UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

Size: px
Start display at page:

Download "UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo"

Transcription

1 UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI INGEGNERIA ELETTRICA, ELETTRONICA E DEI SISTEMI Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo Dott. Ing. Davide Marano REVERSED NESTED MILLER FREQUENCY COMPENSATION SWITCHED-CAPACITOR Σ A/D CONVERTER Tutor: Prof. G. PALUMBO Coordinatore: Prof. L. FORTUNA XIX Brainstorming Day 3rd October 009, Catania

2 Frequency Compensation in Feedback Amplifiers Each compensation technique must ensure stability for all possible feedback configurations. If the feedback factor f is not specified, compensation should be performed in the worst-case, with the highest GBW (f=1 and T 0 =A 0 ). G Fo (s) = V out (s) V (s) in G F (s) ω =ω c T(s) T ω = ω = G p = A p = ω = ω GF GF A A GBW T Fo F1 0 1 T GBW As the GBW of the loop-gain equals the closed-loop pole, frequency analysis of the open-loop gain not only gives information on closed-loop stability, but is the fundamental base for determining the maximum achievable bandwidth.

3 NMC vs. : Analytic Comparison RHP zero CC CC1CC 1 s s A0 gm3 gm gm3 A( s) = s 1 1 C C p g g g g C L CC s s 1 m m3 m m3 CC CC1CC 1 s s A0 gm gmgm3 A( s) = s C C C C C C s + p g C g g g g C L C C L C 1 m3 C1 m3 m m m3 RHP zero s NMC Inner amplifier Since C C has no connection to the load capacitor, the inner amplifier is a single-pole system. As a consequence, inner loop stability is virtually achieved for all values of C C. turns out to be more power efficient than NMC for the same bandwidth, or attains a larger bandwidth than NMC for the same power consumption.

4 Analytic and Numeric Figures of Merit In order to be able of judging the effectiveness of all the analyzed compensation approaches, a very important analytic figure of merit has been introduced, which compares, for a specific design condition and loading capacitance, the amplifier closed-loop bandwidth to the power consumption which is necessary to realize it. G G Nm1 Nm = = g g g g m1 m 3 m m 3 Normalized gain stage transconductances ωgbw C F. O. M. = gm i Analytic figure of merit i L ω ω GBW GBW = π f g = C m1 C1 GBW Open-loop amplifier gain-bandwidth product In order to provide a performance comparison among the simulated amplifier topologies, four fundamental numeric figures of merit are commonly employed: FOM S = f V GBW DD. C I DD L FOM L = SR C V DD. L I DD IFOM S = f GBW I DD. C L IFOM L = SR C I. L DD

5 : Feedforward and Nulling Resistors g m1 g m3 g m A( s) 1 g R 1 g 1+ RC + R + R + C s + RR + + R C C s mff mff C1 C C C C1 C A0 gm gmgm3 gm3 gmgm3 gmgm3 = s CC CL CC 1 gmff CC CL RC CC s s p gm3cc 1 gm3 gm gmg m3 gmg m3 Dominant pole from Miller effect Right-half plane zero s -coefficient

6 : Voltage and Current Buffers CF-FF-NR technique g m1 g m g m3 VF-FF-NR technique g m3 g m1 g m

7 : Feedforward and Dual-Active Buffers g m g m1 g m3 A V ( s) ( ) ( s) ( ) ( + ) Vout s AV rc CC 1 + rv CC s + rc rv CC1CC s V in s C C C r ω g p1 m 3CC1 g m 3 C L C1 c rv CC s CC C L s Dominant pole from Miller effect Right-half plane zero s -coefficient

8 Step-Response Optimization Techniques Proposed solution A Proposed solution B Performance parameter Basic OTA First strategy Second strategy proposed solution A C L (pf) Power (µw) A V0 (db) f GBW (MHz) φ (deg) SR + /SR - (V/µs) ( * ) 1.66/ / /1.71 1% T S + /T S - (ns) ( * ) 0.1% T S+ /T S- (ns) ( * ) 40/ / / /660 40/ /640 proposed solution B original RNM amplifier (*) In unity-gain feedback configuration.

