A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

Size: px
Start display at page:

Download "A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load"

Transcription

1 A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1

2 Outline Introduction of LDO Regulator Multi-gain Stages in Output Capacitorless (OCL-LDO) regulator Negative Current Feedback (NCF) Technique Weighted Current Feedback (WCF) Technique Circuit Implementation of WCF LDO regulator Results and Discussions Conclusion

3 Introduction of LDO regulator Widely used due to its simple structure, fast response and low noise characteristics. Output capacitorless LDO (OCL-LDO) regulator eliminates the large output capacitor and support fully onchip applications. For large scale digital circuits, the effective supply line parasitic capacitance is large. The regulator needs to drive a wide range of load capacitance (C L ) with fast transient response.

4 Multi-gain Stages in a LDO Regulator Frequency Compensation V REF 1 st stage g m1 N 1 (V 1 ) p -3dB R 1 C 1 N 2 (V 2 ) N P (V P ) N O (V OUT ) p 2 p 3 p 2 nd stage 3 rd stage M P O -g m2 -g -g mp m3 R 2 1/g m C 2 R P C P Power T. R O C L Feedback Network 1. N 2 is low impedance node and N P is high impedance node. 2. p 3 and p O are low, limiting the stability at light I L. 3. Speed at node N P is small due to limited quiescent bias current in 3 rd stage.

5 Negative Current Feedback Technique Frequency Compensation V REF N 1 (V 1 ) p -3dB 1 st stage g m1 R 1 C 1 N 2 (V 2 ) p 2f 2 nd stage -g m2 3 rd stage N P (V P ) p 3 M P -g m3 -g mp N O (V OUT ) p O R 2 C 2 NCF Loop R P C P R P (1/g m ) Power T. R O C L g mf V P Current Sensor (+g mf ) Feedback Network 1. N P is low impedance node and N 2 is high impedance node rd stage is adaptively biased leading to a high speed. 3. Large R 2 and large C P results in two low frequency parasitic poles. 4. Negative feedback technique to reduce R 2.

6 Negative Current Feedback Technique Frequency Compensation V REF N 1 (V 1 ) p -3dB 1 st stage g m1 R 1 C 1 N 2 (V 2 ) p 2f 2 nd stage -g m2 3 rd stage N P (V P ) p 3 M P -g m3 -g mp N O (V OUT ) p O R 2 C 2 NCF Loop R P C P R P (1/g m ) Power T. R O C L g mf V P Current Sensor (+g mf ) Feedback Network 1. Negative feedback current reduce R 2 thus reduce the loop gain of the regulator as well. The regulation accuracy is degraded. 2. The charging/discharging rate at node N 2 is also reduced.

7 Weighted Current Feedback Technique: Operation WCF (+g mf ) Frequency Compensation V REF 1 st stage +g m1 N 1 (V 1 ) N 2 2 nd stage (V 2 ) 3 rd stage N P -g m2 -g m3 N P (V P ) Power T. M P (-g mp ) N O (V OUT ) 2 nd stage 3 rd stage V DD R L C L N 1 M 2 R X M d1 S M a1 B M a2 N P R P Overshoot Reduction R 2 N 2 M 3 WCF Loop I a1 M a3 I a2 V B M b1 M a5 M a4 Weighted Current Feedback (WCF) v fbin v fbout

8 Weighted Current Feedback Technique: Operation V DD V DD V DD N 1 M 2 R X Md1 S M a1 B M a2 N 1 M 2 R X Md1 S M a1 B M a2 N 1 M 2 R X Md1 S M a1 B M a2 N 2 M 3 I a1 M a3 I a2 N 2 M 3 I a1 M a3 I a2 N 2 M 3 I a1 M a3 I a2 V B V B V B M b1 M a5 M a4 WCF M b1 M a5 M a4 WCF M b1 M a5 M a4 WCF (a) (b) (c) 1. At low I L, both M a1 and M a2 are weakly biased. Feedback is small. 2. At moderate I L, both M a1 and M a2 are in saturation region. Feedback is strong. 3. At high I L, M a2 is forced to work in linear region by M a3 and M a4. Feedback is reduced.

