. R DS(on) N-Channel Enhancement Mode. Avalanche Rated. Fast Intrinsic Diode TO-247 High Voltage Power MOSFET S = 5V I D5 = 3A R DS(on) 7.3 N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode TO-7 Symbol Test Conditions Maximum Ratings S = 5 C to 5 C 5 V V DGR = 5 C to 5 C,

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

3/24/11. Introduction! Electrogenic cell

3/24/11. Introduction! Electrogenic cell March 2011 Introduction Electrogenic cell Electrode/electrolyte interface Electrical double layer Half-cell potential Polarization Electrode equivalent circuits Biopotential electrodes Body surface electrodes

More information

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode CCS5M2CM2.2kV, 5A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turn-off Tail Current High-Frequency Operation

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI INGEGNERIA ELETTRICA, ELETTRONICA E DEI SISTEMI Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

More information

Towards Fully Integrated Power Management

Towards Fully Integrated Power Management Towards Fully Integrated Power Management Jeffrey Morroni General Manager Kilby Power &D Texas Instruments The Power Management EndGame Invisible 100% Efficiency, 0 Volume EasytoUse omplete power management

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999 UNIVERSITY OF CLIFORNI College of Engineering Department of Electrical Engineering and Computer Sciences Professor Oldham Fall 1999 EECS 40 FINL EXM 13 December 1999 Name: Last, First Student ID: T: Kusuma

More information

IXTK5N250 IXTX5N250 = 2500V = 5A < 8.8Ω. High Voltage Power MOSFET w/ Extended FBSOA. Advance Technical Information. R DS(on)

IXTK5N250 IXTX5N250 = 2500V = 5A < 8.8Ω. High Voltage Power MOSFET w/ Extended FBSOA. Advance Technical Information. R DS(on) High Voltage Power MOSFET w/ Extended FBSOA N-Channel Enhancement Mode Avalanche Rated Guaranteed FBSOA Advance Technical Information IXTKN IXTXN S = V I D = A R DS(on)

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode Polar TM Power MOSFET HiPerFET TM N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode S I D25 R DS(on) t rr = 3V = 11A 24mΩ ns Symbol Test Conditions Maximum Ratings S = 25 C to 15 C 3 V V

More information

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab)

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab) GigaMOS TM Power MOSFET (Electrically Isolated Tab) N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode IXFR23N2T V DSS = 2V I D25 = 156A R DS(on) 8.m t rr 2ns ISOPLUS247 E153432 Symbol Test

More information

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST Introduction The Metal-Insulator-Metal capacitor is a key passive component in Radio Frequency (RF) and analog

More information

An Analysis on a Pseudo- Differential Dynamic Comparator with Load Capacitance Calibration

An Analysis on a Pseudo- Differential Dynamic Comparator with Load Capacitance Calibration An Analysis on a Pseudo- Differential Dynamic omparator with Load apacitance alibration Daehwa Paik, Masaya Miyahara, and Akira Tokyo Institute of Technology, Japan 011/10/7 ontents 1 Topology of Dynamic

More information

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept apacitors and Inductors Overview Defining equations Key concepts and important properties Series and parallel equivalents Integrator Differentiator Portland State University EE 221 apacitors and Inductors

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer Architecture and Engineering Lecture 12 VLSI II 2005-2-24 John Lazzaro (www.cs.berkeley.edu/~lazzaro) TAs: Ted Hong and David Marquardt www-inst.eecs.berkeley.edu/~cs152/ Last Time: Device

More information

Features / Advantages: Applications: Package: TO-240AA

Features / Advantages: Applications: Package: TO-240AA MCC19-8io1B hyristor Module = 2x 8 M I = 18 = 1.7 Phase leg Part number MCC19-8io1B Backside: isolated 3 1 2 6 7 Features / dvantages: pplications: Package: O-2 hyristor for line frequency Planar passivated

More information

IXFN56N90P. = 900V = 56A 145m 300ns. Polar TM HiPerFET TM Power MOSFET V DSS I D25. R DS(on) t rr

