Exercise 1: Capacitors


 Phebe Bradley
 2 years ago
 Views:
Transcription
1 Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured values. You will verify your results with a multimeter and an oscilloscope. DISCUSSION zero (assuming the capacitor did not have an initial charge). is stopped (except for the small amount of leakage current through the dielectric). The charge on the capacitor remains after the applied dc is removed. A charged capacitor can be discharged when a resistor or a direct short provides a discharge path across the capacitor. In this circuit, R2 provides a discharge path for the capacitor current (I DISC ). is interrupted. 152 FACET by LabVolt
2 AC 1 Fundamentals Capacitance Although ac passes through a capacitor, the capacitor creates opposition in the form of impedance. result, total circuit current increases. The circuit current decreases when the value of capacitance is reduced. If the value of C1 were increased to 0.9 F, the circuit current (I C1 ) would a. increase. b. decrease. c. remain the same. Increasing the frequency of the applied signal decreases the impedance of the capacitor, resulting in a higher circuit current. Circuit current will decrease and the capacitor impedance will increase if the frequency of the applied signal is decreased. If the frequency of the signal source were changed to 5 khz, circuit current (I C1 ) would a. increase. b. decrease. c. remain the same. Capacitance also affects the phase relationship between the applied voltage and current. The voltage across a capacitor lags the current by 90º. Put another way, the current through the capacitor leads the voltage by 90º. PROCEDURE If necessary, clear the AC 1 FUNDAMENTALS circuit board of all twopost connectors and any other connections. FACET by LabVolt 153
3 Capacitance AC 1 Fundamentals Locate the RC TIME CONSTANTS circuit block, and connect the circuit shown. Switches S1 and S2 are normally open. They must be pushed and held in order to be closed. S2 provides a means of discharging C1 through R3. In order to start with C1 fully discharged, press and hold S2 for several seconds, then release it. Connect channel 1 of the oscilloscope (use a X10 probe) across C1 and set the vertical coupling control to DC. S1 applies the 15 Vdc to the circuit. While monitoring the oscilloscope for voltage across C1, close S1. Does the capacitor charge up when the dc voltage is applied? Close S1 for about 15 seconds. While observing the voltage across C1 with the oscilloscope, release (open) S1 to remove the dc source from the circuit. 154 FACET by LabVolt
4 AC 1 Fundamentals Capacitance Does the charge on C1 remain even after the dc source is removed? Discharge the capacitor by pressing S2 until the voltage across C1 is zero. Remove the oscilloscope probe from the circuit. Set up a multimeter to read dc milliamps. Replace the twopost connector, between S1 and R2, with the multimeter probes. While monitoring the multimeter display, hold S1 closed for about 15 seconds. Repeat several times (discharge C1 each time by using S2). Based on the reaction of the multimeter FACET by LabVolt 155
5 Capacitance AC 1 Fundamentals became fully charged? Unlike dc, a capacitor will not block ac because the voltage level and polarity are constantly changing. In the following steps, you will change the value of capacitance and frequency of the applied signal to determine the effect on circuit current in a resistorcapacitor (RC) series circuit. shown. Use the oscilloscope to adjust V GEN for a 10 V pkpk, 1 khz sine wave. Determine circuit current (I) by using currentsensing resistor R2. NOTE: To determine the ac circuit current, remove the twopost connector and use the oscilloscope to measure the peaktopeak voltage drop across sensing resistor R2. Take the measurement and divide the value by the resistance of R2 (10 ). Replace the twopost connector before moving on to the next step. I = V R2 I = ma pkpk (Recall Value 1) 156 FACET by LabVolt
6 AC 1 Fundamentals Capacitance Monitor the circuit current on the oscilloscope by observing the amplitude of the voltage across currentsensing resistor R2. Place CM switch 10 in the ON position to increase the capacitance of C3 from 0.1 F to 0.2 F. While observing the oscilloscope, toggle the CM switch off and on. Does an increase in capacitance increase or decrease circuit current? a. increase b. decrease Monitor the circuit current on the oscilloscope. Increase the generator frequency. Does increasing the frequency of the applied signal increase or decrease circuit current? a. decrease b. increase Readjust the generator frequency to 1 khz. Using V C3 as the reference, connect the channel 1 input of the oscilloscope to measure V C3, and connect the channel 2 input to measure V R2 (circuit current and V R2 have identical phase). Observe the phase angle ( ) between the circuit current (V R2 ) and V C3. Does the circuit current lead or lag the capacitor voltage? a. lead b. lag Do not turn off the equipment. The FACET setup is needed to answer a review question. Make sure all CMs are cleared (turned off) before proceeding to the next section. FACET by LabVolt 157
