IBIS Modeling Using Latency Insertion Method (LIM)

Size: px
Start display at page:

Download "IBIS Modeling Using Latency Insertion Method (LIM)"

Transcription

1 IBIS Modeling Using Latency Insertion Method (LIM) José E. Schutt Ainé University of Illinois at Urbana- Champaign Jilin Tan, Ping Liu, Feras Al Hawari, Ambrish arma Cadence Design Systems European IBIS Summit May 16, 2012 Sorrento, Italy

2 Nonlinear Circuit How do we solve a simple diode circuit problem? Graphical method... solve transcendental equations s /R I D Diode characteristics Load line (external characteristics) D out S I I e D D / T 1 RI RI ( ) S D D D D D out S D ECE-Illinois IBIS Summit Sorrento, Italy May 16,

3 Diode Circuit Iterative Method or use the Newton Raphson method 1 Use: xk1 xk f '( xk) f ( xk) out D ( k1) ( k) ( k) 1 ( k) x x f '( x ) f( x ) D 1 IS D / T S D / T f( D) ISe 10 f '( D ) e R R T ( k1) ( k) D D ( k ) D R 1 R S I I S T S e e ( k ) D ( k ) D / / T T 1 ( Where k ) is the value of D at the kth iteration D Procedure is repeated until convergence to final (true) value of D which is the solution. Rate of convergence is quadratic. ECE-Illinois IBIS Summit Sorrento, Italy May 16,

4 Newton Raphson Method (Graphical Interpretation) solution ECE-Illinois IBIS Summit Sorrento, Italy May 16,

5 Newton Raphson Method If initial guess is not close enough, NR will lock into oscillations and solution will not converge ECE-Illinois IBIS Summit Sorrento, Italy May 16,

6 IBIS data can be unpredictable Transient response requires solution of nonlinear system Most simulators use Newton Raphson (NR) technique combined with modified nodal analysis (MNA) NR may not converge Limitations NR may slow down simulation ECE-Illinois IBIS Summit Sorrento, Italy May 16,

7 Why LIM? LIM does not iterate on nonlinear problems There is no convergence issue MNA has super linear numerical complexity LIM has linear numerical complexity LIM uses no matrix formulation LIM has no matrix ill conditioning problems LIM is much faster than MNA for large circuits ECE-Illinois IBIS Summit Sorrento, Italy May 16,

8 Latency Insertion Method** Each branch must have an inductor* Each node must have a shunt capacitor* Express branch current in terms of history of adjacent node voltages Express node voltage in terms of history of adjacent branch currents * If branch or node has no inductor or capacitor, insert one with very small value ** J. E. Schutt-Ainé, "Latency Insertion Method for the Fast Transient Simulation of Large Networks," IEEE Trans. Circuit Syst., vol. 48, pp , January ECE-Illinois IBIS Summit Sorrento, Italy May 16,

9 LIM: Leapfrog Method n n1 n2 ij ij ij I I I n1/2 n3/2 n5/2 i i i n: time C N a n1/2 i i n Hi n1/2 t k 1 i Ci G i t I n ik t I I R I n1 n n1/2 n1/2 n ij ij i j ij ij Lij Leapfrog method achieves second-order accuracy, i.e., error is proportional to t 2 ECE-Illinois IBIS Summit Sorrento, Italy May 16,

10 LIM Algorithm Represents network as a grid of nodes and branches Discretizes Kirchhoff's current and voltage equations C Branch structure Node structure N a n1/2 i i n Hi n1/2 t k1 i Ci G i t I n ik t I I R I Uses leapfrog scheme to solve for node voltages and branch currents Presence of reactive elements is required to generate latency n1 n n1/2 n1/2 n ij ij i j ij ij Lij ECE-Illinois IBIS Summit Sorrento, Italy May 16,

11 LIM is Easy to Code For time=1, N t time loop branch loop For branch =1, N b Update current as per Equation: t I I R I E n1 n n1/2 n1/2 n n1/2 ij ij i j ij ij ij Lij Next branch; For node=1, N n Update voltage as per Equation node loop n1/2 i C i t n1/2 i M i N n n n i ik q k1 q1 H I J Ci t G i Next node; Next time; ECE-Illinois IBIS Summit Sorrento, Italy May 16,

12 LIM is Fast Comparison of runtime for LIM and SPICE per 100 time steps. Circuit # nodes # MOSFET SPICE LIM ADDER s s OTER s s RAM CKT s 0.184s ECE-Illinois IBIS Summit Sorrento, Italy May 16,

