ECE 546 Lecture 15 Circuit Synthesis

Size: px
Start display at page:

Download "ECE 546 Lecture 15 Circuit Synthesis"

Transcription

1 ECE 546 Lecture 15 Circuit Synthesis Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois ECE 546 Jose Schutt Aine 1

2 MOR via Vector Fitting Rational function approximation: N cn f ( s) d sh s a n 1 n Introduce an unknown function σ(s) that satisfies: Poles of f(s) = zeros of σ(s): ( sf ) ( s) N cn d sh s a n 1 n N ( s) c n f ( s) N n 1 1 s a n 1 n n1 N N cn n 1 n n 1 n N 1 cn d sh s z s a 1 s z s a n n Flip unstable poles into the left half plane. Im s-domain Re ECE 546 Jose Schutt Aine

3 Blackbox Formulation Transfer function is approximated H( ) d L k1 ck 1 j / Using curve fitting technique (e.g. vector fitting) In the time domain, recursive convolution is used ck where y() t dx( t T) y () t L pk k 1 () ( )1 ckt ckt y t a x tt e e y ( tt) pk k pk Recursive convolution is fast ECE 546 Jose Schutt Aine 3

4 Passivity Enforcement State space form: Hamiltonian matrix: x Ax Bu y Cx Du M T T T T C LC A C DKB T T A BKD C BKB T T 1 1 K I D D L I DD Passive if M has no imaginary eigenvalues. Sweep: H eig I S( j) S( j) Quadratic programming: Minimize (change in response) subject to (passivity compensation). T min vec( ΔC) H vec( ΔC) subject to = G vec( ΔC). ECE 546 Jose Schutt Aine 4

5 Macromodel Circuit Synthesis Use of Macromodel Time-Domain simulation using recursive convolution Frequency-domain circuit synthesis for SPICE netlist ECE 546 Jose Schutt Aine 5

6 Macromodel Circuit Synthesis Objective: Determine equivalent circuit from macromodel representation Motivation Circuit can be used in SPICE Goal Generate a netlist of circuit elements ECE 546 Jose Schutt Aine 6

7 Circuit Realization Circuit realization consists of interfacing the reduced model with a general circuit simulator such as SPICE Model order reduction gives a transfer function that can be presented in matrix form as or S s Y s s11 s s1 N s sn1 s snn s y11 s y1 N s yn1 s ynn s ECE 546 Jose Schutt Aine 7

8 Method 1: Y-Parameter/MOR* Each of the Y-parameters can be represented as y(s) ij d L k1 ak s p where the a k s are the residues and the p k s are the poles. d is a constant k *Giulio Antonini "SPICE Equivalent Circuits of Frequency- Domain Responses", IEEE Transactions on Electromagnetic Compatibility, pp 50-51, Vol. 45, No. 3, August 003. ECE 546 Jose Schutt Aine 8

9 Equivalent-Circuit Extraction Macromodel is curve-fit to take the form Constant term d Real Poles Complex Poles Y(s) d L k1 rk s p Need to find equivalent circuit associated with k ECE 546 Jose Schutt Aine 9

10 Y-Parameter - Circuit Realization Each of the I ij can be realized with a circuit having the following topology: The resulting current sources can then be superposed for the total current I i leaving port i All Y parameters are treated as if they were one-port Y parameters ECE 546 Jose Schutt Aine 10

11 Y-Parameter - Circuit Realization We try to find the circuit associated with each term: L aijk y(s) ij dij s p k1 For a given port i, the total current due to all ports with voltagesv j (j=1,,p) is given by P P P L aijk Ii yijvj dijvj V j s p j1 j1 j1 k1 ijk For each contributing port, with voltage i, the total current due to a voltage V j at port j is given by L aijk Iij dijvj V j s p k1 ijk ijk ECE 546 Jose Schutt Aine 11

12 Y-Parameter - Circuit Realization We try to find the circuit associated with each term: y(s) 1. Constant term d ij d L k1 s a k p k y ijd(s) d. Each pole-residue pair y (s) ijk a s k p k ECE 546 Jose Schutt Aine 1

13 Circuit Realization Constant Term R 1 d ECE 546 Jose Schutt Aine 13

14 Circuit Realization Pole/Residue In the pole-residue case, we must distinguish two cases (a) Pole is real y (s) ijk s a k p k (b) Complex conjugate pair of poles y (s) ijk k jk k jk s j s j k k k k In all cases, we must find an equivalent circuit consisting of lumped elements that will exhibit the same behavior ECE 546 Jose Schutt Aine 14