IXFN56N90P. = 900V = 56A 145m 300ns. Polar TM HiPerFET TM Power MOSFET V DSS I D25. R DS(on) t rr Polar TM HiPerFET TM Power MOSFET N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier S I D25 R DS(on) t rr = 9V = 56A 145m ns Symbol Test Conditions Maximum Ratings S = 25 C to 1 C 9 V

More information

Volterra Series: Introduction & Application

Volterra Series: Introduction & Application ECEN 665 (ESS : RF Communication Circuits and Systems Volterra Series: Introduction & Application Prepared by: Heng Zhang Part of the material here provided is based on Dr. Chunyu Xin s dissertation Outline

More information

DC and AC modeling of minority carriers currents in ICs substrate

DC and AC modeling of minority carriers currents in ICs substrate DC and AC modeling of minority carriers currents in ICs substrate Camillo Stefanucci, Pietro Buccella, Maher Kayal and Jean-Michel Sallese Swiss Federal Institute of Technology Lausanne, Switzerland MOS-AK

More information

Features / Advantages: Applications: Package: SOT-227B (minibloc)

Features / Advantages: Applications: Package: SOT-227B (minibloc) M = =,9 C Controlling ~ full-controlled Part number Backside: isolated 3 Features / dvantages: pplications: Package: SO-7B (minibloc) for line frequency Planar passivated chip Long-term stability Line

More information

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V SPNN6C3 Cool MOS Power Transistor V DS @ T jmax 65 V Feature New revolutionary high voltage technology Ultra low gate charge Extreme dv/dt rated Ultra low effective capacitances Improved transconductance

More information

2N5545/46/47/JANTX/JANTXV

2N5545/46/47/JANTX/JANTXV N//7/JANTX/JANTXV Monolithic N-Channel JFET Duals Product Summary Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv) N. to.. N. to.. N7. to.. Features Benefits Applications

More information

The K-Input Floating-Gate MOS (FGMOS) Transistor

The K-Input Floating-Gate MOS (FGMOS) Transistor The K-Input Floating-Gate MOS (FGMOS) Transistor C 1 V D C 2 V D I V D I V S Q C 1 C 2 V S V K Q V K C K Layout V B V K C K Circuit Symbols V S Control Gate Floating Gate Interpoly Oxide Field Oxide Gate

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

IXFR18N90P V DSS. Polar TM HiPerFET TM Power MOSFET = 900V I D25 = 10.5A. R DS(on) 300ns. t rr

IXFR18N90P V DSS. Polar TM HiPerFET TM Power MOSFET = 900V I D25 = 10.5A. R DS(on) 300ns. t rr Polar TM HiPerFET TM Power MOSFET N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode S = 9V I D5 =.5A R DS(on) mω 3ns t rr Symbol Test Conditions Maximum Ratings S = 5 C to 15 C 9 V V DGR

More information

IXFH400N075T2 IXFT400N075T2

IXFH400N075T2 IXFT400N075T2 Advance Technical Information TrenchT2 TM HiperFET TM Power MOSFET IXFH4N75T2 IXFT4N75T2 V DSS I D25 R DS(on) = 75V = 4A 2.3mΩ N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode TO-247 (IXFH)

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Long-channel MOSFET IV Corrections

Long-channel MOSFET IV Corrections Long-channel MOSFET IV orrections Three MITs of the Day The body ect and its influence on long-channel V th. Long-channel subthreshold conduction and control (subthreshold slope S) Scattering components

More information

IXTN600N04T2. TrenchT2 TM GigaMOS TM Power MOSFET = 40V = 600A. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

IXTN600N04T2. TrenchT2 TM GigaMOS TM Power MOSFET = 40V = 600A. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode TrenchT2 TM GigaMOS TM Power MOSFET IXTN6N4T2 V DSS = 4V I D25 = 6A R DS(on) 1.3mΩ N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode minibloc, SOT-227 E153432 Symbol Test Conditions Maximum

More information

µtrenchmos standard level FET Low on-state resistance in a small surface mount package. DC-to-DC primary side switching.