13 and gets faster as circuit size increases 140 LIM v.s. SPICE 120 Speedup Factor Log Size (normalized to 2,000 nodes) ECE-Illinois IBIS Summit Sorrento, Italy May 16,

14 LIM has NO Convergence Issues Introduce latency in diode circuit through a small inductor L then use colocation and leapfrog: n n1 n2 D D, D, D,... n n I I n1/2 n1/2 n3/2 ID ID, ID, ID,... with L L t and if time steps are sufficiently small, Current solution oltage solution n1/2 ID IS e or n D / T 1 n1/2 n1 I D D T ln 1 IS 1/2 n1/2 Explicit! ECE-Illinois IBIS Summit Sorrento, Italy May 16,

15 LIM Suffers from Stability Issues Stable simulation Unstable simulation ECE-Illinois IBIS Summit Sorrento, Italy May 16,

16 but they can be controlled The LIM algorithm is conditionally stable No faster than speed of light propagation The Amplification Matrix [5] Eigenvalues must be less than unity for the system to be stable A-matrix provides the exact limit on the size of the time step n1/2 n1/2 v v n1 A n i i Stable simulation Unstable simulation The Energy Method [6] t i Nn N C b i 2min min( Lip, ) i1 i N p1 b Smallest LC product in the circuit Provides a sufficient condition on Δt Easy to use in our simulations ECE-Illinois IBIS Summit Sorrento, Italy May 16,

17 Application of LIM to IBIS IBIS Data Processing Ku/Kd Extraction IBIS Standard Formulation LIM IBIS Formulation LIM IBIS Solutions Extension to Gate Modulation Effects Conclusion and Future Work ECE-Illinois IBIS Summit Sorrento, Italy May 16,

18 IBIS Data Processing 1. Arrange static I data 2. Pulldown data (current vs voltage) I pd, m pd points 3. Pullup data (current vs voltage) I pu, m pu points 4. Ground clamp data (current vs voltage) I gc, m gc points 5. Power clamp data (current vs voltage) I pc, m pc points ECE-Illinois IBIS Summit Sorrento, Italy May 16,

19 IBIS Data Processing Next Get T data. T data is presented as: Rising waveform: oltage versus time for fix low R1, m r1 points oltage versus time for fix high R2, m r2 points: Falling waveform: oltage versus time for fix low F1, m f1 points oltage versus time for fix high F2, m f2 points ECE-Illinois IBIS Summit Sorrento, Italy May 16,

20 IBIS Ku/Kd Extraction* I fixt out R fixt fixt I cap C fixt out t t t out t I L t out comp fixt out I I I out cap fixt ECE-Illinois IBIS Summit Sorrento, Italy May 16,

21 Ku/Kd Extraction We need to extract K u and K d Procedure is well documented* Pick value comp1 Find closest corresponding currents in static I data Set them as I pd1, I pu1, I gc1 and I pc1 Pick value comp2 Find closest corresponding currents in static I data Set them as I pd2, I pu2, I gc2 and I pc2 * Ying Wang, Han Ngee Tan "The Development of Analog SPICE Behavioral Model Based on IBIS Model", Proceedings of the Ninth Great Lakes Symposium on LSI, GLS '99. ECE-Illinois IBIS Summit Sorrento, Italy May 16,

22 I KI KI I I out1 u pu1 d pd1 pc1 gc1 I KI KI I I Rearrange as: IBIS Circuit Analysis 2 equations, two unknown system out 2 u pu 2 d pd 2 pc2 gc2 KI KI I I I I u pu1 d pd1 out1 pc1 gc1 RHS1 or KI KI I I I I u pu 2 d pd 2 out 2 pc2 gc2 RHS 2 I I K I pu1 pd1 u RHS1 Ipu2 I pd 2 K d I RHS2 Solve for K u and K d ECE-Illinois IBIS Summit Sorrento, Italy May 16,

23 Example of Ku and Kd Rising Waveform Falling Waveform ECE-Illinois IBIS Summit Sorrento, Italy May 16,

24 IBIS Simulations KI KI I I u pu comp d pd comp pc comp gc comp 0 I I I out comp C comp G comp Nonlinear system use Newton Raphson comp comp ECE-Illinois IBIS Summit Sorrento, Italy May 16,

25 or Better: Use a LIM Formulation G C I t 2 n 12 / n 12 / ext ext ext n 12 / n 12 / n ext ext ext out I I R L I I t 2 n1 n n 12 / n 12 / out out pkg n1 n comp ext pkg out out I I C G n ext ext n 12 / out ext n 12 / t 2 ext Cext Gext t 2 n 12 / n 12 / n pkg pkg comp ext out n1 t 2 out Lpkg Rpkg 2 L R I t ECE-Illinois IBIS Summit Sorrento, Italy May 16,