7 Capacitance AC 1 Fundamentals CONCLUSION A charge on a capacitor remains after the voltage source is removed. A capacitor passes ac current. REVIEW QUESTIONS 1. A capacitor a. blocks ac and passes dc. b. blocks dc and passes ac. c. passes ac and dc. d. blocks ac and dc. 2. Adjust V GEN for a 10 V pkpk, 1 khz sine wave. Monitor the circuit current on the oscilloscope by observing the amplitude of the voltage across currentsensing resistor R2. Place the CM switch 9 in the ON position to alter the value of C3. While observing the oscilloscope, toggle CM switch 9 off and on. What can you conclude based on the reaction of the circuit current? a. The capacitance of C3 increased in value. b. Changing the capacitance of C3 had no effect on circuit current. c. The capacitance of C3 decreased in value. d. Changing the capacitance of C3 increased circuit current. 3. Decreasing the frequency of the signal applied to a capacitor a. b. c. d. decreases impedance. 158 FACET by LabVolt
8 AC 1 Fundamentals Capacitance 4. In a capacitor, a. current lags voltage by 90º. b. current leads voltage by 90º. c. voltage leads current by 90º. d. voltage and current remain in phase. 5. a. only while it is charging. b. when it is fully charged. c. only while it is discharging. d. while it is charging or discharging. NOTE: Make sure all CMs are cleared (turned off) before proceeding to the next section. FACET by LabVolt 159
Exercise 1: RC Time Constants
Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results
More informationresistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )
DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify
More informationLab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory
Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.
More informationExercise 1: Thermistor Characteristics
Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor
More informationExercise 2: Power Factor
Power in AC Circuits AC 2 Fundamentals Exercise 2: Power Factor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power factor of ac circuits by using standard
More informationElectrical Circuits Lab Series RC Circuit Phasor Diagram
Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram  Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is
More informationU1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.
When you have completed this exercise, you will be able to operate a zenerclamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based
More informationPHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit
PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,
More informationExercise 2: The DC Ohmmeter
Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring
More informationPHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS
PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS The first purpose of this laboratory is to observe voltages as a function of time in an RC circuit and compare it to its expected time behavior. In the second
More informationThe RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope
The RC Circuit INTRODUCTION The goal in this lab is to observe the timevarying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools
More informationExercise 1: Thermocouple Characteristics
The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics
More informationName: Lab Partner: Section:
Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor
More informationLAB 3: Capacitors & RC Circuits
LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two Dcell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab
More informationCapacitor Action. 3. Capacitor Action Theory Support. Electronics  AC Circuits
Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18 Charging a Capacitor (DC) Before looking at how capacitors charge
More informationDetermining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line
Exercise 21 Determining Characteristic Impedance and Velocity EXERCISE OBJECTIVES Upon completion of this exercise, you will know how to measure the distributed capacitance and distributed inductance
More informationENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004
ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms
More informationRC Circuit Lab  Discovery PSI Physics Capacitors and Resistors
1 RC Circuit Lab  Discovery PSI Physics Capacitors and Resistors Name Date Period Purpose The purpose of this lab will be to determine how capacitors behave in RC circuits. The manner in which capacitors
More informationEDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2  CAPACITOR NETWORK
EDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2  CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is
More informationCapacitor in the AC circuit with Cobra3
Capacitor in the AC circuit with Cobra3 LEP Related Topics Capacitance, Kirchhoff s laws, Maxwell s equations, AC impedance, Phase displacement Principle A capacitor is connected in a circuit with a variablefrequency
More informationRC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1
(32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.
More informationEXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA
EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor
More informationfarads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).