15 Case (a) - Real Pole Consider the circuit shown above. The input impedance Z as a function of the complex frequency s can be expressed as: Z sl R Y s L 1/ a k from circuit a s p 1/ L Ŷ(s) k s R/ L Comparing Y(s) and Ŷ(s) yields the solution R p k / ak from pole and residue k ECE 546 Jose Schutt Aine 15

16 Circuit Realization - Complex Poles Each term associated with a complex pole pair in the expansion gives: r1 r Yˆ s p s p 1 Where r 1, r, p 1 and p are the complex residues and poles. They satisfy: r 1 =r * and p 1 =p * It can be re-arranged as: Yˆ r r / 1 s r p r p r r s s p p p p 1 1 ECE 546 Jose Schutt Aine 16

17 Circuit Realization - Complex Poles The pole/residue representation of the Y parameters is given by: Yˆ r r 1 1 1/ 1 s r p r p r r s s p p p p 1 1 p pp 1 product of poles DEFINE a r r 1 sum of residues g p p 1 sum of poles x rp rp 1 1 cross product ˆ s x/ a Y a s sg p ECE 546 Jose Schutt Aine 17

18 Circuit Realization - Complex Poles Consider the circuit shown above. The input impedance Z as a function of the complex frequency s can be expressed as: 1 Z slr slr 1 1 1/ R sc 1sCR R Z 1 R sl scr R 1 1 scr ECE 546 Jose Schutt Aine 18

19 Circuit Realization - Complex Poles Y LCR s s CR s 1/ CR L CRR LR C 1 R 1 R LR C Y 1 s1/ CR L L CRR R R 1 s s LRC LRC 1 ECE 546 Jose Schutt Aine 19

20 Circuit Realization - Complex Poles Comparing Y 1 s1/ CR L L CRR R R 1 s s LRC LRC 1 We can identify the circuit elements with ˆ s x/ a Y a s sg p L 1/ a R x a 1 g a R p x g pa 1 g C x a a x a x ECE 546 Jose Schutt Aine 0

21 Circuit Realization - Complex Poles L 1/ a R x a 1 g a R p x g pa 1 g C x a a x a x ECE 546 Jose Schutt Aine 1

22 Negative Elements In the circuit synthesis process, it is possible that some circuit elements come as negative. To prevent this situation, we add a contribution to the real parts of the residues of the system. In the case of a complex residue, for instance, assume that r1 r Yˆ s p s p 1 Yˆ r r s p1 s p s p1 s p 1 Augmented Circuit Compensation Circuit Can show that both augmented and compensation circuits will have positive elements ECE 546 Jose Schutt Aine

23 Why S Parameters? Y-Parameter Test line: Zc, l Y 1 e 11 l Z (1 e ) c Z c : microstrip characteristic impedance : complex propagation constant l : length of microstrip Y 11 can be unstable short Reference Line Zo S-Parameter Test Line Test line: Zc, l ( 1 e ) S 11 l 1 e Z c Z c Z o Z o Reference Line S 11 is always stable Zo ECE 546 Jose Schutt Aine 3

24 Y Versus S Parameters S Y Impulse Responses Observation: S-parameters decay rapidly; Y parameters do not. ECE 546 Jose Schutt Aine 4

25 Optimizing Reference System o o S ZZ I ZZ I 1 o using Z I S I S Z 1.5 S11 - Linear Magnitude Z o = as reference S11 1 using 0.5 S11-50 Ohm S11 - Zref Z o = as reference Frequency (GHz) ECE 546 Jose Schutt Aine 5

26 Method : S-Parameter /MOR 1 A V Z I i i o i Need equivalent circuit for S ijk 1 Bi ViZoIi All S parameters are treated as if they were one-port S parameters ECE 546 Jose Schutt Aine 6

27 Strategy For a given circuit, a relationship between the input admittance Y ijk (s) of the circuit and the associated one-port S-parameter representation S ijk (s) can be described by S (s) ijk Y Y o o Y (s) ijk Y (s) ijk 1 S (s) ijk Y ijk(s) Yo 1 S ijk (s) Y o is the reference admittance ECE 546 Jose Schutt Aine 7