26 IBIS-LIM Solution G C I I t 2 n 12 / n 12 / comp comp comp n 12 / n 12 / n n comp comp comp out dev C G I I n n comp comp n 12 / out dev comp n 12 / t 2 comp Ccomp Gcomp t 2 n I K I K I I I dev u pu comp d pd comp pc comp gc comp Explicit equations ECE-Illinois IBIS Summit Sorrento, Italy May 16,

27 Transient Simulation Examples NR and LIM give same results ECE-Illinois IBIS Summit Sorrento, Italy May 16,

28 Transient Simulation Examples in some cases Newton Raphson fails to converge LIM NR: failed convergence NR: failed convergence LIM ECE-Illinois IBIS Summit Sorrento, Italy May 16,

29 Handling Gate Modulation Effects (BIRD 98.3) LIM IBIS formulation can easily be modified to handle SSN K t I K K t I d gd sspd gd d gd K sspu pu I sspu I sspu pu 0 K t I K K t I u pu sspu pu u pu K sspd gd I sspd I sspd gd 0 ECE-Illinois IBIS Summit Sorrento, Italy May 16,

30 Gate Modulation Effects (BIRD 98.3) Large power supply inductance Small decoupling capacitance L pu = 5 nh C pu = nf ECE-Illinois IBIS Summit Sorrento, Italy May 16,

31 Gate Modulation Effects (BIRD 98.3) Small power supply inductance Large decoupling capacitance L pu = nh C pu = 0.1 nf ECE-Illinois IBIS Summit Sorrento, Italy May 16,

32 Conclusions We demonstrated that LIM can be used to simulate IBISbased circuits with optimum accuracy. Because of the inserted latency, LIM does not use an iterative scheme to solve nonlinear equations and thus does not suffer from convergence problems LIM based simulations were successful in instances where the traditional Newton Raphson technique failed to provide a solution LIM is expected to be several orders of magnitude faster for large circuits containing a multitude of IBIS models. ECE-Illinois IBIS Summit Sorrento, Italy May 16,

33 References [1] J. E. Schutt-Ainé, "Latency Insertion Method for the Fast Transient Simulation of Large Networks," IEEE Trans. Circuit Syst., vol. 48, pp , January [2] Dmitri Klokotov, and José Schutt-Ainé, Transient Simulation of Lossy Interconnects using the Latency Insertion Method (LIM), Proceedings of the 17th Topical Meeting on Electrical Performance of Electronic Packaging (EPEP), pp , San Jose, CA, October [3] José Schutt-Ainé, "Stability Analysis of the Latency Insertion Method Using a Block Matrix Formulation", Proceedings of EDAPS-08, Seoul, South Korea, December [4] J. Schutt-Aine, D. Klokotov, P. Goh, Jilin Tan, F. Al-Hawari, Ping Liu, Wenliang Dai, "Application of the latency insertion method to circuits with blackbox macromodel representation," Proceedings of the 11th Electronics Packaging Technology Conference (EPTC), pp , Singapore, December [5] P. Goh, J. Schutt-Aine, D. Klokotov, J. Tan, P. Liu, W. Dai, and F. Al-Hawari, Partitioned latency insertion method with a generalized stability criteria, IEEE Trans. on Comp., Packaging and Manufacturing Tech., vol.1, no. 9, Sept [6] S. Lalgudi and M. Swaminathan, Analytical stability condition of the latency insertion method for nonuniform GLC circuits, IEEE Trans. on Circuits and Systems, vol. 55, no. 9, Sept [7] Ying Wang, Han Ngee Tan "The Development of Analog SPICE Behavioral Model Based on IBIS Model", Proceedings of the Ninth Great Lakes Symposium on LSI, GLS '99. [8] P. Tehrani, Y. Chen, and J. Fang, "Extraction of Transient Behavioral Model of Digital I/O Buffers from IBIS," Proceedings of 1996 ECTC Conference, pp ECE-Illinois IBIS Summit Sorrento, Italy May 16,

A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY INSERTION METHOD PATRICK KUANLYE GOH DISSERTATION

A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY INSERTION METHOD PATRICK KUANLYE GOH DISSERTATION A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY INSERTION METHOD BY PATRICK KUANLYE GOH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

ECE 546 Lecture 16 MNA and SPICE

ECE 546 Lecture 16 MNA and SPICE ECE 546 Lecture 16 MNA and SPICE Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Nodal Analysis The Node oltage method

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 9, SEPTEMBER 2008 937 Analytical Stability Condition of the Latency Insertion Method for Nonuniform GLC Circuits Subramanian N.