9 : Analytical Figure of Merit Comparison 6 G Nm =0.5, φ =70, c NC =0.01, G Nmv =0.5, G Nmc =0.5 9 G Nm =0.5, φ =70, c NC =0.01, G Nmv =0.1, G Nmc =1 5 -FF -FF-NR -CF-FF-NR -VF-CF-FF 8 7 -FF -FF-NR -CF-FF-NR -VF-CF-FF 4 6 FOM 3 1 FOM G Nm G Nm1 ( ) FOM VF CF FF φ B = Nm1 1 + G + Nm1 G + Nm GNmv cnc tan B G + Nm1 tan B 1 1 c NC VF CF FF = tan GNm1 + GNmv GNm1( GNm1+ tan φ ) ( ) 1 G ( φ φ ) ( φ φ )

10 Analytical F.O.M. Comparison Transistor-level Spectre simulations are in excellent agreement with the expected results. Technique G Nm1 G Nm A 0 (db) C C1 /C C (pf) PM (deg) f GBW (MHz) SR (V/µs) Power (µw) FOM Analyt. FOM Simul. FF / FF-NR / FF-NR / CF-FF / CF-FF-NR / VF-FF / VF-FF-NR / VF-FF-NR / VF-CF-FF /

11 : Monte Carlo Simulation Results σgbw (khz) FF-NR FF-NR OBCF-FF OBCF-FF NR VF-FF VF-FF NR VF-FF OBNR VF-CF FF σgbw (khz) 147, 144,4 17, , ,3 89, σpm (deg) 4,5 4 3,5 3,5 1,5 1 0,5 0 FF-NR FF-NR OBCF-FF OBCF-FF NR VF-FF VF-FF NR VF-FF OBNR VF-CF FF σpm (deg) 1,6 1,9,68 4,06,8,4 1,8 1,4 Standard deviations of the gain-bandwidth distributions (N=1000) Standard deviations of the phase margin distributions (N=1000)

12 Future Perspectives Frequency compensation of three-stage feedback amplifiers employing reversed nested Miller compensation () for low-power contests has been discussed. Some new original frequency compensation techniques for RHP-zero cancellation of integrated three-stage OTA topologies have been investigated in detail. Analytic figure of merit evaluation has been carried out for each amplifier topology. Some of the most proficient amplifier topologies are currently being fabricated using a 0.35-µm process, and measurements will be executed in the near future. -VF-CF-FF Microphotograph of the layout (AMI 0.35 µm) -VF-CF-FF Microphotograph of the chip (AMI 0.35 µm)

13 Sigma-Delta (Σ ) Modulation Theory It joins Oversampling and Noise Shaping techniques in order to increase the SNR of a basic low-resolution converter (1 bit) to obtain and equivalent converter with a high number of bits (until 0 bits) at a medium frequency. It employs Digital Filtering techniques implemented through high-density technological processes, therefore providing low costs and high reliability. S a (t) S q [nt s ] A/D N q T s S a (t) S a [nt s ] S q [nt s ] + N q Correspondence between the quantizator bits and the converter (S/N) max : every additional bit in resolution entails a (S/N) increase of nearly 6dB. S N max ( db ) max S = 10 log10 = n N ( db)

14 Over-Sampling Technique Increasing the bandwidth of the sampled signal f s / reduces the noise power spectral density in the band of the input signal f x, since the noise quantization power remains constant all over the frequency range and only depends on the quantizer resolution. S Q in-band noise S Q {(f Ny /)} P Q = 0 f s / S df Q Over-sampling ratio M = K S Q {M(f Ny /)} f x f s /=f Ny / f s /=M(f Ny /) f Every doubling of the sampling frequency entails a 3-dB noise reduction in the signal band and thus produces an increment of 0.5 bits in the equivalent number of bits of the converter. S N ( ) S = + 3K N K s Ny s Ny f = f / f = f / ( db ) ( db ) ( db )