28 Equivalent-Circuit Extraction Macromodel is curve-fit to take the form S( s ) d L k1 s r k p k Need to find equivalent circuit associated with Constant term d Real Poles Complex Poles ECE 546 Jose Schutt Aine 8

29 Constant Term 1 S ijk 1 d R Yo Y 1 S ijk 1d o S ijk R=Y o (1-d)/(1+d) ECE 546 Jose Schutt Aine 9

30 S- Circuit Realization Constant Term 1 d R Yo 1 d ECE 546 Jose Schutt Aine 30

31 S-Parameters - Poles and Residues In the pole-residue case, we must distinguish two cases (a) Pole is real s (s) ijk s a k p k (b) Complex conjugate pair of poles s (s) ijk k jk k jk s j s j k k k k In all cases, we must find an equivalent circuit consisting of lumped elements that will exhibit the same behavior ECE 546 Jose Schutt Aine 31

32 S-Realization Real Poles Proposed Circuit Model Admittance of proposed model is given by: 1 s R R R R C Y 1 1 RR 1 1 s RC ECE 546 Jose Schutt Aine 3

33 Real Poles Y from circuit 1 s R R ak 1 R R C 1 S ijk(s) RR 1 s pk 1 s RC r 1 ˆ 1 S ijk s p s a Y Yo Yo Y o 1 S r ijk 1 s a s p from pole and residue ECE 546 Jose Schutt Aine 33

34 Solution for Real Poles Comparing Y ˆ( s) with Y () s gives C bzo b a R 1 bc R R 1 1 ac where a p r, and b p r k k k k ECE 546 Jose Schutt Aine 34

35 Realization Complex Poles From the S-parameter expansion, the complex pole pair gives: Sˆ r r s r r r p r p s p s p s s p p p p which corresponds to an admittance of: sa x ˆ 1 ˆ 1 S s sg p Y Yo Y 1 Sˆ sa x 1 s sg p o ECE 546 Jose Schutt Aine 35

36 Realization Complex Poles The admittance expression can be re-arranged as ˆ s sg psax s s ga px Y Y o Y s sg psax s s ga px o p pp 1 product of poles WE HAD DEFINED a r r 1 sum of residues g p p 1 sum of poles x rp rp 1 1 cross product ECE 546 Jose Schutt Aine 36

37 Realization Complex Poles ˆ s sg psax s s ga px Y Y o Y s sg psax s s ga px This can be further rearranged as o in which ˆ s sab Y s sdf E A ( ga), B px, D ( ga), F px and E Y o 1 H ECE 546 Jose Schutt Aine 37

38 Realization Complex Poles There are several circuit topologies that will work Model 1 Model 9 Model 13 Model 1 ECE 546 Jose Schutt Aine 38

39 Realization Complex Poles More circuit topologies that will work Model 10 Model 11 Model 8 Model 1 ECE 546 Jose Schutt Aine 39

40 Complex Poles Model 1 In particular, if we choose model 1 Y LRR CR R C R R R s s 1 LCR LCR R o LRR 1 C R1R s s LCR LCR o 1 o o 1 Must be matched with sa x 1 1 ˆ S ijk s sg p Y Yo Y 1 S sa x ijk 1 s sg p o ECE 546 Jose Schutt Aine 40

41 Complex Poles Model 1 Matching the terms with like coefficients gives p x R R R o LCR 1 R o 1 Y o p x R R LCR 1 o p R R R LCR 1 R o x LCR ECE 546 Jose Schutt Aine 41

42 Complex Poles Model 1 Solving gives R R o p x 1 R 1 L R o a R 1 1 gro Lx a a R o C a Rx ECE 546 Jose Schutt Aine 4

43 Complex Poles Model 9 If we choose Model 9 Y 9 A B E L CRR3 CR1R R3 R R 3 s s R1 R3 LC R1R3 LC R1R3 RR 1 3 CR R 1RR3 LR1 1R R3 s s LCR1R3 LCR1R3 D F from which the circuit elements can be extracted ECE 546 Jose Schutt Aine 43

44 Complex Poles Model 9 F R 1 BH C BD AF H F R BD BF ADF F B ABD BD A F BF ADF F H R 3 F L B D A F B FH B ABD BD A F BF ADF F H ECE 546 Jose Schutt Aine 44