More information

ECE 497 JS Lecture - 11 Modeling Devices for SI

ECE 497 JS Lecture - 11 Modeling Devices for SI ECE 497 JS Lecture 11 Modeling Devices for SI Spring 2004 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday Feb 26 th NO CLASS Tuesday

More information

Parallel-Distributed Time-Domain Circuit Simulation of Power Distribution Networks with Frequency-Dependent Parameters

Parallel-Distributed Time-Domain Circuit Simulation of Power Distribution Networks with Frequency-Dependent Parameters Parallel-Distributed Time-Domain Circuit Simulation of Power Distribution Networks with Frequency-Dependent Parameters Takayuki WATANABE Yuichi TANJI Hidemasa KUBOTA Hideki ASAI School of Administration

More information

Parallel VLSI CAD Algorithms. Lecture 1 Introduction Zhuo Feng

Parallel VLSI CAD Algorithms. Lecture 1 Introduction Zhuo Feng Parallel VLSI CAD Algorithms Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 513 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee5900spring2012.html

More information

Fast FDTD Simulation Using Laguerre Polynomials in MNA Framework

Fast FDTD Simulation Using Laguerre Polynomials in MNA Framework Fast FDTD Simulation Using Laguerre Polynomials in MNA Framework K. Srinivasan 1, E. Engin and M. Swaminathan 3 Georgia Institute of Technology School of Electrical and Computer Engineering 777 Atlantic

More information

ECE 598 JS Lecture 06 Multiconductors

ECE 598 JS Lecture 06 Multiconductors ECE 598 JS Lecture 06 Multiconductors Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity

Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity 1 Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity Jun Chen and Lei He Electrical Engineering Department, University of California, Los Angeles Abstract With high integration

More information

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 79 CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 6.. INTRODUCTION The steady-state analysis of six-phase and three-phase self-excited induction generators has been presented

More information

ECE 546 Lecture 13 Scattering Parameters

ECE 546 Lecture 13 Scattering Parameters ECE 546 Lecture 3 Scattering Parameters Spring 08 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Transfer Function Representation

More information

EE5900 Spring Lecture 5 IC interconnect model order reduction Zhuo Feng

EE5900 Spring Lecture 5 IC interconnect model order reduction Zhuo Feng EE59 Spring Parallel VLSI CAD Algorithms Lecture 5 IC interconnect model order reduction Zhuo Feng 5. Z. Feng MU EE59 In theory we can apply moment matching for any order of approximation But in practice

More information

E8-262: Basics of Circuit Simulation/SPICE. Lecture: 4+5

E8-262: Basics of Circuit Simulation/SPICE. Lecture: 4+5 E8-262: Basics of Circuit Simulation/SPICE Lecture: 4+5 Module 1: Electrical Challenges in High-Speed CPS Types of packages and PCBs Packaging Trends Review of Electromagnetic and Circuit basics Signal

More information

iretilp : An efficient incremental algorithm for min-period retiming under general delay model

iretilp : An efficient incremental algorithm for min-period retiming under general delay model iretilp : An efficient incremental algorithm for min-period retiming under general delay model Debasish Das, Jia Wang and Hai Zhou EECS, Northwestern University, Evanston, IL 60201 Place and Route Group,

More information

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters Michael W. Baker, PhD Maxim Integrated Power SoC Northeastern University, Boston MA. October 7, 2014 Mobile Device Trends Power Management

More information

An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables

An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables David M. Bromberg, Marko Jereminov, Xin Li, Gabriela Hug, Larry Pileggi Dept. of Electrical and Computer

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS 6 CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS 5.. INTRODUCTION The steady-state analysis of six-phase SEIG has been discussed in the previous chapters. In this chapter,

More information

New Simultaneous Switching Noise Analysis and Modeling for High-Speed and High-Density CMOS IC Package Design

New Simultaneous Switching Noise Analysis and Modeling for High-Speed and High-Density CMOS IC Package Design IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 23, NO. 2, MAY 2000 303 New Simultaneous Switching Noise Analysis and Modeling for High-Speed and High-Density CMOS IC Package Design Yungseon Eo, Member,

More information

LED lamp driving technology using variable series-parallel charge pump

LED lamp driving technology using variable series-parallel charge pump LETTER IEICE Electronics Express, Vol.10, No.13, 1 7 LED lamp driving technology using variable series-parallel charge pump Jeongduk Ryeom a) Department of Electrical Engineering, Soongsil University,

More information

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling Li Ding and Pinaki Mazumder Department of Electrical Engineering and Computer Science The University of Michigan,