15 Noise-Shaping Technique It is based on the idea of processing the input signal and the quantization noise in two different ways. This type of modulation exploits the feedback configuration to realize a low-pass filter for the input signal and a high-pass filter for the quantization noise. N(z) S(z) - + H(z) + Y(z) H ( z) 1 Y ( z) = S( z) + N ( z) 1 + H ( z) 1 + H ( z) Every doubling of the sampling frequency entails a 9-dB noise reduction in the signal band and thus produces an increment of 1.5 bits in the equivalent number of bits of the converter. S N max ( db ) max S = 10 log10 = n+ 3K db N ( )

16 Higher-order Σ Modulators Higher-order modulators are realized with L-bit quantizers, entailing an extra increment of 6dB for every doubling of the sampling frequency. S N max ( db) ( ) ( 1) ( ) = C n + K L + db 14 S Qo (f)/s Qi (f) = L sin L (π f/f s ) 1 10 L=1 L= L=3 L=4 L=5 S Qo (f)/s Qi (f) f/f s

17 First-order Switched-Capacitor Σ Converter A new particular feedback configuration adopting 10 combined switches has been profitably exploited to implement a first-order modulator with a resolution of 10 bits. I/O Transfer Functions 3 C I z Vout ( z ) C F = Vin ( z ) 1 VREF C 1 z 1 VDD C F 3 V j T DD C ω I e Vout ( jω ) VREF C = Vin ( jω ) VDD CF 1+ jωt 1 V REF C Discrete-time Miller integrator 1-bit quantizer Edge-triggered D flip-flop T = 5.1M Hz K M = = 51 1 C I z 1 C 1 z Vout z Vin z N z C VREF C VREF z + 1 z 1 C F V + DD C F V DD F ( ) = ( ) + ( ) C I = 0.5 pf C F = 1 pf C1 = C = 1.5 pf

18 Σ Transient and Frequency Responses transient response to a 1V 10kHz-ac signal 10kHz-resolution frequency response Frequency band of interest = 0kHz Fundamental frequency Zero-crossing Shaped noise S a f a f a f... 60dB N = > a a a db 1 db db 3 db S N max ( db) ( ) = n db n = 10 bits

19 Clock generator D flip-flop Σ Converter Layout metal-1/metal- vias Miller integrator 1-bit comparator Digital blocks Common-centroid capacitors Analog blocks

20 Integrated Circuit Fabrication Σ converter layout Voltage Regulators Σ converter IC Voltage Regulators IC The complete layout was sent to the Austria Microsystems (AMS) silicon foundry, and the relevant integrated circuit has been recently fabricated using a 0.35-µm process. Measurements on the chip package are being executed. Integrated Circuit and Chip Package

21 Scientific Publications (1/) International Journals D. Marano, G. Palumbo, S. Pennisi, A New Compact Low-Power Rail-to-Rail Class-B Buffer for LCD Applications, IEEE Journal of Display Technology, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, Step-Response Optimization Techniques for Low-Power Three-Stage Operational Amplifiers for High Capacitive Load Applications, Analog Integrated Circuits and Signal Processing, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, Advanced RNM Compensation Topology with Active Buffers for High-Load Three-Stage OTAs, Microelectronics Journal, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, Improved Low-Power High-Speed Buffer Amplifier with Slew-Rate Enhancement for LCD Applications, Journal of Circuits, Systems and Computers, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, Improved Power-Efficient Technique with Voltage Buffer and Nulling Resistors for Low-Power High-Load Three-Stage Amplifiers, Journal of Circuits, Systems and Computers, accepted for publication. A. D. Grasso, D. Marano, G. Palumbo, S. Pennisi, Analytical Comparison of Reversed Nested Miller Frequency Compensation Techniques, International Journal of Circuit Theory and Applications, in press. A. D. Grasso, D. Marano, G. Palumbo, S. Pennisi, Improved Reversed Nested Miller Frequency Compensation Technique with Voltage Buffer and Nulling Resistor, IEEE Transactions on Circuits and Systems II, vol. 54, no. 5, pp , May 007.