9 Weighted Current Feedback Technique: Why it works? Frequency Compensation V REF N 1 (V 1 ) 1 st stage p -3dB g m1 R 1 C 1 N 2 (V 2 ) p 2f 2 nd stage -g m2 3 rd stage N P (V P ) p 3 M P -g m3 -g mp N O (V OUT ) p O R 2 C 2 WCF Loop R P C P R P (1/g m ) Power T. R O C L g mf V P Current Sensor (+g mf ) Feedback Network At low I L, R O is large, C L R O forms the dominant pole. ω UGF is small. Feedback can be small to achieve stability. At moderate I L, loop gain is large. R 2 and R P are moderate. A strong feedback is required to reduce R 2 and the loop gain. At high I L, R P is small. R 2 is also small due to a large bias current introduced by the WCF circuit. The feedback can be reduced.

10 WCF loaded Output Impedance & Feedback Factor 1. R 2f (feedback loaded impedance at node N 2 ) is significantly reduced at moderate and high I L. 2. The feedback (β is the feedback factor) is strong at moderate I L and weak at both low and high I L.

11 Parameters of WCF Regulator Case I: Large C L R O Case II: Moderate C L R O Case III: Small C L R O Parameter Low I L Moderate I L High I L Feedback Weak Strong Weak gm3gmf R2RP 1 g g g g R R R R A m1 m2 m3 mp 1 2 P O DC z 1 mc c 3dB Due to the WCF technique, p 4,5 f can be pushed to a higher frequency. The stability can be achieved. g p 1 CR L O 1 2CR L O 2,3 f C Cc gm2gm3gmpr1 R2RP RO p g mc Cc CPgmcRP CmR 1 2g mc Cc CPgmcRP CmR 1 gm2gm3gmpgmcr2 RP CmCL p Cc CPgmcRP CcC2CPR2R P C2CPR2R P 4,5 f Q Cc CPgmcRP Cmgmc R1 2Cc CPgmcRP CmgmcR1 p 2,3 f p 4,5 f CLgmc Cmgm2gm3gmpR2 RP Q Cc CPgmcRP C2R 2 CcCPRP C2R2 CPRP gm 1gm2gm3gmpR1 R2RP CL UGF m1 2 c g C gm 1 C c

12 X. L. Tan, S. S. Chong, P. K. Chan, and U. Dasgupta, A LDO Regulator with Weighted Current Feedback Technique for 0.47 nf- 10 nf Capacitive Load IEEE J. Solid-State Circuits, vol. 49, no. 11, Nov Circuit of WCF Regulator V DD M 3 M 4 M 9 R X S B N P M 12 M a1 M a2 M P C c V OUT V B M 1 M 2 M 0 V REF M 5 M 6 C m N 1 N 0 M 7 M 8 M 10 N 2 M 11 M a3 M a5 M a4 M 13 C B R B C L V B R L Weighted Current Feedback (WCF) Block 1 st Gain Stage 2 nd and 3 rd Gain Stage WCF, Power transistor, overshoot reduction, and output stage

13 Loop Gain and Phase Responses (a) (b) Stable for C L = 470 pf and 10 nf. Minimum PM = 45 o, Minimum GM = 11 db.

14 Microphotograph 76µm Start-up Cap Bias Gen. 150 µm C c +C m Control Circuit Power Transistor 120µm 16µm Area = mm 2

15 Measured Transient Responses 0 100ns 50mA 100ns 0 100ns 50mA 100ns C L = 470pF C L = 1nF 29mV 29mV 113mV 1µs 50mV 109mV 1µs 50mV (a) (b) 50mA 50mA 0 100ns 100ns 0 100ns 100ns C L = 3.3nF C L = 10nF 27mV 32mV 98mV 1µs 72mV 1µs 50mV 50mV (c) (d)

16 Performance Comparison Parameter JSSC 2005 no. 4 TCAS-I 2007 no.9 JSSC 2010 no. 2 JSSC 2010 no. 9 TCAS-I 2012 no. 5 TCAS-II 2012 no. 1 TCAS-I 2012 no. 9 TCAS-I 2013 no. 4 TCAS-II 2013 no. 6 Technology (μm) JSSC 2014 no. 11 Chip Area (mm 2 ) V IN (V) V OUT (V) Dropout Voltage (mv) I Q (μa) * I OUT (max) (ma) Total On-Chip Cap. (pf) Load Cap. Range (F) 600p 0-100p 0, 100p, 1n 0-50p 0-100p 0-100p 0-1n 0-100p 40p 470p-10n Line Reg. (mv/v) N/A 23 N/A N/A Load Reg. (mv/ma) N/A (db) N/A -57 N/A N/A N/A -58(@10kHz) N/A -51 Settling Time (μs) N/A N/A ~0.15 ~ I L(min) (ma) ΔI OUT (ma) ΔV OUT (mv) Edge Time (μs) Edge Time Ratio K FOM * Quiescent current includes the current consumption of bias circuit. The minimum I L used to test the transient performance.