More information

ECE 546 Lecture 15 Circuit Synthesis

ECE 546 Lecture 15 Circuit Synthesis ECE 546 Lecture 15 Circuit Synthesis Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 MOR via Vector Fitting Rational

More information

APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS

APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS EECE 552 Numerical Circuit Analysis Chapter Nine APPLICATION TO TRANSIENT ANALYSIS OF ELECTRICAL CIRCUITS I. Hajj Application to Electrical Circuits Method 1: Construct state equations = f(x, t) Method

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI Contents Delay estimation Simple RC model Penfield-Rubenstein Model Logical effort Delay

More information

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Frank Y. Yuan Viewlogic Systems Group, Inc. 385 Del Norte Road

More information

ECE 497 JS Lecture - 18 Noise in Digital Circuits

ECE 497 JS Lecture - 18 Noise in Digital Circuits ECE 497 JS Lecture - 18 Noise in Digital Circuits Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 15 th Speaker:

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Distributed SPICE Circuit Model for Ceramic Capacitors

Distributed SPICE Circuit Model for Ceramic Capacitors Published in Conference Record, Electrical Components Technology Conference (ECTC), Lake Buena Vista, Florida, pp. 53-58, May 9, 00. Distributed SPICE Circuit Model for Ceramic Capacitors Larry D Smith,

More information

Fast Transient Analysis of Power Distribution Network Modeled by Unstructured Meshes by Using Locally Implicit Latency Insertion Method

Fast Transient Analysis of Power Distribution Network Modeled by Unstructured Meshes by Using Locally Implicit Latency Insertion Method Fast Transient Analysis of Power Distribution Network Modeled by Unstructured Meshes by Using Locally Implicit Latency Insertion Method Shingo Okada #, Hiroki Kurobe #, Tadatoshi Sekine, Hideki Asai #

More information

IC MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES

IC MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES IBIS Summit @ DATE, Mar. 1, 26 MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES F.G.Canavero, I.A.Maio, I.S.Stievano Dipartimento di Elettronica, Politecnico di Torino, Italy http://www.emc.polito.it/ IBIS

More information

Effective ramping algorithm and restart algorithm in the SPICE3 implementation for DPTA method

Effective ramping algorithm and restart algorithm in the SPICE3 implementation for DPTA method NOLTA, IEICE Paper Effective ramping algorithm and restart algorithm in the SPICE3 implementation for DPTA method Zhou Jin 1a),XiaoWu 1,DanNiu 2, Xiaoli Guan 1, and Yasuaki Inoue 1 1 Graduate School of

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 16 CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 2.1 INTRODUCTION Load flow analysis of power system network is used to determine the steady state solution for a given set of bus loading

More information

Network Analysis at IIT Bombay

Network Analysis at IIT Bombay H. Narayanan Department of Electrical Engineering Indian Institute of Technology, Bombay October, 2007 Plan Speed-up of Network Analysis by exploiting Topological Methods. Adaptation of standard linear

More information

ECE 497 JS Lecture - 18 Impact of Scaling

ECE 497 JS Lecture - 18 Impact of Scaling ECE 497 JS Lecture - 18 Impact of Scaling Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 8 th Speaker: Prof.

More information

Model order reduction of electrical circuits with nonlinear elements

Model order reduction of electrical circuits with nonlinear elements Model order reduction of electrical circuits with nonlinear elements Andreas Steinbrecher and Tatjana Stykel 1 Introduction The efficient and robust numerical simulation of electrical circuits plays a

More information

The Harmonic Balance Method

The Harmonic Balance Method For Nonlinear Microwave Circuits Hans-Dieter Lang, Xingqi Zhang Thursday, April 25, 2013 ECE 1254 Modeling of Multiphysics Systems Course Project Presentation University of Toronto Contents Balancing the

More information

Exploring Autonomous Memory Circuit Operation

Exploring Autonomous Memory Circuit Operation Exploring Autonomous Memory Circuit Operation October 21, 2014 Autonomous Au-to-no-mous: Merriam-Webster Dictionary (on-line) a. Existing independently of the whole. b. Reacting independently of the whole.