22 Scientific Publications (/) International Conferences D. Marano, G. Palumbo, S. Pennisi, Self-Biased Dual-Path Push-Pull Output Buffer Amplifier Topologies for LCD Driver Applications, Proceeding ISCAS 10, Paris, France, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, A Novel Low-Power High-Speed Rail-to-Rail Class-B Buffer Amplifier Topology for LCD Output Drivers, Proceeding ICECS 09, Hammamet, Tunisia, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, A High-Speed Low-Power Output Buffer Amplifier for Large-Size LCD Applications, Proceeding ICECS 09, Hammamet, Tunisia, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, An Efficient RNM Compensation Topology with Voltage Buffer and Nulling Resistors for Large-Capacitive-Load Three-Stage OTAs, Proceeding ICECS 09, Hammamet, Tunisia, accepted for publication. D. Marano, G. Palumbo, S. Pennisi, A New Advanced Technique with Dual-Active Current and Voltage Buffers for Low-Power High-Load Three-Stage Amplifiers, Proceeding IEEE ISCAS 09, Tapei, Taiwan, May 009, in press. D. Marano, G. Palumbo, S. Pennisi, Step-Response Optimization Techniques for Low-Power Three-Stage Operational Amplifiers Driving Large Capacitive Loads, Proceeding IEEE ISCAS 09, Tapei, Taiwan, May 009, in press. A. D. Grasso, D. Marano, G. Palumbo, S. Pennisi, Reversed Double Pole Zero Cancellation Frequency Compensation Technique for Three-Stage Amplifiers, Proceeding IEEE PRIME 06, pp , Otranto, Italy, June 006.

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load Presented by Tan Xiao Liang Supervisor: A/P Chan Pak Kwong School of Electrical and Electronic Engineering 1 Outline

More information

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs Advanced Analog Integrated Circuits Operational Transconductance Amplifier II Multi-Stage Designs Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH ) Lecture 30 Compensation of Op AmpsII (/26/04) Page 30 LECTURE 30 COMPENSATION OF OP AMPSII (READING: GHLM 638652, AH 260269) INTRODUCTION The objective of this presentation is to continue the ideas of

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

Switched Capacitor: Sampled Data Systems

Switched Capacitor: Sampled Data Systems Switched Capacitor: Sampled Data Systems Basic switched capacitor theory How has Anadigm utilised this. Theory-Basic SC and Anadigm-1 Resistor & Charge Relationship I + V - I Resistance is defined in terms

More information

Stability & Compensation

Stability & Compensation Advanced Analog Building Blocks Stability & Compensation Wei SHEN (KIP) 1 Bode Plot real zeros zeros with complex conjugates real poles poles with complex conjugates http://lpsa.swarthmore.edu/bode/bode.html

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OVA & OTA 1 OVA VA-Operational Voltage Amplifier Ideally a voltage-controlled voltage source Typically contains an output stage that can drive arbitrary loads, including small resistances Predominantly

More information

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory Electronic Design Automation Laboratory National Central University Department of Electrical Engineering, Taiwan ( R.O.C) An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

Pole-Zero Analysis of Low-Dropout (LDO) Regulators: A Tutorial Overview

Pole-Zero Analysis of Low-Dropout (LDO) Regulators: A Tutorial Overview Pole-Zero Analysis of Low-Dropout (LDO Regulators: A Tutorial Overview Annajirao Garimella, Punith R. Surkanti and Paul M. Furth VLSI Laboratory, Klipsch School of Electrical and omputer Engineering New