p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)
More informationLab 5 AC Concepts and Measurements II: Capacitors and RC TimeConstant
EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC TimeConstant Capacitors Capacitors are devices that can store electric charge
More informationAs light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR
LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both
More informationCoulomb s constant k = 9x10 9 N m 2 /C 2
1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy
More informationFigure 1: Capacitor circuit
Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors
More informationCapacitors GOAL. EQUIPMENT. CapacitorDecay.cmbl 1. Building a Capacitor
PHYSICS EXPERIMENTS 133 Capacitor 1 Capacitors GOAL. To measure capacitance with a digital multimeter. To make a simple capacitor. To determine and/or apply the rules for finding the equivalent capacitance
More informationLab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response
Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented
More informationExperiment 3: Resonance in LRC Circuits Driven by Alternating Current
Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory
More informationRLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:
RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for
More informationPhysics Investigation 10 Teacher Manual
Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging
More informationOld Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition
RC Circuits Experiment PH06_Todd OBJECTIVE To investigate how the voltage across a capacitor varies as it charges. To find the capacitive time constant. EQUIPMENT NEEDED Computer: Personal Computer with
More informationJuly 11, Capacitor CBL 23. Name Date: Partners: CAPACITORS. TI83 calculator with unittounit. Resistor (about 100 kω) Wavetek multimeter
July 11, 2008  CBL 23 Name Date: Partners: CAPACITORS Materials: CBL unit TI83 calculator with unittounit link cable Resistor (about 100 kω) Connecting wires Wavetek multimeter TI voltage probe Assorted
More informationExperiment 8: Capacitance and the Oscilloscope
Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYSLAB 1493/1494/2699 Outline Capacitance: Capacitor
More informationRC, RL, and LCR Circuits
RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They
More informationCapacitance Measurement
Overview The goal of this twoweek laboratory is to develop a procedure to accurately measure a capacitance. In the first lab session, you will explore methods to measure capacitance, and their uncertainties.
More informationREVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27.
REVIEW EXERCISES Circle the letter of the correct answer to each question. 1. What is the current and voltage relationship immediately after the switch is closed in the circuit in figure 427, which shows
More informationClass #12: Experiment The Exponential Function in Circuits, Pt 1
Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits
More informationLaboratory #1: Inductive and Capacitive Transients Electrical and Computer Engineering EE University of Saskatchewan
Authors: Denard Lynch Date: July, 16, 2012 Corrections: Sep 16, 2012 D. Lynch, M. R. Avendi Revised: Sep 22, 2012 D. Lynch Revised: Sep 9, 2013 Description: This laboratory exercise explores resistance
More informationExperiment 1: Laboratory Experiments on Ferroelectricity
Experiment 1: Laboratory Experiments on Ferroelectricity 1. Task: 1. Set up a SawyerTower circuit to measure ferroelectric hysteresis curves. 2. Check the D(E) curves for a capacitor, a resistor and an
More informationELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT
Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the
More informationExercise 2: Bending Beam Load Cell
Transducer Fundamentals The Strain Gauge Exercise 2: Bending Beam Load Cell EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the operation of a board,
More informationRC Circuit (Power amplifier, Voltage Sensor)
Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power
More informationDemonstration 1: Faraday Ice Pail and Charge Production
Osservazioni e Misure Lezioni I e II Laboratorio di Elettromagnetismo Demonstration 1: Faraday Ice Pail and Charge Production Equipment Required: Electrometer (ES9078) Charge Producers (ES9057B) Earth
More informationChapter 13. Capacitors
Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive
More informationGeneral Physics II Lab EM2 Capacitance and Electrostatic Energy
Purpose General Physics II Lab General Physics II Lab EM2 Capacitance and Electrostatic Energy In this experiment, you will examine the relationship between charge, voltage and capacitance of a parallel
More informationEXPERIMENT 5A RC Circuits
EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationExperiment 5 Voltage Divider Rule for Series Circuits
Experiment 5 Voltage Divider Rule for Series Circuits EL  DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives:. For the student
More informationEXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection
OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1signal function generator 2 Oscilloscope, A.V.O meter 3 Resisters & inductor &capacitor THEORY the following form for
More informationPhysics 4 Spring 1989 Lab 5  AC Circuits
Physics 4 Spring 1989 Lab 5  AC Circuits Theory Consider the series inductorresistorcapacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage
More informationFACULTY OF ENGINEERING LAB SHEET. IM1: Wheatstone and Maxwell Wien Bridges
FCULTY OF ENGINEEING LB SHEET EEL96 Instrumentation & Measurement Techniques TIMESTE 0809 IM: Wheatstone and Maxwell Wien Bridges *Note: Please calculate the computed values for Tables. and. before the
More informationChapt ha e pt r e r 9 Capacitors
Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the
More informationExercise 2: Kirchhoff s Current Law/2 Sources
Exercise 2: Kirchhoff s Current Law/2 Sources EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply Kirchhoff s current law to a circuit having two voltage sources. You will
More informationBasic RL and RC Circuits RL TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri
st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R
More informationScience Olympiad Circuit Lab
Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary
More information2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREERESPONSE QUESTIONS
2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and
More informationCapacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)
apacitors THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = V (1) where is a proportionality constant known as the
More informationExperiment P43: RC Circuit (Power Amplifier, Voltage Sensor)
PASCO scientific Vol. 2 Physics Lab Manual: P431 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED
More informationElectricity and Light Pre Lab Questions
Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.