17 Conclusion 1. A weighted current feedback technique is proposed in OCL- LDO Regulator. 2. Due to the smart control of the output impedance of the inter gain stage, the regulator can achieve a good stability, fast speed and high accuracy. 3. The comparison results have shown the WCF LDO regulator achieves a comparable or better FOM with respect to other reported designs whilst achieving wide range of C L driving ability.

18 Acknowledgment Thank MediaTek for the sponsorship of scholarship as well as the chip fabrication

19

20

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Precision, Micropower, Low-Dropout, High- Output-Current, SO-8 Voltage References

Precision, Micropower, Low-Dropout, High- Output-Current, SO-8 Voltage References 19-165; Rev ; 7/ Precision, Micropower, Low-Dropout, High- General Description The MAX6167 are precision, low-dropout, micropower voltage references. These three-terminal devices operate with an input

More information

MAX6012/6021/6025/ 6030/6041/6045/6050. Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References. General Description.

MAX6012/6021/6025/ 6030/6041/6045/6050. Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References. General Description. General Description The /MAX6021/MAX6025/MAX6030/MAX6041/ MAX6045/ precision, low-dropout, micropower voltage references are available in miniature SOT23-3 surface-mount packages. They feature a proprietary

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI INGEGNERIA ELETTRICA, ELETTRONICA E DEI SISTEMI Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Low-Cost, Micropower, Low-Dropout, High-Output-Current, SOT23 Voltage References

Low-Cost, Micropower, Low-Dropout, High-Output-Current, SOT23 Voltage References 19-1613; Rev 3; 3/2 Low-Cost, Micropower, Low-Dropout, General Description The are low-cost, low-dropout (LDO), micropower voltage references. These three-terminal references are available with output

More information

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References 19-777; Rev 3; /01 General Description The /MAX6021/MAX6025/MAX6030/MAX601/ MAX605/ precision, low-dropout, micropower voltage references are available in miniature SOT23-3 surface-mount packages. They

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

MCP9700/9700A MCP9701/9701A

MCP9700/9700A MCP9701/9701A Low-Power Linear Active Thermistor ICs Features Tiny Analog Temperature Sensor Available Packages: SC-70-5, SOT-23-5, TO-92-3 Wide Temperature Measurement Range: - -40 C to +125 C Accuracy: - ±2 C (max.),

More information

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs Advanced Analog Integrated Circuits Operational Transconductance Amplifier II Multi-Stage Designs Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard

More information

High-Supply-Voltage, Precision Voltage Reference in SOT23 MAX6035

High-Supply-Voltage, Precision Voltage Reference in SOT23 MAX6035 19-2606; Rev 3; 11/06 High-Supply-Voltage, Precision General Description The is a high-voltage, precision micropower voltage reference. This three-terminal device is available with output voltage options

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

FAN ma, Low-IQ, Low-Noise, LDO Regulator

FAN ma, Low-IQ, Low-Noise, LDO Regulator April 2014 FAN25800 500 ma, Low-I Q, Low-Noise, LDO Regulator Features V IN: 2.3 V to 5.5 V V OUT = 3.3 V (I OUT Max. = 500 ma) V OUT = 5.14 V (I OUT Max. = 250 ma) Output Noise Density at 250 ma and 10

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

Hallogic Hall-Effect Sensors OH090U, OH180U, OH360U OHN3000 series, OHS3000 series OHN3100 series, OHS3100 series

Hallogic Hall-Effect Sensors OH090U, OH180U, OH360U OHN3000 series, OHS3000 series OHN3100 series, OHS3100 series Hallogic HallEffect Sensors OH9U, OH18U, OH36U OHN3 series, OHS3 series OHN3 series, OHS3 series Features: Designed for noncontact switching operations Operates over broad range of supply voltages (4.5

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)