More information

Top-Down Design of a xdsl 14-bit 4MS/s Σ Modulator in Digital CMOS Technology

Top-Down Design of a xdsl 14-bit 4MS/s Σ Modulator in Digital CMOS Technology Top-Down Design of a xdsl -bit 4MS/s Σ Modulator in Digital CMOS Technology R. del Río, J.M. de la Rosa, F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez Instituto de Microelectrónica de Sevilla CNM-CSIC

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Design of Three-Stage Nested-Miller Compensated Operational Amplifiers Based on Settling Time

Design of Three-Stage Nested-Miller Compensated Operational Amplifiers Based on Settling Time Design of Three-tage Nested-Miller ompensated Operational Amplifiers Based on ettling Time Hamed Aminzadeh, Khalil Mafinezhad, and Reza otfi, Abstract ettling performance of operational amplifiers (opamps)

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)

More information

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits I Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system

More information

Stability of Operational amplifiers

Stability of Operational amplifiers Stability o Operational ampliiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 05 Table o contents Use o operational ampliiers Stability o 2-stage opamp

More information

Development of a Pulse Shape Discrimination IC

Development of a Pulse Shape Discrimination IC Development of a Pulse Shape Discrimination IC Michael Hall Southern Illinois University Edwardsville VLSI Design Research Laboratory October 20, 2006 Design Team Southern Illinois University Edwardsville:

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 3: Sample and Hold Circuits Switched Capacitor Circuits Circuits and Systems Sampling Signal Processing Sample and Hold Analogue Circuits Switched Capacitor

More information

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Markus Bingesser austriamicrosystems AG Rietstrasse 4, 864 Rapperswil, Switzerland

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors

Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors Indexing terms: Multi-bit ΣΔ Modulators, High-speed, high-resolution A/D conversion. This paper presents

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

Lecture 10, ATIK. Data converters 3

Lecture 10, ATIK. Data converters 3 Lecture, ATIK Data converters 3 What did we do last time? A quick glance at sigma-delta modulators Understanding how the noise is shaped to higher frequencies DACs A case study of the current-steering

More information

EXAMPLE DESIGN PART 2

EXAMPLE DESIGN PART 2 ECE37 Advanced Analog Circuits Lecture 4 EXAMPLE DESIGN PART 2 Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog

More information

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 = ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3 MOSIS REPORT Spring 2010 MOSIS Report 1 MOSIS Report 2 MOSIS Report 3 MOSIS Report 1 Design of 4-bit counter using J-K flip flop I. Objective The purpose of this project is to design one 4-bit counter

More information

Appendix A Butterworth Filtering Transfer Function

Appendix A Butterworth Filtering Transfer Function Appendix A Butterworth Filtering Transfer Function A.1 Continuous-Time Low-Pass Butterworth Transfer Function In order to obtain the values for the components in a filter, using the circuits transfer function,

More information

Current feedback operational amplifiers as fast charge sensitive preamplifiers for

Current feedback operational amplifiers as fast charge sensitive preamplifiers for Home Search Collections Journals About Contact us My IOPscience Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out This article has been downloaded

More information

Modeling All-MOS Log-Domain Σ A/D Converters

Modeling All-MOS Log-Domain Σ A/D Converters DCIS 04 Modeling All-MOS Log Σ ADCs Intro Circuits Modeling Example Conclusions 1/22 Modeling All-MOS Log-Domain Σ A/D Converters X.Redondo 1, J.Pallarès 2 and F.Serra-Graells 1 1 Institut de Microelectrònica

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Feedback concept Feedback in emitter follower Stability One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution) Georgia Institute of Technology School of Electrical and Computer Engineering Midterm-1 Exam (Solution) ECE-6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions

More information

2 nd Order PLL Design and Analysis

2 nd Order PLL Design and Analysis nd Order PLL Design and Analysis S REF Phase Detector Σ K f Loop Filter VCO K V s R C Loop Divider Fig. : nd Order PLL with Current-Mode Phase Detector useful functions and identities Units Constants Table

More information

Lecture 17 Date:

Lecture 17 Date: Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

Exact Analysis of a Common-Source MOSFET Amplifier

Exact Analysis of a Common-Source MOSFET Amplifier Exact Analysis of a Common-Source MOSFET Amplifier Consider the common-source MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

MICROELECTRONIC CIRCUIT DESIGN Second Edition

MICROELECTRONIC CIRCUIT DESIGN Second Edition MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

SWITCHED CAPACITOR AMPLIFIERS

SWITCHED CAPACITOR AMPLIFIERS SWITCHED CAPACITOR AMPLIFIERS AO 0V 4. AO 0V 4.2 i Q AO 0V 4.3 Q AO 0V 4.4 Q i AO 0V 4.5 AO 0V 4.6 i Q AO 0V 4.7 Q AO 0V 4.8 i Q AO 0V 4.9 Simple amplifier First approach: A 0 = infinite. C : V C = V s

More information

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL Kevin Wang 1, Ashok Swaminathan 1,2, Ian Galton 1 1 University of California at San Diego, La Jolla, CA 2 NextWave

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

EXAMPLE DESIGN PART 2

EXAMPLE DESIGN PART 2 ECE37 Advanced Analog Circuits Lecture 3 EXAMPLE DESIGN PART 2 Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of CMOS analog

More information

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2 Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + = is (A) 1 (B) 2 (C) 3 (D) 4 2. The Fourier series of a real periodic function has only P. Cosine terms if it is

More information

Lecture 120 Filters and Charge Pumps (6/9/03) Page 120-1

Lecture 120 Filters and Charge Pumps (6/9/03) Page 120-1 Lecture 120 Filters and Charge Pumps (6/9/03) Page 1201 LECTURE 120 FILTERS AND CHARGE PUMPS (READING: [4,6,9,10]) Objective The objective of this presentation is examine the circuits aspects of loop filters

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Lectures on STABILITY

Lectures on STABILITY University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science νin ( ) Effect of Feedback on Frequency Response a SB Robert W. Brodersen EECS40 Analog

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Active Frequency Filters with High Attenuation Rate

Active Frequency Filters with High Attenuation Rate Active Frequency Filters with High Attenuation Rate High Performance Second Generation Current Conveyor Vratislav Michal Geoffroy Klisnick, Gérard Sou, Michel Redon, Jiří Sedláček DTEEE - Brno University

More information

Slide Set Data Converters. High-Order, CT Σ Converters and Σ DAC

Slide Set Data Converters. High-Order, CT Σ Converters and Σ DAC 0 lide et Data Converters High-Order, CT Σ Converters and Σ DAC 1 NR Enhancement ummary High Order Noise haping Continuos-Time Σ Modulators Band-Pass Σ Modulators Oversampling DAC 2 NR Enhancement Many

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

A novel Capacitor Array based Digital to Analog Converter

A novel Capacitor Array based Digital to Analog Converter Chapter 4 A novel Capacitor Array based Digital to Analog Converter We present a novel capacitor array digital to analog converter(dac architecture. This DAC architecture replaces the large MSB (Most Significant

More information

ADC Bit, 50MHz Video A/D Converter

ADC Bit, 50MHz Video A/D Converter ADC- -Bit, 0MHz Video A/D Converter FEATURES Low power dissipation (0mW max.) Input signal bandwith (00MHz) Optional synchronized clamp function Low input capacitance (pf typ.) +V or +V /+.V power supply

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Continuous Time and Switched Capacitor Filters F. Maloberti: Design of CMOS Analog Integrated

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm - Problem 7 points Given in

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI Contents Delay estimation Simple RC model Penfield-Rubenstein Model Logical effort Delay