More information

Quiescent Steady State (DC) Analysis The Newton-Raphson Method

Quiescent Steady State (DC) Analysis The Newton-Raphson Method Quiescent Steady State (DC) Analysis The Newton-Raphson Method J. Roychowdhury, University of California at Berkeley Slide 1 Solving the System's DAEs DAEs: many types of solutions useful DC steady state:

More information

Short Papers. Efficient In-Package Decoupling Capacitor Optimization for I/O Power Integrity

Short Papers. Efficient In-Package Decoupling Capacitor Optimization for I/O Power Integrity 734 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007 Short Papers Efficient In-Package Decoupling Capacitor Optimization for I/O Power Integrity

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

A Clustering Technique for Fast Electrothermal Analysis of On-Chip Power Distribution Networks

A Clustering Technique for Fast Electrothermal Analysis of On-Chip Power Distribution Networks A Clustering Technique for Fast Electrothermal Analysis of On-Chip Power Distribution Networks A. Magnani 1, M. de Magistris 1, A. Maffucci 2, A. Todri Sanial 3 maffucci@unicas.it (1) Dept. of Electrical

More information

An Algorithmic Framework of Large-Scale Circuit Simulation Using Exponential Integrators

An Algorithmic Framework of Large-Scale Circuit Simulation Using Exponential Integrators An Algorithmic Framework of Large-Scale Circuit Simulation Using Exponential Integrators Hao Zhuang 1, Wenjian Yu 2, Ilgweon Kang 1, Xinan Wang 1, and Chung-Kuan Cheng 1 1. University of California, San

More information

Exact Analysis of a Common-Source MOSFET Amplifier

Exact Analysis of a Common-Source MOSFET Amplifier Exact Analysis of a Common-Source MOSFET Amplifier Consider the common-source MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel

More information

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Michel Nakhla Carleton University Canada Model Reduction for Complex Dynamical Systems Berlin 2010 EMI Delay Crosstalk Reflection

More information

Achieving Accurate Results With a Circuit Simulator. Ken Kundert and Ian Clifford Cadence Design Systems Analog Division San Jose, Calif 95134

Achieving Accurate Results With a Circuit Simulator. Ken Kundert and Ian Clifford Cadence Design Systems Analog Division San Jose, Calif 95134 Achieving Accurate Results With a Circuit Simulator Ken Kundert and Ian Clifford Cadence Design Systems Analog Division San Jose, Calif 95134 1 Outline Solving Nonlinear Systems of Equations Convergence

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Modeling and optimization of noise coupling in TSV-based 3D ICs

Modeling and optimization of noise coupling in TSV-based 3D ICs LETTER IEICE Electronics Express, Vol.11, No.20, 1 7 Modeling and optimization of noise coupling in TSV-based 3D ICs Yingbo Zhao, Yintang Yang, and Gang Dong a) School of Microelectronics, Xidian University,

More information

ALGORITHM FOR ACCURATE CAPACITANCE MATRIX MEASUREMENTS OF THE MULTICONDUCTOR STRUCTURE FOR VLSI INTERCONNECTIONS

ALGORITHM FOR ACCURATE CAPACITANCE MATRIX MEASUREMENTS OF THE MULTICONDUCTOR STRUCTURE FOR VLSI INTERCONNECTIONS ALGORITHM FOR ACCURATE CAPACITANCE MATRIX MEASUREMENTS OF THE MULTICONDUCTOR STRUCTURE FOR VLSI INTERCONNECTIONS Lech ZNAMIROWSKI Olgierd A. PALUSINSKI DEPARTMENT OF AUTOMATIC CONTROL, DEPARTMENT OF ELECTRICAL

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

A Hierarchical Analysis Methodology for Chip-Level Power Delivery with Realizable Model Reduction

A Hierarchical Analysis Methodology for Chip-Level Power Delivery with Realizable Model Reduction A Hierarchical Analysis Methodology for Chip-Level Power Delivery with Realizable Model Reduction Yu-Min Lee Electrical and Computer Engineering University of Wisconsin at Madison Charlie Chung-Ping Chen

More information

State Estimation and Power Flow Analysis of Power Systems

State Estimation and Power Flow Analysis of Power Systems JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 01 685 State Estimation and Power Flow Analysis of Power Systems Jiaxiong Chen University of Kentucky, Lexington, Kentucky 40508 U.S.A. Email: jch@g.uky.edu Yuan

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

POWERING DIGITAL BOARDS

POWERING DIGITAL BOARDS POWERING DIGITAL BOARDS DISTRIBUTION AND PERFORMANCE Istvan Novak, Signal Integrity Staff Engineer SUN Microsystems, Inc. Meeting of the Greater Boston Chapter IPC Designer's Council February 9, 1999 1

More information

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let Chapter 6: Power Flow Network Matrices Network Solutions Newton-Raphson Method Fast Decoupled Method Bus Admittance Matri Let I = vector of currents injected into nodes V = vector of node voltages Y bus

More information

Chapter 4. Digital Integrated Circuit Design I. ECE 425/525 Chapter 4. CMOS design can be realized meet requirements from

