Basics of Network Theory (PartI)


 Cornelius Derek Patrick
 3 years ago
 Views:
Transcription
1 Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V t (m sec) [Gate 987: Marks] V t m sec The current through the inductor is i L = vdt. The integration of a square wave L is a triangular wave so the current through the inductor is a triangular wave of volt peak amplitude. Slope of triangular wave is ± t 0. Two H inductance coils are connected in series and are also magnetically coupled to each other the coefficient of coupling being 0.. The total inductance of the combination can be (a) 0.4 H (b) 3. H M L L H H (c) 4.0 H (d) 4.4 H (d)
2 The equivalent inductance Leq = L L ± M = ± 0. M = K L L = 4 ± 0. 4 = 4. 4, The current i4 in the circuit of Figure is equal to i = 5A i = 3A I i 0 = 7A (a) A (b) A i 4 =? i 3 = 4A (c) 4 A (d) None of these [Gate 997: Mark] (b) I = i 0 i = A i 4 = A 4. The Voltage V in Figure is equal to
3 4V 5V 4V V (a) 3 V (b) 3 V (c) 5 V (d) None of these [Gate 997: Mark] (a) Apply KVL V 5 4 = 4 V = = 3V 5. The voltage V in Figure is always equal to A V 5V (a) 9 V (b) 5 V (c) V (d) None of these [Gate 997: Mark]
4 (d) V = V A 5 = V A 9 Since the voltage of A current source is not known, it is not possible to find the value of voltage V. 6. The voltage V in Figure is a 3 0V 5V b (a) 0 V (b) 5 V (c) 5 V (d) None of the these [Gate 997: Mark] (a) 7. In the circuit shown in the figure the current id through the ideal diode (zero cut in voltage and zero forward resistance) equals 4 i D 0V 4 A (a) 0 A (b) 4 A (c) A (d) None of these [Gate 997: 3 Marks]
5 (c) Applying the source conversion 5V i D V i D = 5 3 = Amp 8. The voltage across the terminals a and b in Figure is a V 3A b (a) 0.5 V (b) 3.0 V (c) 3.5 V (d) 4.0 V [Gate 998: Mark] (c) Taking b as reference node and applying KCL at a V ab V ab = 3 V ab V ab = 6 V ab = 6 = 3. 5V
6 9. In the circuit of the figure, the voltage V(t) is e at V(t) H e bt (a) e at e bt (b) e at e bt (c) ae at be bt (d) ae at be bt [Gate 000: Mark] (d) The voltage v(t) is v(t) = L d dt (eat e bt ) = ae at be bt 0. For the circuit in the figure, the voltage V0 is 4V V 0 V (a) V (b) V (c) V (d) None of these [Gate 000: Marks]
7 (d) Since the diode is forward biased, it is taken as short circuit. Writing KCL V 0 4 ( V 0 3V 0 = 0 ) ( V 0 ) = 0 V 0 = 3. The voltage e0 in the figure is 4 V 4 e 0 (a) V (b) 4/3 V (c) 4 V (d) 8 V [Gate 00: Marks] (c) Writing KCL e 0 4 3e 0 = e 0 = 4V e 0 4 e 0 4 = 0
8 . The voltage e0 in the figure is 8A 6V 0 6 e 0 (a) 48 V (b) 4 V (c) 36 V (d) 8 V [Gate 00: Mark] (d) Applying the source conversion, the circuit is as shown 0 6V 80V e 0 6 Writing KCL e 0 80 e e 0 = e 0 = 4 = 8V e 0 = 0 3. The dependent current source shown in the figure 5 V = 0V I 5 V 5 A
9 (a) Delivers 80W (b) absorbs 80 W (c) delivers 40 W (d) absorbs 40 W [Gate 00: Mark] (a) Writing KVL V 5I 5 (I V 5 ) = 0 V 0I V = 0 I = 0 Voltage across dependent source =0V Thus power delivered by it is = = 80W 4. The equivalent inductance measured between the terminals and for the circuit shown in the figure M L L (a) L L M (b) L L M (c) L L M (d) L L M [Gate 004: Mark] (d) The coils are wound in opposite directions, they are series opposing Leq = L L M
10 5. Impedance Z as shown in the figure is j5 j L j0 L j0 L 3 j Z (a) j 9 Ω (b) j 9 Ω (c) j 9 Ω (d) j 39 Ω [Gate 005: Marks] (b) Current leaves the dotted terminal of L and enters the dotted terminal of L3 so mutual induction M3 is negative, M3 is positive. jwleq = j5 j j j0 j0 = j9 6. If R = R = R4 = R and R3 =.R in the bridge circuit shown in the figure, then the reading in the ideal voltmeter connected between a and b is 0V a R R R 4 R 3 b (a) 0.38 V (b) 0.38 V (c) 0.38 V (d) V [Gate 005: Marks]
11 (c) V a = 0.R R R = 5V V b = 0.R 3 = 0. = R 4 R 3. V a V b = 0. 38V 7. In the circuit shown, the power supply by the voltage source is A A 0V (a) 0 W (b) 5 W (c) 0 W (d) 00 W [Gate 00: Marks] (a) Applying KVL in the outer loop (3I) I (I) A 3A A 0V
12 (3 I) ( I) = 0 6 I 4 I = 0 0 4I = 0 I = 0 Power supplied by the voltage source P = VI = 0 8. In the circuit shown below, the current I is equal to V I AC j4 j (a) A (b) A (c) A (d) A [Gate 0: Marks] (b) Converting delta into star the circuit is redrawn as impedance of the circuit is I V I AC j4 j4 ( j4) ( j4) = 7Ω Current I = = 0 0 A
13 9. The average power delivered to an impedance (4 j3)ω by a current 5 cos (00πt 00) A is (a) 44. W (c) 6.5 W (b) 50 W (d) 5 W [Gate 0: Mark] (b) Average power is same as rms power P = I rms R = ( 5 ) 4 = 50W 0. In the circuit shown below, the current through the inductor is V A i I j A D AC 0 0 V 0 0 V AC B j A (a) j A (b) j A (c) j A (d) 0 A C [Gate 0: Mark] (C) In the balanced bridge, the product of opposite arms are equal. j j = =