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

Lecture 120 Compensation of Op Amps-I (1/30/02) Page ECE Analog Integrated Circuit Design - II P.E. Allen

Lecture 120 Compensation of Op Amps-I (1/30/02) Page ECE Analog Integrated Circuit Design - II P.E. Allen Lecture 20 Compensation of Op AmpsI (/30/02) Page 20 LECTURE 20 COMPENSATION OF OP AMPS I (READING: GHLM 425434 and 624638, AH 249260) INTRODUCTION The objective of this presentation is to present the

More information

Switched-Capacitor Filters

Switched-Capacitor Filters Switched-Capacitor Filters Analog sampled-data filters: Continuous amplitude Quantized time Applications: Oversampled and D/A converters Analog front-ends (CDS, etc) Standalone filters E.g. National Semiconductor

More information

The Linear-Feedback Shift Register

The Linear-Feedback Shift Register EECS 141 S02 Timing Project 2: A Random Number Generator R R R S 0 S 1 S 2 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 The Linear-Feedback Shift Register 1 Project Goal Design a 4-bit LFSR SPEED, SPEED,

More information

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain - Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :30-3pm at BWRC (in lieu of Tuesday) Today s lecture Power

More information

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application KH 1GHz, Differential Input/Output Amplifier www.cadeka.com Features DC - 1GHz bandwidth Fixed 1dB (V/V) gain 1Ω (differential) inputs and outputs -7/-dBc nd/3rd HD at MHz ma output current 9V pp into

More information

Compensator Design for Closed Loop Hall-Effect Current Sensors

Compensator Design for Closed Loop Hall-Effect Current Sensors Compensator Design for Closed Loop HallEffect Current Sensors Ashish Kumar and Vinod John Department of Electrical Engineering, Indian Institute of Science, Bangalore 5600, India. Email: ashishk@ee.iisc.ernet.in,

More information

Electronics and Communication Exercise 1

Electronics and Communication Exercise 1 Electronics and Communication Exercise 1 1. For matrices of same dimension M, N and scalar c, which one of these properties DOES NOT ALWAYS hold? (A) (M T ) T = M (C) (M + N) T = M T + N T (B) (cm)+ =

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

Pipelined multi step A/D converters

Pipelined multi step A/D converters Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 04 Nov 2006 Motivation for multi step A/D conversion Flash converters: Area and power consumption increase

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

MC MC35172 LOW POWER DUAL BIPOLAR OPERATIONAL AMPLIFIERS.. GOOD CONSUMPTION/SPEED RATIO : ONLY 200µA/Amp FOR 2.1MHz, 2V/µs

MC MC35172 LOW POWER DUAL BIPOLAR OPERATIONAL AMPLIFIERS.. GOOD CONSUMPTION/SPEED RATIO : ONLY 200µA/Amp FOR 2.1MHz, 2V/µs MC3372 MC3572 LOW POWER DUAL BIPOLAR OPERATIONAL AMPLIFIERS GOOD CONSUMPTION/SPEED RATIO : ONLY 200µA/Amp FOR 2MHz, 2/µs SINGLE (OR DUAL) SUPPLY OPERATION FROM +4 TO +44 (±2 TO ±22) WIDE INPUT COMMON MODE

More information

EE 435 Lecture 44. Switched-Capacitor Amplifiers Other Integrated Filters

EE 435 Lecture 44. Switched-Capacitor Amplifiers Other Integrated Filters EE 435 Lecture 44 Switched-Capacitor Amplifiers Other Integrated Filters Switched-Capacitor Amplifiers Noninverting Amplifier Inverting Amplifier C A V = C C A V = - C Accurate control of gain is possible

More information

CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS

CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS Chapter 6 Introduction (6/24/06) Page 6.0 CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS INTRODUCTION Chapter Outline 6. CMOS Op Amps 6.2 Compensation of Op Amps 6.3 TwoStage Operational Amplifier Design 6.4 Cascode

More information