Chapter 4. Digital Integrated Circuit Design I. ECE 425/525 Chapter 4. CMOS design can be realized meet requirements from Digital Integrated Circuit Design I ECE 425/525 Professor R. Daasch Depar tment of Electrical and Computer Engineering Portland State University Portland, OR 97207-0751 (daasch@ece.pdx.edu) http://ece.pdx.edu/~ecex25

More information

ECE 546 Lecture 07 Multiconductors

ECE 546 Lecture 07 Multiconductors ECE 546 Lecture 07 Multiconductors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 TELGRAPHER S EQUATION FOR N COUPLED

More information

CMOS Transistors, Gates, and Wires

CMOS Transistors, Gates, and Wires CMOS Transistors, Gates, and Wires Should the hardware abstraction layers make today s lecture irrelevant? pplication R P C W / R W C W / 6.375 Complex Digital Systems Christopher atten February 5, 006

More information

ECE 451 Macromodeling

ECE 451 Macromodeling ECE 451 Macromodeling Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 Blackbox Macromodeling Nonlinear Network 1 Nonlinear Network

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

Outline. Thermal noise, noise power and noise temperature. Noise in RLC single-ports. Noise in diodes and photodiodes

Outline. Thermal noise, noise power and noise temperature. Noise in RLC single-ports. Noise in diodes and photodiodes 3. Noise 1 Outline Thermal noise, noise power and noise temperature Noise in RLC single-ports Noise in diodes and photodiodes -port and multi-port noise parameters Noise temperature and noise parameter

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF ECE 342 Electronic Circuits ecture 25 Frequency esponse of CG, CB,SF and EF Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 342 Jose Schutt Aine 1 Common

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS

AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS Progress In Electromagnetics Research M, Vol. 23, 53 63, 2012 AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS T.-S. Nguyen *, J.-M. Guichon, O. Chadebec, G. Meunier, and

More information

VLSI Signal Processing

VLSI Signal Processing VLSI Signal Processing Lecture 1 Pipelining & Retiming ADSP Lecture1 - Pipelining & Retiming (cwliu@twins.ee.nctu.edu.tw) 1-1 Introduction DSP System Real time requirement Data driven synchronized by data

More information

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 5-1 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW

More information

Agilent EEsof EDA.

Agilent EEsof EDA. Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

Statistical approach in complex circuits by a wavelet based Thevenin s theorem

Statistical approach in complex circuits by a wavelet based Thevenin s theorem Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 185 Statistical approach in complex circuits by a wavelet based Thevenin s theorem

More information

Analog Simulation. Digital simulation. Analog simulation. discrete values. discrete timing. continuous values. continuous timing

Analog Simulation. Digital simulation. Analog simulation. discrete values. discrete timing. continuous values. continuous timing Analog Simulation Digital simulation discrete values bit, boolean, enumerated, integer exception - floating point discrete timing cycle based - uniform time intervals event based - nonuniform time intervals

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies in Power System Planning

Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies in Power System Planning 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2014 Grid of the Future Symposium Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies

More information

Analytical Delay Models for VLSI Interconnects Under Ramp Input

Analytical Delay Models for VLSI Interconnects Under Ramp Input Analytical Delay Models for VLSI Interconnects Under amp Input Andrew B. Kahng, Kei Masuko, and Sudhakar Muddu UCLA Computer Science Department, Los Angeles, CA 995-596 USA Cadence Design Systems, Inc.,

More information

An Efficient Graph Sparsification Approach to Scalable Harmonic Balance (HB) Analysis of Strongly Nonlinear RF Circuits

An Efficient Graph Sparsification Approach to Scalable Harmonic Balance (HB) Analysis of Strongly Nonlinear RF Circuits Design Automation Group An Efficient Graph Sparsification Approach to Scalable Harmonic Balance (HB) Analysis of Strongly Nonlinear RF Circuits Authors : Lengfei Han (Speaker) Xueqian Zhao Dr. Zhuo Feng

More information

Automatic Formulation of Circuit Equations

Automatic Formulation of Circuit Equations ECE 570 Session 3 IC 752-E Computer Aided Engineering for Integrated Circuits Automatic Formulation of Circuit Equations Objective: Basics of computer aided analysis/simulation Outline:. Discussion of

More information

Combined FDTD/Macromodel Simulation of Interconnected Digital Devices

Combined FDTD/Macromodel Simulation of Interconnected Digital Devices Combined FDTD/Macromodel Simulation of Interconnected Digital Devices S. Grivet-Talocia, I. S. Stievano, I. A. Maio, F. G. Canavero Dip. Elettronica, Politecnico di Torino, Torino, Italy (E-mail: grivet@polito.it)

