# Exercise 1: Capacitors

Size: px
Start display at page:

Transcription

1 Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured values. You will verify your results with a multimeter and an oscilloscope. DISCUSSION zero (assuming the capacitor did not have an initial charge). is stopped (except for the small amount of leakage current through the dielectric). The charge on the capacitor remains after the applied dc is removed. A charged capacitor can be discharged when a resistor or a direct short provides a discharge path across the capacitor. In this circuit, R2 provides a discharge path for the capacitor current (I DISC ). is interrupted. 152 FACET by Lab-Volt

2 AC 1 Fundamentals Capacitance Although ac passes through a capacitor, the capacitor creates opposition in the form of impedance. result, total circuit current increases. The circuit current decreases when the value of capacitance is reduced. If the value of C1 were increased to 0.9 F, the circuit current (I C1 ) would a. increase. b. decrease. c. remain the same. Increasing the frequency of the applied signal decreases the impedance of the capacitor, resulting in a higher circuit current. Circuit current will decrease and the capacitor impedance will increase if the frequency of the applied signal is decreased. If the frequency of the signal source were changed to 5 khz, circuit current (I C1 ) would a. increase. b. decrease. c. remain the same. Capacitance also affects the phase relationship between the applied voltage and current. The voltage across a capacitor lags the current by 90º. Put another way, the current through the capacitor leads the voltage by 90º. PROCEDURE If necessary, clear the AC 1 FUNDAMENTALS circuit board of all two-post connectors and any other connections. FACET by Lab-Volt 153

3 Capacitance AC 1 Fundamentals Locate the RC TIME CONSTANTS circuit block, and connect the circuit shown. Switches S1 and S2 are normally open. They must be pushed and held in order to be closed. S2 provides a means of discharging C1 through R3. In order to start with C1 fully discharged, press and hold S2 for several seconds, then release it. Connect channel 1 of the oscilloscope (use a X10 probe) across C1 and set the vertical coupling control to DC. S1 applies the 15 Vdc to the circuit. While monitoring the oscilloscope for voltage across C1, close S1. Does the capacitor charge up when the dc voltage is applied? Close S1 for about 15 seconds. While observing the voltage across C1 with the oscilloscope, release (open) S1 to remove the dc source from the circuit. 154 FACET by Lab-Volt

4 AC 1 Fundamentals Capacitance Does the charge on C1 remain even after the dc source is removed? Discharge the capacitor by pressing S2 until the voltage across C1 is zero. Remove the oscilloscope probe from the circuit. Set up a multimeter to read dc milliamps. Replace the two-post connector, between S1 and R2, with the multimeter probes. While monitoring the multimeter display, hold S1 closed for about 15 seconds. Repeat several times (discharge C1 each time by using S2). Based on the reaction of the multimeter FACET by Lab-Volt 155

5 Capacitance AC 1 Fundamentals became fully charged? Unlike dc, a capacitor will not block ac because the voltage level and polarity are constantly changing. In the following steps, you will change the value of capacitance and frequency of the applied signal to determine the effect on circuit current in a resistor-capacitor (RC) series circuit. shown. Use the oscilloscope to adjust V GEN for a 10 V pk-pk, 1 khz sine wave. Determine circuit current (I) by using current-sensing resistor R2. NOTE: To determine the ac circuit current, remove the two-post connector and use the oscilloscope to measure the peak-to-peak voltage drop across sensing resistor R2. Take the measurement and divide the value by the resistance of R2 (10 ). Replace the two-post connector before moving on to the next step. I = V R2 I = ma pk-pk (Recall Value 1) 156 FACET by Lab-Volt