45 Special Case Model 4 A special case exists when x=0 or x rp 1 rp 1 0 ˆ s s ga px s s ga p Y Y o Y s s ga px s s ga p o in which ˆ s sa B Y s sdb E A ( ga), B px, D ( ga), F p and E Y o 1 H ECE 546 Jose Schutt Aine 45

46 Special Case Model 4 The proposed circuit model is Model 4 This model has one inductor, one capacitor and two resistors. ECE 546 Jose Schutt Aine 46

47 Special Case Model 4 The admittance seen at the input is: R 1 DE A Y 4 A B F E 1 1 s s R1 R C R 1 R LC RR s s CR LC D FB The element are extracted as R R E R 1 1 E DR 1 C 1 L FC ECE 546 Jose Schutt Aine 47

48 Method 3 - Convolution with S Parameters In frequency domain B=SA In time domain Convolution: b(t) = s(t)*a(t) s(t)*a(t) s(t )a( )d ECE 546 Jose Schutt Aine 48

49 SPICE Macromodel STAMP stamp 1 o 1 Y Z 1s'(0 ) 1 s'(0 ) stamp o 1 1 I Z 1s'(0) H(t) Most of the computational effort is in the convolution calculation of the history H(t) at each time step. t1 Ht () s( ) at ( ) We make the convolution faster using a -function expansion for s(t) 1 This operation can be accelerated ECE 546 Jose Schutt Aine 49

50 In the frequency domain, assume that S parameter can be expanded in the form: Sl () M s( p) c ( pk) k 1 S-Parameter Expansion M j lk ce k k 1 In the time domain, this corresponds to: k Which is an impulse train of order M. Convolution will then give: M M y( p) s( p)* x( p) ck ( pk) x( p) ckx( pk) k1 k1 If we truncate the summation to the Q largest impulses: Q Q y( p) ck ( pk) x( p) ckx( pk) k1 k1 If the reference system is optimized, most of the coefficients c k will be negligibly small; therefore Q will be a relatively small number Fast Convolution is achieved by making Q small ECE 546 Jose Schutt Aine 50

51 Strategy s ( u) c ( u k) ijk ijk Since the S-parameter is a simple delay, the oneport circuit representation is a transmission line with characteristic impedance Z o and delay k ECE 546 Jose Schutt Aine 51

52 Circuit Interpretation s ( u) c ( u k) ijk ijk kt t time step d ECE 546 Jose Schutt Aine 5

53 Method 1: Y-Parameters/MOR Recursive convolution SPICE realization ECE 546 Jose Schutt Aine 53

54 Method : S-Parameters/MOR Recursive convolution SPICE realization ECE 546 Jose Schutt Aine 54

55 Comparisons SPICE simulation from MOR generated Netlist (Method ) Direct Convolution ECE 546 Jose Schutt Aine 55

56 Coupled Lines (4-port) Direct SPICE simulation Using generated netlist (Method ) ECE 546 Jose Schutt Aine 56

57 Comparison of S-methods SPICE Netlist from MOR with S (Method ) SPICE Netlist from Fast convolution with S (Method 3) Convolution (no SPICE netlist) ECE 546 Jose Schutt Aine 57

ECE 451 Circuit Synthesis

ECE 451 Circuit Synthesis ECE 451 Circuit Synthesis Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 MOR via Vector Fitting Rational function approximation:

More information

ECE 451 Macromodeling

ECE 451 Macromodeling ECE 451 Macromodeling Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 Blackbox Macromodeling Nonlinear Network 1 Nonlinear Network

More information

ECE 451 Black Box Modeling

ECE 451 Black Box Modeling Black Box Modeling Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu Simulation for Digital Design Nonlinear Network Nonlinear Network 3 Linear N-Port with

More information

ECE 546 Lecture 13 Scattering Parameters

ECE 546 Lecture 13 Scattering Parameters ECE 546 Lecture 3 Scattering Parameters Spring 08 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Transfer Function Representation

More information

EE5900 Spring Lecture 5 IC interconnect model order reduction Zhuo Feng

EE5900 Spring Lecture 5 IC interconnect model order reduction Zhuo Feng EE59 Spring Parallel VLSI CAD Algorithms Lecture 5 IC interconnect model order reduction Zhuo Feng 5. Z. Feng MU EE59 In theory we can apply moment matching for any order of approximation But in practice