More information

Io=500mA LDO with Reset function

Io=500mA LDO with Reset function Io=mA LDO with Reset function GENERAL DESCRIPTION The NJW4116 is a ma output low dropout voltage regulator with reset function monitoring output voltage. Reset Output Hold Time is adjustable by external

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

L4970A 10A SWITCHING REGULATOR

L4970A 10A SWITCHING REGULATOR L4970A 10A SWITCHING REGULATOR 10A OUTPUT CURRENT.1 TO 40 OUTPUT OLTAGE RANGE 0 TO 90 DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REGULA- TION INTERNAL CURRENT LIMITING PRECISE.1 ± 2 ON CHIP REFERENCE

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-4187; Rev 4; 7/1 μ μ PART AMPS PER PACKAGE PIN- PACKAGE + * TOP MARK MAX965AZK+ 1 5 SOT3 ADSI MAX965AZK/V+ 1 5 SOT3 ADSK MAX965AUA+ 1 8 μmax-ep* AABI MAX965ATA+ 1 8 TDFN-EP* BKX MAX9651AUA+ 8 μmax-ep*

More information

PRODUCTION DATA SHEET

PRODUCTION DATA SHEET The positive voltage linear regulator is configured with a fixed 3.3V output, featuring low dropout, tight line, load and thermal regulation. VOUT is controlled and predictable as UVLO and output slew

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

GM4275 GM4275 V2.03. Features. Description. Applications. Block Diagram WIDE INPUT RANGE 5V LOW DROPOUT REGULATOR WITH RESET FLAG

GM4275 GM4275 V2.03. Features. Description. Applications. Block Diagram WIDE INPUT RANGE 5V LOW DROPOUT REGULATOR WITH RESET FLAG Description The GM4275 series of fixed output, micro-power voltage regulators is designed for applications which require wide input voltage range up to 45V. The GM4275 is an excellent choice for the use

More information

Ultra-Low-Power Series Voltage Reference

Ultra-Low-Power Series Voltage Reference 19-257; Rev 2; 3/5 Ultra-Low-Power Series Voltage Reference General Description The micropower, low-dropout bandgap voltage reference combines ultra-low supply current and low drift in a miniature 5-pin

More information

Digital LDO modelling techniques for performance estimation at early design stage

Digital LDO modelling techniques for performance estimation at early design stage Southern Illinois University Carbondale OpenSIUC Articles Department of Electrical and Computer Engineering 8-2018 Digital LDO modelling techniques for performance estimation at early design stage Haibo

More information

PT5108. High-PSRR 500mA LDO GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATIONS. Ripple Rejection vs Frequency. Ripple Rejection (db)

PT5108. High-PSRR 500mA LDO GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATIONS. Ripple Rejection vs Frequency. Ripple Rejection (db) GENERAL DESCRIPTION The PT5108 is a low-dropout voltage regulator designed for portable applications that require both low noise performance and board space. Its PSRR at 1kHz is better than 70dB. The PT5108

More information

Hallogic Hall-effect Sensors OH090U, OH180U, OH360U OHN3000 Series, OHS3000 Series OHN3100 Series, OHS3100 Series

Hallogic Hall-effect Sensors OH090U, OH180U, OH360U OHN3000 Series, OHS3000 Series OHN3100 Series, OHS3100 Series Hallogic Halleffect Sensors Features: Designed for noncontact switching operations Operates over broad range of supply voltages (4.5 V to 24 V) Operates with excellent temperature stability in harsh environments

More information

The current source. The Active Current Source

The current source. The Active Current Source V ref + - The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without Reference 19-1862; Rev 4; 1/7 SC7, 1.6V, Nanopower, Beyond-the-Rails General Description The nanopower comparators in space-saving SC7 packages feature Beyond-the- Rails inputs and are guaranteed to operate down

More information

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output

More information

Ultra-Low-Power Precision Series Voltage Reference MAX6029. Features. General Description. Ordering Information. Applications.