More information

EMC Considerations for DC Power Design

EMC Considerations for DC Power Design EMC Considerations for DC Power Design Tzong-Lin Wu, Ph.D. Department of Electrical Engineering National Sun Yat-sen University Power Bus Noise below 5MHz 1 Power Bus Noise below 5MHz (Solution) Add Bulk

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

Implementing Nonlinear Oscillator Macromodels using Verilog-AMS for Accurate Prediction of Injection Locking Behaviors of Oscillators

Implementing Nonlinear Oscillator Macromodels using Verilog-AMS for Accurate Prediction of Injection Locking Behaviors of Oscillators Implementing Nonlinear Oscillator Macromodels using Verilog-AMS for Accurate Prediction of Injection Locking Behaviors of Oscillators Ben Gu, Kiran K. Gullapalli, Steven Hamm, Brian Mulvaney, MICA Circuit

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS CAPACITOR PLACEMET I UBALACED POWER SSTEMS P. Varilone and G. Carpinelli A. Abur Dipartimento di Ingegneria Industriale Department of Electrical Engineering Universita degli Studi di Cassino Texas A&M

More information

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 2, Jan 2014 Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks M. Arjun Yadav 1, D. Srikanth

More information

Advanced Computational Methods for VLSI Systems. Lecture 4 RF Circuit Simulation Methods. Zhuo Feng

Advanced Computational Methods for VLSI Systems. Lecture 4 RF Circuit Simulation Methods. Zhuo Feng Advanced Computational Methods for VLSI Systems Lecture 4 RF Circuit Simulation Methods Zhuo Feng 6. Z. Feng MTU EE59 Neither ac analysis nor pole / zero analysis allow nonlinearities Harmonic balance

More information

TRANSIENT ANALYSIS OF POWER DISTRIBUTION NETWORKS AND TRANSMISSION LINES USING THE LATENCY INSERTION METHOD

TRANSIENT ANALYSIS OF POWER DISTRIBUTION NETWORKS AND TRANSMISSION LINES USING THE LATENCY INSERTION METHOD TRANSIENT ANALYSIS OF POWER DISTRIBUTION NETWORKS AND TRANSMISSION LINES USING THE LATENCY INSERTION METHOD BY XIOU GE THESIS Submitted in partial fulfillment of the requirements for the degree of Bachelor

More information

Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations

Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Power efficiency and optimum load formulas on

More information

A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems

A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems electronics Article A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems Qingshan Xu 1, Yuqi Wang 1, * ID, Minjian Cao 1 and Jiaqi Zheng 2 1 School

More information

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016 1225 Full-Chip Power Supply Noise Time-Domain Numerical Modeling and Analysis for Single and Stacked ICs Li Zheng, Yang Zhang, Student

More information

Two-Layer Network Equivalent for Electromagnetic Transients

Two-Layer Network Equivalent for Electromagnetic Transients 1328 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 4, OCTOBER 2003 Two-Layer Network Equivalent for Electromagnetic Transients Mohamed Abdel-Rahman, Member, IEEE, Adam Semlyen, Life Fellow, IEEE, and

More information

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design

More information

Application Note 321. Flex Power Modules. Output Filter Impedance Design - 3E POL Regulators

Application Note 321. Flex Power Modules. Output Filter Impedance Design - 3E POL Regulators Application Note 321 Flex Power Modules Output Filter Impedance Design - 3E POL Regulators Introduction In this application note Output Filter Impedance Design aspects and guidelines of 3E Point of Load

More information

Transistor-Level Static Timing Analysis by Piecewise Quadratic Waveform Matching

Transistor-Level Static Timing Analysis by Piecewise Quadratic Waveform Matching Transistor-Level Static Timing Analysis by Piecewise Quadratic Waveform Matching Zhong Wang, Jianwen Zhu Electrical and Computer Engineering 1 King s College Road University of Toronto, Ontario M5S 3G4,

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

Page 3. - At first glance, this looks just like a resistor, but Impedance is the generic expression that includes time & frequency dependence.

Page 3. - At first glance, this looks just like a resistor, but Impedance is the generic expression that includes time & frequency dependence. EEE 46/56 Digital System Design Module #2 nterconnect Modeling with umped Elements Topics. Modeling Techniques 2. pedance of sistors, Capacitors and nductors Textbook ading Assignments. 3.-3.7 What you

More information

Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling.

Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling. Whites, EE 322 Lecture 23 Page 1 of 13 Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling. Recall from the last lecture that the NorCal 40A uses a Class C power amplifier. From Fig. 10.3(b) the collector

More information