14 In the balanced bridge, current flowing through the diagonal element is zero. Applying nodal analysis at top node V 0 0 V 0 0 j = V j j V 0 0 = j V = j I = V 0 0 j = j j = j (j)j = j. Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of the delta connection are scaled by a factor k, k> 0, the elements of the corresponding star equivalent will be scaled by a factor of R a R C R B R b R c R A (a) K (b) K (c) /K (d) K [Gate 03: Mark] (b) In the star connection, R c = R A = R br a R a R b R c, R B = R ar c R a R b R c R b.r c R a R b R c If the delta connection components are scaled by a factor K, then the star equivalent will also be scaled by a factor K
15 . Find the current I in the following branch 5 5 0V A 0 I [Gate:04] Using superposition taking 0V source and replacing the current source by its internal resistance ( ) I = 0 = 0. 5A 0 Taking current source and replacing voltage source by its internal resistance zero I = 5 0 = 4 A Total current I = = 0. 75A 4 3. A series RC circuit is connected to voltage source at time t0=0. The relation between the source voltage Vs, the resistance R, the capacitance C, the current i(t) is below: V s = Ri(t) C i(t)dt t 0
16 i(t) i(t) (a) (b) t t i(t) i(t) (c) (d) t t Which one of the following i(t) represents [Gate:04] (a) Given V s = Ri(t) C i(t)dt R 0 t V S i(t) C At t = 0 source Vs is connected to the RC series network. Since there is no charge on capacitor initially so, at t = 0 it acts like a short circuit and the current through the network is i(t) = V s R then as the capacitor starts charging current starts decreasing at the rate the capacitor starts charging
17
E40M Review  Part 1
E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationEE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following timedomain circuit to the RMS Phasor Domain.
Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]
More informationSinusoidal Steady State Analysis (AC Analysis) Part II
Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationECE 201 Fall 2009 Final Exam
ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,
More informationKirchhoff's Laws and Circuit Analysis (EC 2)
Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,
More informationSinusoidal Steady State Analysis (AC Analysis) Part I
Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationChapter 10 AC Analysis Using Phasors
Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to
More informationELECTRONICS E # 1 FUNDAMENTALS 2/2/2011
FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like
More informationLAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.
LAPLACE TRANSFORMATION AND APPLICATIONS Laplace transformation It s a transformation method used for solving differential equation. Advantages The solution of differential equation using LT, progresses
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationElectric Circuits Fall 2015 Solution #5
RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.
More informationEIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1
EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationDC CIRCUIT ANALYSIS. Loop Equations
All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent
More informationSolution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.
Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations OpAmp Integrator and OpAmp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits
More informationCHAPTER 6. Inductance, Capacitance, and Mutual Inductance
CHAPTER 6 Inductance, Capacitance, and Mutual Inductance 6.1 The Inductor Inductance is symbolized by the letter L, is measured in henrys (H), and is represented graphically as a coiled wire. The inductor
More informationQUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)
QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE EBOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF
More informationNetwork Graphs and Tellegen s Theorem
Networ Graphs and Tellegen s Theorem The concepts of a graph Cut sets and Kirchhoff s current laws Loops and Kirchhoff s voltage laws Tellegen s Theorem The concepts of a graph The analysis of a complex
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors
More informationENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5
ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January
More informationENGR 2405 Chapter 6. Capacitors And Inductors
ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationElectric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat
Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationLecture 11  AC Power
 AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits
More informationFigure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
More informationFundamentals of Electric Circuits, Second Edition  Alexander/Sadiku
Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω j 8 30 o I j 4 j 4 I 2 j2v For loop, 8 30 = (2 j4)i ji 2
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationNetwork Topology2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current
More informationCircuit AnalysisII. Circuit AnalysisII Lecture # 5 Monday 23 rd April, 18
Circuit AnalysisII Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.
More informationAlternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)
More informationSinusoidal SteadyState Analysis
Chapter 4 Sinusoidal SteadyState Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
More informationET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012
ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the singlephase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown
More information11. AC Circuit Power Analysis
. AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous
More informationChapter 1W Basic Electromagnetic Concepts
Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples
More informationElectric Circuits I. Inductors. Dr. Firas Obeidat
Electric Circuits I Inductors Dr. Firas Obeidat 1 Inductors An inductor is a passive element designed to store energy in its magnetic field. They are used in power supplies, transformers, radios, TVs,
More informationProblem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationECE2262 Electric Circuit
ECE2262 Electric Circuit Chapter 7: FIRST AND SECONDORDER RL AND RC CIRCUITS Response to FirstOrder RL and RC Circuits Response to SecondOrder RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady
More information2. The following diagram illustrates that voltage represents what physical dimension?
BioE 1310  Exam 1 2/20/2018 Answer Sheet  Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other
More informationBasics of Electric Circuits
António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and
More informationBASIC NETWORK ANALYSIS
SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding SeriesParallel dc Network Analysis......................... 1.1 BranchCurrent Analysis of a dc Network......................
More informationGATE 20 Years. Contents. Chapters Topics Page No.
GATE 0 Years Contents Chapters Topics Page No. Chapter Chapter Chapter Chapter4 Chapter5 GATE Syllabus for this Chapter Topic elated to Syllabus Previous 0Years GATE Questions Previous 0Years GATE
More informationPreamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,
Preamble Circuit Analysis II Physics, 8 th Edition Custom Edition Cutnell & Johnson When circuits get really complex methods learned so far will still work, but they can take a long time to do. A particularly
More informationAssessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)
NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement
More informationCircuits with Capacitor and Inductor
Circuits with Capacitor and Inductor We have discussed so far circuits only with resistors. While analyzing it, we came across with the set of algebraic equations. Hereafter we will analyze circuits with
More informationSinusoids and Phasors
CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are timevarying. In this chapter, we are particularly interested in sinusoidally timevarying
More informationECE 1311: Electric Circuits. Chapter 2: Basic laws
ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's
More informationELECTRO MAGNETIC INDUCTION
ELECTRO MAGNETIC INDUCTION 1) A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is, 1. Stationary 2. Moved away from the conductor 3. Moved
More informationBasic RL and RC Circuits RL TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri
st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R
More informationFE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS
FE eview ELECONICS # FUNDAMENALS Electric Charge 2 In an electric circuit there is a conservation of charge. he net electric charge is constant. here are positive and negative charges. Like charges repel
More informationPower and Energy Measurement
Power and Energy Measurement EIE 240 Electrical and Electronic Measurement April 24, 2015 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is
More informationElectrical Eng. fundamental Lecture 1
Electrical Eng. fundamental Lecture 1 Contact details: helhelw@staffs.ac.uk Introduction Electrical systems pervade our lives; they are found in home, school, workplaces, factories,
More informationSol: Semiconductor diode.
48 49 1. What is the resistance value of a resistor of colour code Brown, Black, Red and silver? Sol: Brown1, Black0, Red2, Silver 10%. Resistance, R = 10 X 102 ±10Ω. 2. Mention a nonohmic device.
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationEE221  Practice for the Midterm Exam
EE1  Practice for the Midterm Exam 1. Consider this circuit and corresponding plot of the inductor current: Determine the values of L, R 1 and R : L = H, R 1 = Ω and R = Ω. Hint: Use the plot to determine
More informationAlternating Current Circuits
Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis
More informationmywbut.com Lesson 6 Wye (Y)  Delta ( ) OR Delta ( )Wye (Y) Transformations
Lesson 6 Wye (Y)  Delta ( ) O Delta ( )Wye (Y) Transformations 1 Objectives A part of a larger circuit that is configured with three terminal network Y (or Δ ) to convert into an equivalent Δ (or Y )
More informationPHYS 241 EXAM #2 November 9, 2006
1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : CH_EE_B_Network Theory_098 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 056 CLASS TEST 089 ELECTCAL ENGNEENG Subject : Network
More informationResponse of SecondOrder Systems
Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which
More informationUNIT I Introduction to DC and AC circuits
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMT (15A01301) Year & Sem: IIB.Tech & ISem Course & Branch: B.Tech
More informationDirect Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1
Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving
More informationELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.
Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits
More informationChapter 3. SteadyState Equivalent Circuit Modeling, Losses, and Efficiency
Chapter 3. SteadyState Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 13 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model
More informationEE 212 PASSIVE AC CIRCUITS
EE 212 PASSIVE AC CIRCUITS Condensed Text Prepared by: Rajesh Karki, Ph.D., P.Eng. Dept. of Electrical Engineering University of Saskatchewan About the EE 212 Condensed Text The major topics in the course
More informationENGR 2405 Chapter 8. Second Order Circuits
ENGR 2405 Chapter 8 Second Order Circuits Overview The previous chapter introduced the concept of first order circuits. This chapter will expand on that with second order circuits: those that need a second
More informationAssessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)
NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or
More informationECE Spring 2017 Final Exam
ECE 20100 Spring 2017 Final Exam May 2, 2017 Section (circle below) Qi (12:30) 0001 Tan (10:30) 0004 Hosseini (7:30) 0005 Cui (1:30) 0006 Jung (11:30) 0007 Lin (9:30) 0008 PeleatoInarrea (2:30) 0009 Name
More informationChapter 10: Sinusoids and Phasors
Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance
More informationBasic Electricity. Unit 2 Basic Instrumentation
Basic Electricity Unit 2 Basic Instrumentation Outlines Terms related to basic electricitydefinitions of EMF, Current, Potential Difference, Power, Energy and Efficiency Definition: Resistance, resistivity
More informationLECTURE 8 RC AND RL FIRSTORDER CIRCUITS (PART 1)
CIRCUITS by Ulaby & Maharbiz LECTURE 8 RC AND RL FIRSTORDER CIRCUITS (PART 1) 07/18/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute. 2013 National Technology and Science Press
More informationD.C.CIRCUITS. charged negatively if it has excess of electrons. The charge is measured in Coulombs and
D.C.CRCUTS Electrical /Quantities Definitions, Symbols and / Units Charge: A body is said to be changed positively, if it has deficit of electrons. t is said to be charged negatively if it has excess of
More informationLecture 1. Electrical Transport
Lecture 1. Electrical Transport 1.1 Introduction * Objectives * Requirements & Grading Policy * Other information 1.2 Basic Circuit Concepts * Electrical l quantities current, voltage & power, sign conventions
More informationHomework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.
Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.
More informationEIT QuickReview Electrical Prof. Frank Merat
CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing
More information6. MESH ANALYSIS 6.1 INTRODUCTION
6. MESH ANALYSIS INTRODUCTION PASSIVE SIGN CONVENTION PLANAR CIRCUITS FORMATION OF MESHES ANALYSIS OF A SIMPLE CIRCUIT DETERMINANT OF A MATRIX CRAMER S RULE GAUSSIAN ELIMINATION METHOD EXAMPLES FOR MESH
More informationMutual Inductance: This is the magnetic flux coupling of 2 coils where the current in one coil causes a voltage to be induced in the other coil.
agnetically Coupled Circuits utual Inductance: This is the magnetic flux coupling of coils where the current in one coil causes a voltage to be induced in the other coil. st I d like to emphasize that
More informationConsider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.
AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150
More informationSome Important Electrical Units
Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogramsecond
More informationENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM
CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such
More informationECE Spring 2015 Final Exam
ECE 20100 Spring 2015 Final Exam May 7, 2015 Section (circle below) Jung (1:30) 0001 Qi (12:30) 0002 Peleato (9:30) 0004 Allen (10:30) 0005 Zhu (4:30) 0006 Name PUID Instructions 1. DO NOT START UNTIL
More informationREACTANCE. By: Enzo Paterno Date: 03/2013
REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE  R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or
More information3.1 Superposition theorem
Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent
More informationAP Physics C. Inductance. Free Response Problems
AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through
More informationE40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1
E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in
More informationWork, Energy and Power
1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is the capacity for doing work (Joules) Power is the rate of using energy (Watt) P = W / t,
More informationAC Electric Machines. Objectives. Introduction. 1. To understand what the meant by the term ac circuit. 2. To understand how to analyze ac circuits.
AC Electric Machines Objectives 1. To understand what the meant by the term ac circuit.. To understand how to analyze ac circuits. 3. To understand the basic construction and operation of an ac machine.
More informationElectromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance
Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law SelfInductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic
More informationChapter 5 SteadyState Sinusoidal Analysis
Chapter 5 SteadyState Sinusoidal Analysis Chapter 5 SteadyState Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steadystate
More informationCURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS
CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS
More informationECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450
ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab ECE 2262 3 LN  ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The
More informationRLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is
RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge
More informationUnit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors
Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,
More information