Ultra-Low-Power Precision Series Voltage Reference MAX6029. Features. General Description. Ordering Information. Applications. MAX629 General Description The MAX629 micropower, low-dropout bandgap voltage reference combines ultra-low supply current and low drift in a miniature 5-pin SOT23 surface-mount package that uses 7% less

More information

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Lecture 140 Simple Op Amps (2/11/02) Page 140-1 Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and

More information

High Reliability Hallogic Hall- Effect Sensors OMH090, OMH3019, OMH3020, OMH3040, OMH3075, OMH3131 (B, S versions)

High Reliability Hallogic Hall- Effect Sensors OMH090, OMH3019, OMH3020, OMH3040, OMH3075, OMH3131 (B, S versions) High Reliability Hallogic Hall Features: Designed for noncontact switching operations Operates over a broad range of supply voltages Excellent temperature stability operates in harsh environments Suitable

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO Better pproach of Dealing with ipple Noise of Introduction It has been a trend that cellular phones, audio systems, cordless phones and portable appliances have a requirement for low noise power supplies.

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

RP mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RP mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information RP122 3mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator General Description The RP122 is designed for portable RF and wireless applications with demanding performance and space requirements. The RP122

More information

N.C. OUT. Maxim Integrated Products 1

N.C. OUT. Maxim Integrated Products 1 19-2892; Rev 2; 11/6 Ultra-Low-Power Precision Series General Description The MAX629 micropower, low-dropout bandgap voltage reference combines ultra-low supply current and low drift in a miniature 5-pin

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Pole-Zero Analysis of Low-Dropout (LDO) Regulators: A Tutorial Overview

Pole-Zero Analysis of Low-Dropout (LDO) Regulators: A Tutorial Overview Pole-Zero Analysis of Low-Dropout (LDO Regulators: A Tutorial Overview Annajirao Garimella, Punith R. Surkanti and Paul M. Furth VLSI Laboratory, Klipsch School of Electrical and omputer Engineering New

More information

LM34 - Precision Fahrenheit Temperature Sensor

LM34 - Precision Fahrenheit Temperature Sensor - Precision Fahrenheit Temperature Sensor Features Typical Application Calibrated directly in degrees Fahrenheit Linear +10.0 mv/ F scale factor 1.0 F accuracy guaranteed (at +77 F) Parametric Table Supply

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter Lecture 380 Two-Stage Open-Loop Comparators-II (4/5/02) Page 380-1 LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH 445-461) Trip Point of an Inverter V DD In order to determine the propagation

More information

POWER management is a timely and essential research

POWER management is a timely and essential research 1392 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 55, NO. 5, JUNE 2008 Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC Tsz Yin Man, Student Member,

More information

Monolithic N-Channel JFET Duals

Monolithic N-Channel JFET Duals Monolithic N-Channel JFET Duals N96/97/98/99 Part Number V GS(off) (V) V (BR)GSS Min (V) Min (ms) I G Max (pa) V GS V GS Max (mv) N96.7 to N97.7 to N98.7 to N99.7 to Monolithic Design High Slew Rate Low

More information

AME. High PSRR, Low Noise, 600mA CMOS Regulator AME8855. n General Description. n Typical Application. n Features. n Functional Block Diagram

AME. High PSRR, Low Noise, 600mA CMOS Regulator AME8855. n General Description. n Typical Application. n Features. n Functional Block Diagram 8855 n General Description n Typical Application The 8855 family of positive, CMOS linear regulators provide low dropout voltage(42mv@6ma), low quiescent current, and low noise CMOS LDO. These rugged devices

More information

MAX6033 High-Precision, Low-Dropout SOT23 Series Voltage Reference

MAX6033 High-Precision, Low-Dropout SOT23 Series Voltage Reference MAX633 High-Precision, Low-Dropout SOT23 Series General Description The MAX633 ultra-high-precision series voltage reference features a low 7ppm/ C (max) temperature coefficient and a low dropout voltage

More information

Integrated Circuit Operational Amplifiers

Integrated Circuit Operational Amplifiers Analog Integrated Circuit Design A video course under the NPTEL Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India National Programme on Technology Enhanced

More information

Stability of Operational amplifiers

Stability of Operational amplifiers Stability o Operational ampliiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 05 Table o contents Use o operational ampliiers Stability o 2-stage opamp

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1. Low Dropout Linear Fixed Voltage Regulator V50 V33 Data Sheet Rev. 1.0, 2014-01-28 Automotive Power Table of Contents 1 Overview....................................................................... 3

More information

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90 Advance Technical Information High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor (Electrically Isolated Tab) C G EC3 Symbol Test Conditions Maximum Ratings G3 C2 G2 E2C V CES = 25 C