µtrenchmos standard level FET Low on-state resistance in a small surface mount package. DC-to-DC primary side switching. M3D88 Rev. 2 19 February 23 Product data 1. Product profile 1.1 Description N-channel enhancement mode field-effect transistor in a plastic package using TrenchMOS technology. Product availability: in

More information

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1 Lecture 32 Improved OpenLoop Comparators and es (3/28/1) Page 321 LECTURE 32 IMPROVED OPENLOOP COMPARATORS AND LATCHES LECTURE ORGANIZATION Outline Autozeroing Hysteresis Simple es Summary CMOS Analog

More information

MMIX1F520N075T2 = 75V = 500A. 1.6m. TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET. (Electrically Isolated Tab)

MMIX1F520N075T2 = 75V = 500A. 1.6m. TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET. (Electrically Isolated Tab) TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET MMIXF52N75T2 V DSS = 75V I D25 = 5A R DS(on).6m (Electrically Isolated Tab) D N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode G S Symbol

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Electromagnetic Modelling Process to Improve Cabling of Power Electronic Structures

Electromagnetic Modelling Process to Improve Cabling of Power Electronic Structures Electromagnetic Modelling Process to Improve Cabling of Power Electronic Structures J. Aimé (1, 2), E. Clavel (1), J. Roudet (1), G. Meunier (1), P. Loizelet (2) (1) G2Elab, Electrical Engineering laboratory

More information

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1 5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

More information

Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3. Technology

Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3. Technology Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3 Technology January 019 Texas A&M University 1 Spring, 019 Well-Diffusion Resistor Example shows two long resistors for K range Alternatively, serpentine

More information

Hrudya Nair. COBDEN RESEARCH GROUP Nanodevice Physics Lab CAPACITOR BRIDGE

Hrudya Nair. COBDEN RESEARCH GROUP Nanodevice Physics Lab CAPACITOR BRIDGE Hrudya Nair COBDEN RESEARCH GROUP Nanodevice Physics Lab CAPACITOR BRIDGE Overview: In this lab students will learn to measure the capacitance of an unknown capacitor by building a capacitor bridge circuit

More information

FEATURES SYMBOL QUICK REFERENCE DATA

FEATURES SYMBOL QUICK REFERENCE DATA FEATURES SYMBOL QUICK REFERENCE DATA Trench technology Low on-state resistance Fast switching d g s V DSS = 2 V I D = 7.6 A R DS(ON) 23 mω GENERAL DESCRIPTION N-channel enhancement mode field-effect power

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

(V DD =3.3V,Ta=25 C) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNIT Operating Current I DD fosc=16mhz,c L =30pF 8 ma Oscillation Stopping Current

(V DD =3.3V,Ta=25 C) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNIT Operating Current I DD fosc=16mhz,c L =30pF 8 ma Oscillation Stopping Current Quartz rystal Oscillator I with Selectable Divider GENERAL DESRIPTION The is a fundamental quartz crystal oscillator, up to 5MHz. The oscillation amplifier incorporates feedback resistor and capacitors

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3 urrent onvention HEM*3440 hemical nstrumentation Topic 3 udimentary Electronics ONENTON: Electrical current flows from a region of positive potential energy to a region of more negative (or less positive)

More information

ELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling

ELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling ELEC 3908, Physical Electronics, Lecture 13 iode Small Signal Modeling Lecture Outline Last few lectures have dealt exclusively with modeling and important effects in static (dc) operation ifferent modeling

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Advance Technical Information IXFN80N60P3 V DSS. High Power Density Easy to Mount Space Savings Symbol Test Conditions Characteristic Values (T J

Advance Technical Information IXFN80N60P3 V DSS. High Power Density Easy to Mount Space Savings Symbol Test Conditions Characteristic Values (T J Advance Technical Information Polar3 TM HiPerFET TM Power MOSFET N-Channel Enhancement Mode Fast Intrinsic Rectifier IXFN8N6P3 S = I D25 = 66A R DS(on) 7mΩ t rr 25ns minibloc E53432 G S Symbol Test Conditions