6 AC 1 Fundamentals Capacitance Monitor the circuit current on the oscilloscope by observing the amplitude of the voltage across current-sensing resistor R2. Place CM switch 10 in the ON position to increase the capacitance of C3 from 0.1 F to 0.2 F. While observing the oscilloscope, toggle the CM switch off and on. Does an increase in capacitance increase or decrease circuit current? a. increase b. decrease Monitor the circuit current on the oscilloscope. Increase the generator frequency. Does increasing the frequency of the applied signal increase or decrease circuit current? a. decrease b. increase Readjust the generator frequency to 1 khz. Using V C3 as the reference, connect the channel 1 input of the oscilloscope to measure V C3, and connect the channel 2 input to measure V R2 (circuit current and V R2 have identical phase). Observe the phase angle ( ) between the circuit current (V R2 ) and V C3. Does the circuit current lead or lag the capacitor voltage? a. lead b. lag Do not turn off the equipment. The FACET setup is needed to answer a review question. Make sure all CMs are cleared (turned off) before proceeding to the next section. FACET by Lab-Volt 157

7 Capacitance AC 1 Fundamentals CONCLUSION A charge on a capacitor remains after the voltage source is removed. A capacitor passes ac current. REVIEW QUESTIONS 1. A capacitor a. blocks ac and passes dc. b. blocks dc and passes ac. c. passes ac and dc. d. blocks ac and dc. 2. Adjust V GEN for a 10 V pk-pk, 1 khz sine wave. Monitor the circuit current on the oscilloscope by observing the amplitude of the voltage across current-sensing resistor R2. Place the CM switch 9 in the ON position to alter the value of C3. While observing the oscilloscope, toggle CM switch 9 off and on. What can you conclude based on the reaction of the circuit current? a. The capacitance of C3 increased in value. b. Changing the capacitance of C3 had no effect on circuit current. c. The capacitance of C3 decreased in value. d. Changing the capacitance of C3 increased circuit current. 3. Decreasing the frequency of the signal applied to a capacitor a. b. c. d. decreases impedance. 158 FACET by Lab-Volt

8 AC 1 Fundamentals Capacitance 4. In a capacitor, a. current lags voltage by 90º. b. current leads voltage by 90º. c. voltage leads current by 90º. d. voltage and current remain in phase. 5. a. only while it is charging. b. when it is fully charged. c. only while it is discharging. d. while it is charging or discharging. NOTE: Make sure all CMs are cleared (turned off) before proceeding to the next section. FACET by Lab-Volt 159

### Exercise 1: RC Time Constants

Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results

### resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

### Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

### Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

### Exercise 2: Power Factor

Power in AC Circuits AC 2 Fundamentals Exercise 2: Power Factor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power factor of ac circuits by using standard

### Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

### U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

### PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,

### Exercise 2: The DC Ohmmeter

Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring

### PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS The first purpose of this laboratory is to observe voltages as a function of time in an RC circuit and compare it to its expected time behavior. In the second

### The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

The RC Circuit INTRODUCTION The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools

### Exercise 1: Thermocouple Characteristics

The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

### Name: Lab Partner: Section:

Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

### LAB 3: Capacitors & RC Circuits

LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two D-cell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab

### Capacitor Action. 3. Capacitor Action Theory Support. Electronics - AC Circuits

Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18 Charging a Capacitor (DC) Before looking at how capacitors charge

### Determining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line

Exercise 2-1 Determining Characteristic Impedance and Velocity EXERCISE OBJECTIVES Upon completion of this exercise, you will know how to measure the distributed capacitance and distributed inductance

### ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

### RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors

1 RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors Name Date Period Purpose The purpose of this lab will be to determine how capacitors behave in R-C circuits. The manner in which capacitors

### EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

### Capacitor in the AC circuit with Cobra3

Capacitor in the AC circuit with Cobra3 LEP Related Topics Capacitance, Kirchhoff s laws, Maxwell s equations, AC impedance, Phase displacement Principle A capacitor is connected in a circuit with a variable-frequency

### RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1

(32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.

### EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

### farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)

### Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant

EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant Capacitors Capacitors are devices that can store electric charge

### As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

### Coulomb s constant k = 9x10 9 N m 2 /C 2

1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

### Figure 1: Capacitor circuit

Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

### Capacitors GOAL. EQUIPMENT. CapacitorDecay.cmbl 1. Building a Capacitor

PHYSICS EXPERIMENTS 133 Capacitor 1 Capacitors GOAL. To measure capacitance with a digital multimeter. To make a simple capacitor. To determine and/or apply the rules for finding the equivalent capacitance

### Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response

Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented

### Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory

### RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

### Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

### Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition

RC Circuits Experiment PH06_Todd OBJECTIVE To investigate how the voltage across a capacitor varies as it charges. To find the capacitive time constant. EQUIPMENT NEEDED Computer: Personal Computer with

### July 11, Capacitor CBL 23. Name Date: Partners: CAPACITORS. TI-83 calculator with unit-tounit. Resistor (about 100 kω) Wavetek multimeter

July 11, 2008 - CBL 23 Name Date: Partners: CAPACITORS Materials: CBL unit TI-83 calculator with unit-tounit link cable Resistor (about 100 kω) Connecting wires Wavetek multimeter TI voltage probe Assorted

### Experiment 8: Capacitance and the Oscilloscope

Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Outline Capacitance: Capacitor

### RC, RL, and LCR Circuits

RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

### Capacitance Measurement

Overview The goal of this two-week laboratory is to develop a procedure to accurately measure a capacitance. In the first lab session, you will explore methods to measure capacitance, and their uncertainties.

### REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27.

REVIEW EXERCISES Circle the letter of the correct answer to each question. 1. What is the current and voltage relationship immediately after the switch is closed in the circuit in figure 4-27, which shows

### Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

### Laboratory #1: Inductive and Capacitive Transients Electrical and Computer Engineering EE University of Saskatchewan

Authors: Denard Lynch Date: July, 16, 2012 Corrections: Sep 16, 2012 D. Lynch, M. R. Avendi Revised: Sep 22, 2012 D. Lynch Revised: Sep 9, 2013 Description: This laboratory exercise explores resistance

### Experiment 1: Laboratory Experiments on Ferroelectricity

Experiment 1: Laboratory Experiments on Ferroelectricity 1. Task: 1. Set up a Sawyer-Tower circuit to measure ferroelectric hysteresis curves. 2. Check the D(E) curves for a capacitor, a resistor and an

### ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

### Exercise 2: Bending Beam Load Cell

Transducer Fundamentals The Strain Gauge Exercise 2: Bending Beam Load Cell EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the operation of a board,

### RC Circuit (Power amplifier, Voltage Sensor)

Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

### Demonstration 1: Faraday Ice Pail and Charge Production

Osservazioni e Misure Lezioni I e II Laboratorio di Elettromagnetismo Demonstration 1: Faraday Ice Pail and Charge Production Equipment Required: Electrometer (ES-9078) Charge Producers (ES-9057B) Earth

### Chapter 13. Capacitors

Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

### General Physics II Lab EM2 Capacitance and Electrostatic Energy

Purpose General Physics II Lab General Physics II Lab EM2 Capacitance and Electrostatic Energy In this experiment, you will examine the relationship between charge, voltage and capacitance of a parallel

### EXPERIMENT 5A RC Circuits

EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

### Experiment 5 Voltage Divider Rule for Series Circuits

Experiment 5 Voltage Divider Rule for Series Circuits EL - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives:. For the student

### EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

### Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

### FACULTY OF ENGINEERING LAB SHEET. IM1: Wheatstone and Maxwell Wien Bridges

FCULTY OF ENGINEEING LB SHEET EEL96 Instrumentation & Measurement Techniques TIMESTE 08-09 IM: Wheatstone and Maxwell Wien Bridges *Note: Please calculate the computed values for Tables. and. before the

### Chapt ha e pt r e r 9 Capacitors

Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the

### Exercise 2: Kirchhoff s Current Law/2 Sources

Exercise 2: Kirchhoff s Current Law/2 Sources EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply Kirchhoff s current law to a circuit having two voltage sources. You will

### Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

### 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

### Capacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)

apacitors THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = V (1) where is a proportionality constant known as the

### Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor)

PASCO scientific Vol. 2 Physics Lab Manual: P43-1 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED

### Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

### University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

### Laboratory I: Impedance

Physics 33, Fall 2008 ab I - Exercises aboratory I: Impedance eading: ab handout Simpson hapter if necessary) & hapter 2 particularly 2.9-2.3) ab Exercises. Part I What is the input impedance of the oscilloscope

### The Basic Capacitor. Dielectric. Conductors

Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

### Real Analog - Circuits 1 Chapter 6: Lab Projects

6.3.2: Leakage urrents and Electrolytic apacitors eal Analog ircuits 1 hapter 6: Lab Projects Overview: Voltagecurrent relationships for ideal capacitors do not always adequately explain measured capacitor

### Name Class Date. RC Circuit Lab

RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge

### Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

### RC Studies Relaxation Oscillator

RC Studies Relaxation Oscillator Introduction A glass tube containing neon gas will give off its characteristic light when the voltage across the tube exceeds a certain value. The value corresponds to

### Phys1220 Lab Electrical potential and field lines

Phys1220 Lab Electrical potential and field lines Purpose of the experiment: To explore the relationship between electrical potential (a scalar quantity) and electric fields (a vector quantity). Background:

### Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon.

EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8 This homework is due October 26, 2015, at Noon. 1. Nodal Analysis Or Superposition? (a) Solve for the

### Solutions to these tests are available online in some places (but not all explanations are good)...

The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

### Core Technology Group Application Note 3 AN-3

Measuring Capacitor Impedance and ESR. John F. Iannuzzi Introduction In power system design, capacitors are used extensively for improving noise rejection, lowering power system impedance and power supply

### ( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 27-9 Apparatus:

### Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

### Lab 10: DC RC circuits

Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

### Prepare for this experiment!

Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,

### AC Circuits Homework Set

Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

### The RC Time Constant

The RC Time Constant Objectives When a direct-current source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge

### Pre-Lab. Introduction

Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

### a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

### Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy

### [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

### PURPOSE: See suggested breadboard configuration on following page!

ECE4902 Lab 1 C2011 PURPOSE: Determining Capacitance with Risetime Measurement Reverse Biased Diode Junction Capacitance MOSFET Gate Capacitance Simulation: SPICE Parameter Extraction, Transient Analysis

### Learnabout Electronics - AC Theory

Learnabout Electronics - AC Theory Facts & Formulae for AC Theory www.learnabout-electronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...

### Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts.

15 2. Basic Electrical Parameters of Semiconductors: Sheet Resistivity, Resistivity and Conduction Type 2.1 Objectives 1. Familiarizing with experimental techniques used for the measurements of electrical

### CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

### Experiment Guide for RC Circuits

Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

### RC & RL TRANSIENT RESPONSE

INTRODUTION R & RL TRANSIENT RESPONSE The student will analyze series R and RL circuits. A step input will excite these respective circuits, producing a transient voltage response across various circuit

### SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

### Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

### (d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration

Chapter 1 - Timing Circuits GCSE Electronics Component 2: Application of Electronics Timing Circuits Learners should be able to: (a) describe how a RC network can produce a time delay (b) describe how

### Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

### Simple circuits - 3 hr

Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

### Familiarization, and Ohm's Law

1 1 Familiarization, and Ohm's Law Objectives To be familiar with the laboratory equipment and components. Verification of Ohm s law. Series and parallel circuits. Theory Part I : Lab equipment and components:

### PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor

### Lab 6: Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section

: Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly

### Man Struck By Lightning: Faces Battery Charge. Electricity

Man Struck By Lightning: Faces Battery Charge Electricity Properties of Electric Charge (Elektrisk ladning) Electric charges (q) repel or attract each other Like charges repel Opposite charges attract

### Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous