ECE 497 JS Lecture - 11 Modeling Devices for SI

Size: px
Start display at page:

Download "ECE 497 JS Lecture - 11 Modeling Devices for SI"

Transcription

1 ECE 497 JS Lecture 11 Modeling Devices for SI Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois 1

2 Announcements Thursday Feb 26 th NO CLASS Tuesday March 2 nd Speaer: Carl Werner Rambus Inc., Los Altos, CA 2

3 Motivations Z o Z o C Loads are nonlinear Need to model reactive elements in the time domain Generalize to nonlinear reactive elements 3

4 TimeDomain Model for Linear Capacitor For linear capacitor C with voltage v and current i which must satisfy i = dv C dt Using the bacward Euler scheme, we discretize time and voltage variables and obtain at time t = nh v = v hv ' n 1 n n 1 4

5 TimeDomain Model for Linear Capacitor After substitution, we obtain v' = n 1 i C n 1 so that n 1 vn 1 = vn h C i The solution for the current at tn1 is, therefore, C C i v v h h n 1 = n 1 n 5

6 TimeDomain Model for Linear Capacitor i v C i n1 i n1 v n1 R=h/C v n C/h v n1 R=h/(2C) v n 2C/hi n Bacward Euler companion model at t=nh Trapezoidal companion model at t=nh 6

7 Step response comparisons Vo (volts) 0.2 Exact Bacward Euler Trapezoidal Time (ns) 7

8 TimeDomain Model for Linear Inductor v = di L dt Bacward Euler i i hi i = n 1 v L n 1 L L v = i i h h n 1 n 1 n : n 1 = n n 1 V i L V n1 i n1 R= L h L h i n 8

9 TimeDomain Model for Linear Inductor If trapezoidal method is applied h i = i i i 2 [ ] n 1 n n 1 n 2L 2L v = i v h h n 1 n 1 n V i L i n1 V n1 R= 2L h 2L h i n V n 9

10 NewtonRaphson Method Problem: Wish to solve for f(x)=0 Use fixed point iteration method: Define F( x) = x K( x) f ( x) I : x = F( x ) = x K( x ) f( x ) With Newton Raphson: df = = K( x) [ f ( x)] 1 therefore, I : x = x [ f ( x )] f( x ) 1 dx 10

11 NEWTONRAPHSON ALGORITHM (graphical interpretation) f(x) f(x 1 ) P f(x ) P 1 slope Q x 1 x x 11

12 NewtonRaphson Algorithm ( ) 1 : 1 N R x = x A f x Ax 1 = Ax f( x) S. x 1 is the solution of a linear system of equations. A x = S LU fact Forward and bacward substitution. A is the nodal matrix for N S is the rhs source vector for N. 12

13 NR Algorithm voltage controlled current controlled } } 0. 0, gives V0, i0 1. Find V, i compute companion mod els. G {,,, I R E Obtain A, S. 3. Solve A x = S. V c C c 4. x 1 Solution 5. Chec for convergence x 1 x < ε. If they converge, then stop. 6. 1, and go to step1. 13

14 Application to Diode Circuit R E V I I diode I* load line V* V V E f V I e R V / V ( ) = ( t s 1) 14

15 NR Diode It is obvious from the circuit that the solution must satisfy f(v) = 0 We also have 1 Is V / Vt f '( V) = e R Vt The Newton method relates the solution at the (1)th step to the solution at the th step by f( V ) V 1 = V f '( V ) V 1 = V V E I s R 1 Is e R V t V / V ( e t 1) V / V t 15

16 NewtonRaphson (cont ) After manipulation we obtain 1 R E g V = J R 1 g = I V s t e V / V t J I e V g V / Vt = s( 1) 16

17 NewtonRaphson for Diode NewtonRaphson representation of diode circuit at th iteration R i 1 E v 1 g J g = I V s t e V / V t J I e V g / ( V Vt = s 1) 17

18 Current Controlled i V V R Companion E i I R = dh() i di = i i E = h( i ) R i 18

19 For a General Networ Let x = vector variables in the networ to be solved for. Let f(x) = 0 be the networ equations. Let x be the present iterate, and define A = f ( x ) Jacobian of f at x = x Let N be the linear networ where each nonlinear resistor is replaced by its companion model computed from x. j j i j V j I = g ( V ) j j j 19

20 General Networ V = P P j j j Companion model j j G I I V V G = dg( V ) dv = V V [ ] I = g V GV 20

21 Nonlinear Reactive Elements: i n1 i n1 V C(v) V q(v) n1 h J n V n1 g J J n dq q= f() v, i = dt qn 1 = qn h dt t= tn dq 1 qn 1 qn f( vn 1) or, in 1 = in 1( vn 1) = h h h 21

22 General Element I I=f(V) I slope= g V V J I i 1 v I=f(V) v 1 g J 22

23 Bipolar Transistor C B E C V bc C bc α f I de B I dc I B I C I de I E V be C be α r I dc E 23

24 TTL Gate V cc V cc R 1 R 2 R 3 R 3 Q2 R 1 Q 3 R 2 Vin Q 6 Q 1 R E V out Q4 Vin R E I out V out R 4 R 5 R 4 R 5 Q 5 24

25 IV Curves for TTL Gate 200 AS04 TT L 100 I out (ma) Vin=0.8V Vin=1.4V Vin=1.6V Vin=1.8V V out 25

26 IBIS Introduction I/O Buffer Information Specification is a Behavioral method of modeling I/O buffers based on IV curve data obtained from measurements or circuit simulation. The IBIS format is standardized and can be parsed to create the equivalent circuit information needed to represent the behavior of an IC. Can be integrated within a circuit simulator using an IBIS translator.

27 Advantages of IBIS Protection of proprietary information Adequate for signal integrity simulation Models are free from vendors Faster simulations (with acceptable accuracy) Standardized topology

28 IBIS Diagram Power Clamp Input Pacage Enable Pacage GND Clamp Power Clamp Threshold & Enable Logic Pullup Ramp Pulldown Ramp Pullup V/I Pulldown V/I Power Clamp GND Clamp Output Pacage GND Clamp 28

29 IBIS Input Topology Vcc R_pg L_pg Power_Clamp C_pg GND_Clamp C_comp GND GND

30 IBIS Output Topology V cc V cc R_pg C_omp L_pg C_pg Pullup Pulldown Ramp Power_Clamp GND_Clamp GND GND 30

31 IBIS Model Generation Create an IBIS model from either simulation or empirical data Model from Empirical data? No Get SPICE I/O info Yes Collect Data Data in IBIS text file Run SPICE to IBIS Translator Run IBIS Parser No Parser Pass Yes Run model on Simulator No Model validated? Yes Adopt model 31

32 IBIS for Signal Integrity Crosstal Ringing, Overshoot, undershoot Distortion, Nonlinear effects Reflections issues Line termination analysis Topology scheme analysis Visit

ECE 546 Lecture 16 MNA and SPICE

ECE 546 Lecture 16 MNA and SPICE ECE 546 Lecture 16 MNA and SPICE Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Nodal Analysis The Node oltage method

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

ECE 497 JS Lecture - 18 Noise in Digital Circuits

ECE 497 JS Lecture - 18 Noise in Digital Circuits ECE 497 JS Lecture - 18 Noise in Digital Circuits Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 15 th Speaker:

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

NONLINEAR DC ANALYSIS

NONLINEAR DC ANALYSIS ECE 552 Numerical Circuit Analysis Chapter Six NONLINEAR DC ANALYSIS OR: Solution of Nonlinear Algebraic Equations I. Hajj 2017 Nonlinear Algebraic Equations A system of linear equations Ax = b has a

More information

Automatic Formulation of Circuit Equations

Automatic Formulation of Circuit Equations ECE 570 Session 3 IC 752-E Computer Aided Engineering for Integrated Circuits Automatic Formulation of Circuit Equations Objective: Basics of computer aided analysis/simulation Outline:. Discussion of

More information

IBIS Modeling Using Latency Insertion Method (LIM)

IBIS Modeling Using Latency Insertion Method (LIM) IBIS Modeling Using Latency Insertion Method (LIM) José E. Schutt Ainé University of Illinois at Urbana- Champaign Jilin Tan, Ping Liu, Feras Al Hawari, Ambrish arma Cadence Design Systems European IBIS

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

E40M Capacitors. M. Horowitz, J. Plummer, R. Howe

E40M Capacitors. M. Horowitz, J. Plummer, R. Howe E40M Capacitors 1 Reading Reader: Chapter 6 Capacitance A & L: 9.1.1, 9.2.1 2 Why Are Capacitors Useful/Important? How do we design circuits that respond to certain frequencies? What determines how fast

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Robert W. Brodersen EECS140 Analog Circuit Design

Robert W. Brodersen EECS140 Analog Circuit Design INTRODUCTION University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science Robert. Brodersen EECS40 Analog Circuit Design ROBERT. BRODERSEN LECTURE

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003 6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS

More information

Achieving Accurate Results With a Circuit Simulator. Ken Kundert and Ian Clifford Cadence Design Systems Analog Division San Jose, Calif 95134

Achieving Accurate Results With a Circuit Simulator. Ken Kundert and Ian Clifford Cadence Design Systems Analog Division San Jose, Calif 95134 Achieving Accurate Results With a Circuit Simulator Ken Kundert and Ian Clifford Cadence Design Systems Analog Division San Jose, Calif 95134 1 Outline Solving Nonlinear Systems of Equations Convergence

More information

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two - 6.012 Microelectronic Devices and Circuits Lecture 13 Linear Equivalent Circuits Outline Announcements Exam Two Coming next week, Nov. 5, 7:309:30 p.m. Review Subthreshold operation of MOSFETs Review Large

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

ECE Networks & Systems

ECE Networks & Systems ECE 342 1. Networks & Systems Jose E. Schutt Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 What is Capacitance? 1 2 3 Voltage=0 No Charge No Current Voltage build

More information

Quiescent Steady State (DC) Analysis The Newton-Raphson Method

Quiescent Steady State (DC) Analysis The Newton-Raphson Method Quiescent Steady State (DC) Analysis The Newton-Raphson Method J. Roychowdhury, University of California at Berkeley Slide 1 Solving the System's DAEs DAEs: many types of solutions useful DC steady state:

More information

Analog Simulation. Digital simulation. Analog simulation. discrete values. discrete timing. continuous values. continuous timing

Analog Simulation. Digital simulation. Analog simulation. discrete values. discrete timing. continuous values. continuous timing Analog Simulation Digital simulation discrete values bit, boolean, enumerated, integer exception - floating point discrete timing cycle based - uniform time intervals event based - nonuniform time intervals

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

E8-262: Basics of Circuit Simulation/SPICE. Lecture: 4+5

E8-262: Basics of Circuit Simulation/SPICE. Lecture: 4+5 E8-262: Basics of Circuit Simulation/SPICE Lecture: 4+5 Module 1: Electrical Challenges in High-Speed CPS Types of packages and PCBs Packaging Trends Review of Electromagnetic and Circuit basics Signal

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

MC10ELT22, MC100ELT V Dual TTL to Differential PECL Translator

MC10ELT22, MC100ELT V Dual TTL to Differential PECL Translator 5.0 V Dual TTL to Differential PECL Translator The MC0ELT/00ELT22 is a dual TTL to differential PECL translator. Because PECL (Positive ECL) levels are used only +5 V and ground are required. The small

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS

APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS EECE 552 Numerical Circuit Analysis Chapter Nine APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS I. Hajj Application to Electrical Circuits Method 1: Construct state equations = f(x, t) Method

More information

Lecture 12 CMOS Delay & Transient Response

Lecture 12 CMOS Delay & Transient Response EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC06 74HC/HCT/HCU/HCMOS ogic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Integrating Circuit Simulation with EIT FEM Models

Integrating Circuit Simulation with EIT FEM Models Integrating Circuit Simulation with EIT FEM Models Alistair Boyle and Andy Adler University of Ottawa Carleton University Ottawa, Canada EIT2018, June 11 13, 2018 Circuits and FEM + Step 1: forward solution

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Problem info Geometry model Labelled Objects Results Nonlinear dependencies Problem info Problem type: Transient Magnetics (integration time: 9.99999993922529E-09 s.) Geometry model class: Plane-Parallel Problem database file names: Problem: circuit.pbm Geometry: Circuit.mod Material

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Lecture #11. Lecture

Lecture #11. Lecture Lecture #11 Semiconductor Diodes and Basic Circuits Outline/Learning Objectives: Simple circuits using ideal diode model, constant voltage drop model, and mathematical (exponential) model. Use of graphical

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

ECE2262 Electric Circuit

ECE2262 Electric Circuit ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450 ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab -ECE 2262 3 LN - ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The

More information

HN27C1024HG/HCC Series

HN27C1024HG/HCC Series 65536-word 16-bit CMOS UV Erasable and Programmable ROM Description The Hitachi HN27C1024H series is a 1-Mbit (64-kword 16-bit) ultraviolet erasable and electrically programmable ROM. Fabricated on new

More information

Electrical Circuits I

Electrical Circuits I Electrical Circuits I This lecture discusses the mathematical modeling of simple electrical linear circuits. When modeling a circuit, one ends up with a set of implicitly formulated algebraic and differential

More information

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1)

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) CIRCUITS by Ulaby & Maharbiz LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) 07/18/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute. 2013 National Technology and Science Press

More information

EE40 Lec 20. MOS Circuits

EE40 Lec 20. MOS Circuits EE40 Lec 20 MOS Circuits eading: Chap. 12 of Hambley Supplement reading on MOS Circuits http://www.inst.eecs.berkeley.edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Bias circuits OUTLINE Smallsignal

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

Parallel VLSI CAD Algorithms. Lecture 1 Introduction Zhuo Feng

Parallel VLSI CAD Algorithms. Lecture 1 Introduction Zhuo Feng Parallel VLSI CAD Algorithms Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 513 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee5900spring2012.html