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

ECE 451 Advanced Microwave Measurements. Requirements of Physical Channels

ECE 451 Advanced Microwave Measurements. Requirements of Physical Channels ECE 451 Advanced Microwave Measurements Requirements of Physical Channels Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 451 Jose Schutt Aine 1

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Overview Review on Laplace transform Learn about transfer

More information

A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY INSERTION METHOD PATRICK KUANLYE GOH DISSERTATION

A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY INSERTION METHOD PATRICK KUANLYE GOH DISSERTATION A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY INSERTION METHOD BY PATRICK KUANLYE GOH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Network Synthesis Part I

Network Synthesis Part I Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n2.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE References Definition Network Functions

More information

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

ECE Networks & Systems

ECE Networks & Systems ECE 342 1. Networks & Systems Jose E. Schutt Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 What is Capacitance? 1 2 3 Voltage=0 No Charge No Current Voltage build

More information

Enforcement Passivity. Frequency Data. Wenliang Tseng, Sogo Hsu, Frank Y.C. Pai and Scott C.S. Li. Asian IBIS Summit, Taipei, Taiwan November 12, 2010

Enforcement Passivity. Frequency Data. Wenliang Tseng, Sogo Hsu, Frank Y.C. Pai and Scott C.S. Li. Asian IBIS Summit, Taipei, Taiwan November 12, 2010 Enforcement Passivity of S-parameter S Sampled Frequency Data Wenliang Tseng, Sogo Hsu, Frank Y.C. Pai and Scott C.S. Li Asian IBIS Summit, Taipei, Taiwan November 12, 2010 Agenda Causality and passivity

More information

ECE 497 JS Lecture - 18 Noise in Digital Circuits

ECE 497 JS Lecture - 18 Noise in Digital Circuits ECE 497 JS Lecture - 18 Noise in Digital Circuits Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 15 th Speaker:

More information

ECE 546 Lecture 16 MNA and SPICE

ECE 546 Lecture 16 MNA and SPICE ECE 546 Lecture 16 MNA and SPICE Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Nodal Analysis The Node oltage method

More information

ECE 546 Lecture 07 Multiconductors

ECE 546 Lecture 07 Multiconductors ECE 546 Lecture 07 Multiconductors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 TELGRAPHER S EQUATION FOR N COUPLED

More information

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF ECE 342 Electronic Circuits ecture 25 Frequency esponse of CG, CB,SF and EF Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 342 Jose Schutt Aine 1 Common

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy //7 ectures on Signals & systems Engineering Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng. Al-Azhar University Email : eaymanelshenawy@yahoo.com aplace Transform

More information

ECE 598 JS Lecture 06 Multiconductors

ECE 598 JS Lecture 06 Multiconductors ECE 598 JS Lecture 06 Multiconductors Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.Tech I YEAR II SEMESTER-ECAS(EEE) QUESTION BANK (OBJECTIVE)

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.Tech I YEAR II SEMESTER-ECAS(EEE) QUESTION BANK (OBJECTIVE) MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.Tech I YEAR II SEMESTER-ECAS(EEE) QUESTION BANK (OBJECTIVE) MODULE-III 1. Which among the following represents the precise condition of reciprocity for transmission

More information

ECE 546 Lecture 19 X Parameters

ECE 546 Lecture 19 X Parameters ECE 546 Lecture 19 X Parameters Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 References [1] J J. Verspecht and D.

More information

Stability and Passivity of the Super Node Algorithm for EM Modeling of IC s

Stability and Passivity of the Super Node Algorithm for EM Modeling of IC s Stability and Passivity of the Super Node Algorithm for EM Modeling of IC s M.V. Ugryumova and W.H.A. Schilders Abstract The super node algorithm performs model order reduction based on physical principles.

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

Circuit Theory Prof. S.C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi

Circuit Theory Prof. S.C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Circuit Theory Prof. S.C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 43 RC and RL Driving Point Synthesis People will also have to be told I will tell,

More information

Equivalent Lumped Element Network Synthesis for Distributed Passive Microwave Circuits

Equivalent Lumped Element Network Synthesis for Distributed Passive Microwave Circuits December, 2 Microwave Review Equivalent Lumped Element Network Synthesis for Distributed Passive Microwave Circuits Johannes Russer #, Nebojša Dončov 2, Farooq Mukhtar #3, Biljana Stošić 4, Tatjana Asenov

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Michel Nakhla Carleton University Canada Model Reduction for Complex Dynamical Systems Berlin 2010 EMI Delay Crosstalk Reflection

More information

Qualification of tabulated scattering parameters

Qualification of tabulated scattering parameters Qualification of tabulated scattering parameters Stefano Grivet Talocia Politecnico di Torino, Italy IdemWorks s.r.l. stefano.grivet@polito.it 4 th IEEE Workshop on Signal Propagation on Interconnects

More information

IBIS Modeling Using Latency Insertion Method (LIM)

IBIS Modeling Using Latency Insertion Method (LIM) IBIS Modeling Using Latency Insertion Method (LIM) José E. Schutt Ainé University of Illinois at Urbana- Champaign Jilin Tan, Ping Liu, Feras Al Hawari, Ambrish arma Cadence Design Systems European IBIS

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Total No. of Questions :09] [Total No. of Pages : 03

Total No. of Questions :09] [Total No. of Pages : 03 EE 4 (RR) Total No. of Questions :09] [Total No. of Pages : 03 II/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 016 Second Semester ELECTRICAL & ELECTRONICS NETWORK ANALYSIS Time: Three Hours Answer Question

More information

Two-Layer Network Equivalent for Electromagnetic Transients

Two-Layer Network Equivalent for Electromagnetic Transients 1328 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 4, OCTOBER 2003 Two-Layer Network Equivalent for Electromagnetic Transients Mohamed Abdel-Rahman, Member, IEEE, Adam Semlyen, Life Fellow, IEEE, and

More information

INTEGRATION OF INTERCONNECT MODELS IN A CIRCUIT SIMULATOR

INTEGRATION OF INTERCONNECT MODELS IN A CIRCUIT SIMULATOR INTEGRATION OF INTERCONNECT MODELS IN A CIRCUIT SIMULATOR by RAMYA MOHAN A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the

More information

Power Transformer Transient Modeling Using Frequency Response Analysis

Power Transformer Transient Modeling Using Frequency Response Analysis Power Transformer Transient Modeling Using Frequency Response Analysis by Hosam Salem Alharbi A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of

More information

Source-Free RC Circuit

Source-Free RC Circuit First Order Circuits Source-Free RC Circuit Initial charge on capacitor q = Cv(0) so that voltage at time 0 is v(0). What is v(t)? Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 150 / 264 First Order

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Circuit Analysis Using Fourier and Laplace Transforms

Circuit Analysis Using Fourier and Laplace Transforms EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India July-November

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

ECE 497 JS Lecture - 18 Impact of Scaling

ECE 497 JS Lecture - 18 Impact of Scaling ECE 497 JS Lecture - 18 Impact of Scaling Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 8 th Speaker: Prof.

More information

Case Study: Parallel Coupled- Line Combline Filter

Case Study: Parallel Coupled- Line Combline Filter MICROWAVE AND RF DESIGN MICROWAVE AND RF DESIGN Case Study: Parallel Coupled- Line Combline Filter Presented by Michael Steer Reading: 6. 6.4 Index: CS_PCL_Filter Based on material in Microwave and RF

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Electrical Circuits I

Electrical Circuits I Electrical Circuits I This lecture discusses the mathematical modeling of simple electrical linear circuits. When modeling a circuit, one ends up with a set of implicitly formulated algebraic and differential

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Network Parameters of a Two-Port Filter

Network Parameters of a Two-Port Filter Contents Network Parameters of a Two-Port Filter S Parameters in the s-domain Relation between ε and ε R 2 2 Derivation of S 22 3 2 Network Parameters in the jω-domain 3 2 S Parameters in the jω-domain

More information

Section 5 Dynamics and Control of DC-DC Converters

Section 5 Dynamics and Control of DC-DC Converters Section 5 Dynamics and ontrol of D-D onverters 5.2. Recap on State-Space Theory x Ax Bu () (2) yxdu u v d ; y v x2 sx () s Ax() s Bu() s ignoring x (0) (3) ( si A) X( s) Bu( s) (4) X s si A BU s () ( )

More information

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic - Generalization ABC... ABC...