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

Micro/nano and precision manufacturing technologies and applications

Micro/nano and precision manufacturing technologies and applications The 4th China-American Frontiers of Engineering Symposium Micro/nano and precision manufacturing technologies and applications Dazhi Wang School of Mechanical Engineering Dalian University of Technology

More information

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129 Current source Ideal goal Small signal model: Open

More information

E18 DR. Giorgio Mussi 14/12/2018

E18 DR. Giorgio Mussi 14/12/2018 POLITECNICO DI MILANO MSC COURSE - MEMS AND MICROSENSORS - 2018/2019 E18 DR Giorgio Mussi 14/12/2018 In this class we will define and discuss an important parameter to characterize the performance of an

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

Electrical Characterization with SPM Application Modules

Electrical Characterization with SPM Application Modules Electrical Characterization with SPM Application Modules Metrology, Characterization, Failure Analysis: Data Storage Magnetoresistive (MR) read-write heads Semiconductor Transistors Interconnect Ferroelectric

More information

IXTT440N04T4HV V DSS

IXTT440N04T4HV V DSS Advance Technical Information TrenchT4 TM Power MOSFET IXTT44N4T4HV V DSS = 4V I D25 = 44A R DS(on).25m N-Channel Enhancement Mode Avalanche Rated TO-268HV Symbol Test Conditions Maximum Ratings V DSS

More information

Dynamics of Dickson Charge Pump Circuit

Dynamics of Dickson Charge Pump Circuit Dynamics of Dickson harge Pump ircuit Kenji KASHIWASE, Haruo KOBAYASHI, Nobuyuki KUROIWA, Naoto HAYASAKA, Takao MYONO, Tatsuya SUZUKI, Takashi IIJIMA, and Shuhei KAWAI Dept of Electronic Engineering, Gunma

More information

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory Electronic Design Automation Laboratory National Central University Department of Electrical Engineering, Taiwan ( R.O.C) An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor

More information

Choice of V t and Gate Doping Type

Choice of V t and Gate Doping Type Choice of V t and Gate Doping Type To make circuit design easier, it is routine to set V t at a small positive value, e.g., 0.4 V, so that, at V g = 0, the transistor does not have an inversion layer and

More information

High Efficiency Standard Rectifier

High Efficiency Standard Rectifier DLP8UC High Efficiency Standard ectifier 2x 8 M I F F.2 Phase leg Part number DLP8UC Marking on Product: MLUP Backside: anode/cathode 2/4 3 Features / dvantages: pplications: Package: TO-22 (DPak) Planar

More information

Pipelined multi step A/D converters

Pipelined multi step A/D converters Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 04 Nov 2006 Motivation for multi step A/D conversion Flash converters: Area and power consumption increase

More information

Lecture Notes 7 Fixed Pattern Noise. Sources of FPN. Analysis of FPN in PPS and APS. Total Noise Model. Correlated Double Sampling

Lecture Notes 7 Fixed Pattern Noise. Sources of FPN. Analysis of FPN in PPS and APS. Total Noise Model. Correlated Double Sampling Lecture Notes 7 Fixed Pattern Noise Definition Sources of FPN Analysis of FPN in PPS and APS Total Noise Model Correlated Double Sampling EE 392B: Fixed Pattern Noise 7-1 Fixed Pattern Noise (FPN) FPN

More information

IXTN200N10L2 V DSS = 100V = 178A. Linear L2 TM Power MOSFET w/ Extended FBSOA. Advance Technical Information

IXTN200N10L2 V DSS = 100V = 178A. Linear L2 TM Power MOSFET w/ Extended FBSOA. Advance Technical Information Advance Technical Information Linear L2 TM Power MOSFET w/ Extended FBSOA N-Channel Enhancement Mode Guaranteed FBSOA Avalanche Rated IXTN2N1L2 S = V I D25 = 178A R DS(on) 11mΩ minibloc, SOT-227 E153432

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information