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

ECE251 VLSI System Design Spring Homework 1. Jinfeng Liu

ECE251 VLSI System Design Spring Homework 1. Jinfeng Liu ECE251 VLSI System Design Spring 2000 Homework 1 Jinfeng Liu 65547013 05/27/2000 Problem 1: Procedure of solutions 1. Determine β n β n = An * C L / t df Ar = 1 2n (1 n) ln (2(1 n) V 0) 0) Vdd(1 n) V [

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

CMOS Transistors, Gates, and Wires

CMOS Transistors, Gates, and Wires CMOS Transistors, Gates, and Wires Should the hardware abstraction layers make today s lecture irrelevant? pplication R P C W / R W C W / 6.375 Complex Digital Systems Christopher atten February 5, 006

More information

CGDg% C,g% C GS=- AaQG

CGDg% C,g% C GS=- AaQG A CHARGE-ORIENTED MODEL FOR MOS TRANSISTOR CAPACITANCES Donald E. Ward and Robert W. Dutton Integrated Circuits Laboratory Department of Electrical Engineering Stanford University Stanford, CA 94305 ABSTRACT

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specificatio The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 016 MOS Inverter: Static Characteristics Lecture Outline! Voltage Transfer Characteristic (VTC) " Static Discipline Noise Margins!

More information

The Harmonic Balance Method

The Harmonic Balance Method For Nonlinear Microwave Circuits Hans-Dieter Lang, Xingqi Zhang Thursday, April 25, 2013 ECE 1254 Modeling of Multiphysics Systems Course Project Presentation University of Toronto Contents Balancing the

More information

CS 436 HCI Technology Basic Electricity/Electronics Review

CS 436 HCI Technology Basic Electricity/Electronics Review CS 436 HCI Technology Basic Electricity/Electronics Review *Copyright 1997-2008, Perry R. Cook, Princeton University August 27, 2008 1 Basic Quantities and Units 1.1 Charge Number of electrons or units

More information

GMII Electrical Specification Options. cisco Systems, Inc.

GMII Electrical Specification Options. cisco Systems, Inc. DC Specifications GMII Electrical Specification Options Mandatory - Communication between the transmitter and receiver can not occur at any bit rate without DC specifications. AC Specifications OPTION

More information

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors CMOS Devices PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors PN Junctions Diffusion causes depletion region D.R. is insulator and establishes barrier

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics CS755 5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

DS1225Y. 64K Nonvolatile SRAM FEATURES PIN ASSIGNMENT

DS1225Y. 64K Nonvolatile SRAM FEATURES PIN ASSIGNMENT DS1225Y 64K Nonvolatile SRAM FEATURES years minimum data retention in the absence of external power PIN ASSIGNMENT NC 1 28 VCC Data is automatically protected during power loss Directly replaces 8K x 8

More information

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes EE 434 Lecture 3 Basic Semiconductor Processes Devices in Semiconductor Processes Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below a) Identify the device b)

More information

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS DESCRIPTION The / optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. The devices are housed in a compact small-outline

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

HN27C4096G/CC Series. Ordering Information. Features word 16-bit CMOS UV Erasable and Programmable ROM

HN27C4096G/CC Series. Ordering Information. Features word 16-bit CMOS UV Erasable and Programmable ROM 262144-word 16-bit CMOS UV Erasable and Programmable ROM The Hitachi HN27C4096G/CC is a 4-Mbit ultraviolet erasable and electrically programmable ROM, featuring high speed and low power dissipation. Fabricated

More information

Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits. Overview. Hani Mehrpouyan, Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 15 (First Order Circuits) Nov 16 th, 2015 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 2015 1 1 Overview

More information

Digital logic signals

Digital logic signals Digital logic signals This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Digital logic signals

Digital logic signals Digital logic signals This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

ELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling

ELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling ELEC 3908, Physical Electronics, Lecture 13 iode Small Signal Modeling Lecture Outline Last few lectures have dealt exclusively with modeling and important effects in static (dc) operation ifferent modeling

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-5 Transducers with cylindrical Geometry For a cylinder of radius r centered inside a shell with with an inner radius

More information

SPICE Like Sparse Transient Analysis

SPICE Like Sparse Transient Analysis SPICE Like Sparse Transient Analysis by SONALI R. LUNIYA A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

Exploring Autonomous Memory Circuit Operation

Exploring Autonomous Memory Circuit Operation Exploring Autonomous Memory Circuit Operation October 21, 2014 Autonomous Au-to-no-mous: Merriam-Webster Dictionary (on-line) a. Existing independently of the whole. b. Reacting independently of the whole.

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information