More information

An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range Loai G. Salem and Patrick P. Mercier University of California, San Diego

More information

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012 1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET D-FET (Depletion MOS) MOSFET (Enhancement E-FET) DC biasing Small signal

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University ECEN 67 (ESS) Op-Amps Stability and Frequency Compensation Techniques Analog & Mixed-Signal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative

More information

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual N9 Monolithic N-Channel JFET Dual V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv). to. Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise:

More information

GENERAL DESCRIPTION The PT5128 is a dual channel low-dropout voltage regulator designed for portable and wireless applications that require high PSRR, low quiescent current and excellent line and load

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )

More information

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1 19-1948; Rev 1; 3/01 Miniature Electronically Trimmable Capacitor General Description The is a fine-line (geometry) electronically trimmable capacitor (FLECAP) programmable through a simple digital interface.

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS

Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349-784X Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS P R Pournima M.Tech

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

SWITCHED CAPACITOR AMPLIFIERS

SWITCHED CAPACITOR AMPLIFIERS SWITCHED CAPACITOR AMPLIFIERS AO 0V 4. AO 0V 4.2 i Q AO 0V 4.3 Q AO 0V 4.4 Q i AO 0V 4.5 AO 0V 4.6 i Q AO 0V 4.7 Q AO 0V 4.8 i Q AO 0V 4.9 Simple amplifier First approach: A 0 = infinite. C : V C = V s

More information

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33 Data Sheet Rev. 1.0, 2014-11-17 Automotive Power Table of Contents 1 Overview.......................................................................

More information

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC Anugerah Firdauzi, Zule Xu, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology,

More information

14 Gb/s AC Coupled Receiver in 90 nm CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

14 Gb/s AC Coupled Receiver in 90 nm CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 14 Gb/s AC Coupled Receiver in 90 nm CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca OUTLINE Chip-to-Chip link overview AC interconnects Link modelling ISI & sensitivity

More information

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1 Lecture 50 Simple BJT Op Amps (/28/04) Page 50 LECTURE 50 SIMPLE BJT OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis

More information

Ultra-Low Output Voltage, Low-Quiescent-Current Linear Regulator for High-Temperature Applications

Ultra-Low Output Voltage, Low-Quiescent-Current Linear Regulator for High-Temperature Applications General Description The MAX16999 linear regulator operates from a 2. to 5. input voltage and delivers 1mA continuous load current with a low quiescent current typically around 13μA. The output voltage

More information

AME. High PSRR, Low Noise, 300mA CMOS Regulator AME8853. n General Description. n Typical Application. n Features. n Functional Block Diagram

AME. High PSRR, Low Noise, 300mA CMOS Regulator AME8853. n General Description. n Typical Application. n Features. n Functional Block Diagram 8853 n General Description n Typical Application The 8853 family of positive, CMOS linear regulators provide low dropout voltage(220mv@300ma), low quiescent current, and low noise CMOS LDO. These rugged

More information

Feedback Transimpedance & Current Amplifiers

Feedback Transimpedance & Current Amplifiers Feedback Transimpedance & Current Amplifiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 1005 141 Table of contents Introduction Shuntshunt FB for Transimpedance

More information

HAL501...HAL506, HAL508 Hall Effect Sensor ICs MICRONAS INTERMETALL MICRONAS. Edition May 5, DS

HAL501...HAL506, HAL508 Hall Effect Sensor ICs MICRONAS INTERMETALL MICRONAS. Edition May 5, DS MICRONAS INTERMETALL HAL1...HAL, HAL Hall Effect Sensor ICs Edition May, 1997 1--1DS MICRONAS HAL1...HAL HAL Hall Effect Sensor IC in CMOS technology Common Features: switching offset compensation at khz

More information

Linear Phase-Noise Model

Linear Phase-Noise Model Linear Phase-Noise Model 41 Sub-Outline Generic Linear Phase-Noise Model Circuit-Specific Linear Phase-Noise Model 4 Generic Linear Phase-Noise Model - Outline Linear Oscillator Model LC-Tank noise active

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs ECE 642, Spring 2003 - Final Exam Page FINAL EXAMINATION (ALLEN) - SOLUTION (Average Score = 9/20) Problem - (20 points - This problem is required) An open-loop comparator has a gain of 0 4, a dominant

More information