More informationUniversity of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB
PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about
More informationLaboratory I: Impedance
Physics 33, Fall 2008 ab I  Exercises aboratory I: Impedance eading: ab handout Simpson hapter if necessary) & hapter 2 particularly 2.92.3) ab Exercises. Part I What is the input impedance of the oscilloscope
More informationThe Basic Capacitor. Dielectric. Conductors
Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability
More informationReal Analog  Circuits 1 Chapter 6: Lab Projects
6.3.2: Leakage urrents and Electrolytic apacitors eal Analog ircuits 1 hapter 6: Lab Projects Overview: Voltagecurrent relationships for ideal capacitors do not always adequately explain measured capacitor
More informationName Class Date. RC Circuit Lab
RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge
More informationElectrical Engineering Fundamentals for NonElectrical Engineers
Electrical Engineering Fundamentals for NonElectrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...
More informationRC Studies Relaxation Oscillator
RC Studies Relaxation Oscillator Introduction A glass tube containing neon gas will give off its characteristic light when the voltage across the tube exceeds a certain value. The value corresponds to
More informationPhys1220 Lab Electrical potential and field lines
Phys1220 Lab Electrical potential and field lines Purpose of the experiment: To explore the relationship between electrical potential (a scalar quantity) and electric fields (a vector quantity). Background:
More informationDesigning Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon.
EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8 This homework is due October 26, 2015, at Noon. 1. Nodal Analysis Or Superposition? (a) Solve for the
More informationSolutions to these tests are available online in some places (but not all explanations are good)...
The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php
More informationCore Technology Group Application Note 3 AN3
Measuring Capacitor Impedance and ESR. John F. Iannuzzi Introduction In power system design, capacitors are used extensively for improving noise rejection, lowering power system impedance and power supply
More information( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t
Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 279 Apparatus:
More informationExperiment FT1: Measurement of Dielectric Constant
Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.
More informationLab 10: DC RC circuits
Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:
More informationPrepare for this experiment!
Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,
More informationAC Circuits Homework Set
Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.
More informationThe RC Time Constant
The RC Time Constant Objectives When a directcurrent source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge
More informationPreLab. Introduction
PreLab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain
More informationa. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire
Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiplechoice questions. The first 10 questions are the makeup Quiz. The remaining questions are
More informationExperiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.
Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy
More information[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1
1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left
More informationPURPOSE: See suggested breadboard configuration on following page!
ECE4902 Lab 1 C2011 PURPOSE: Determining Capacitance with Risetime Measurement Reverse Biased Diode Junction Capacitance MOSFET Gate Capacitance Simulation: SPICE Parameter Extraction, Transient Analysis
More informationLearnabout Electronics  AC Theory
Learnabout Electronics  AC Theory Facts & Formulae for AC Theory www.learnaboutelectronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...
More informationFig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts.
15 2. Basic Electrical Parameters of Semiconductors: Sheet Resistivity, Resistivity and Conduction Type 2.1 Objectives 1. Familiarizing with experimental techniques used for the measurements of electrical
More informationCHAPTER 22 ELECTROMAGNETIC INDUCTION
CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results
More informationExperiment Guide for RC Circuits
GuideP1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is
More informationRC & RL TRANSIENT RESPONSE
INTRODUTION R & RL TRANSIENT RESPONSE The student will analyze series R and RL circuits. A step input will excite these respective circuits, producing a transient voltage response across various circuit
More informationSECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM
SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More information(d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration
Chapter 1  Timing Circuits GCSE Electronics Component 2: Application of Electronics Timing Circuits Learners should be able to: (a) describe how a RC network can produce a time delay (b) describe how
More informationCapacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.
Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallelplate capacitor connected to battery. (b) is a circuit
More informationSimple circuits  3 hr
Simple circuits  3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current
More informationFamiliarization, and Ohm's Law
1 1 Familiarization, and Ohm's Law Objectives To be familiar with the laboratory equipment and components. Verification of Ohm s law. Series and parallel circuits. Theory Part I : Lab equipment and components:
More informationPHY222  Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.
PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor
More informationLab 6: Capacitors and ResistorCapacitor Circuits Phy208 Spr 2008 Name Section
: Capacitors and ResistorCapacitor Circuits Phy208 Spr 2008 Name Section Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly
More informationMan Struck By Lightning: Faces Battery Charge. Electricity
Man Struck By Lightning: Faces Battery Charge Electricity Properties of Electric Charge (Elektrisk ladning) Electric charges (q) repel or attract each other Like charges repel Opposite charges attract
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationPhys 2025, First Test. September 20, minutes Name:
Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 101 C / N m e
More informationPHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).
PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (020 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that
More information