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

ECE 497 JS Lecture -07 Planar Transmission Lines

ECE 497 JS Lecture -07 Planar Transmission Lines ECE 497 JS Lecture -07 Planar Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Microstrip ε Z o w/h < 3.3 2 119.9 h h =

More information

Synthesis of passband filters with asymmetric transmission zeros

Synthesis of passband filters with asymmetric transmission zeros Synthesis of passband filters with asymmetric transmission zeros Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Passband filters with asymmetric zeros Placing asymmetric

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this

More information

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Objectives To analyze and understand STC circuits with

More information

f I d required pulse current amplitude

f I d required pulse current amplitude AN OPTIMAL DESIGN PROCEDURE FOR A PULSE FORMING NETWORK E. Cardelli, N. Esposito, M. Raugi, Dipartimento di Sistemi Elettrici ed Automazione Via Diotisalvi 2, 56100 Pisa G. Tina Dipartimento di Elettrotecnica

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Lecture - 32 Network Function (3) 2-port networks: Symmetry Equivalent networks Examples

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

vtusolution.in Initial conditions Necessity and advantages: Initial conditions assist

vtusolution.in Initial conditions Necessity and advantages: Initial conditions assist Necessity and advantages: Initial conditions assist Initial conditions To evaluate the arbitrary constants of differential equations Knowledge of the behavior of the elements at the time of switching Knowledge

More information

Wideband Modeling of RF/Analog Circuits via Hierarchical Multi-Point Model Order Reduction

Wideband Modeling of RF/Analog Circuits via Hierarchical Multi-Point Model Order Reduction 2E-1 Wideband Modeling of RF/Analog Circuits via Hierarchical Multi-Point Model Order Reduction Zhenyu Qi, Sheldon X.-D. Tan Department of Electrical Engineering, University of California, Riverside, CA

More information

How to measure complex impedance at high frequencies where phase measurement is unreliable.

How to measure complex impedance at high frequencies where phase measurement is unreliable. Objectives In this course you will learn the following Various applications of transmission lines. How to measure complex impedance at high frequencies where phase measurement is unreliable. How and why

More information

LAB MANUAL EXPERIMENT NO. 7

LAB MANUAL EXPERIMENT NO. 7 LAB MANUAL EXPERIMENT NO. 7 Aim of the Experiment: Concept of Generalized N-port scattering parameters, and formulation of these parameters into 2-port reflection and transmission coefficients. Requirement:

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

Chapter 2 Time-Domain Representations of LTI Systems

Chapter 2 Time-Domain Representations of LTI Systems Chapter 2 Time-Domain Representations of LTI Systems 1 Introduction Impulse responses of LTI systems Linear constant-coefficients differential or difference equations of LTI systems Block diagram representations

More information

ECE 202 Fall 2013 Final Exam

ECE 202 Fall 2013 Final Exam ECE 202 Fall 2013 Final Exam December 12, 2013 Circle your division: Division 0101: Furgason (8:30 am) Division 0201: Bermel (9:30 am) Name (Last, First) Purdue ID # There are 18 multiple choice problems

More information

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

1, I. Compensation (cont.) Operational Amplifier. Ks 2 S O L U TI OO N S

1, I. Compensation (cont.) Operational Amplifier. Ks 2 S O L U TI OO N S S O L U TI OO N S Operational Amplifier Compensation (cont.) 3 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. With minor-loop compensation,

More information

ECE-202 FINAL April 30, 2018 CIRCLE YOUR DIVISION

ECE-202 FINAL April 30, 2018 CIRCLE YOUR DIVISION ECE 202 Final, Spring 8 ECE-202 FINAL April 30, 208 Name: (Please print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo- 7:30-8:30 DeCarlo-:30-2:45 2025 202 INSTRUCTIONS There are 34 multiple choice

More information

Study of the Electric Guitar Pickup

Study of the Electric Guitar Pickup Study of the Electric Guitar Pickup Independent Study Thomas Withee Spring 2002 Prof. Errede Withee1 The Guitar Pickup Introduction: The guitar pickup is a fairly simple device used in the electric guitar.

More information

IEEE TRANSACTIONS ON ADVANCED PACKAGING 1

IEEE TRANSACTIONS ON ADVANCED PACKAGING 1 IEEE TRANSACTIONS ON ADVANCED PACKAGING 1 Stability, Causality, and Passivity in Electrical Interconnect Models Piero Triverio, Student Member, IEEE, Stefano Grivet-Talocia, Senior Member, IEEE, Michel

More information

Discrete-Time State-Space Equations. M. Sami Fadali Professor of Electrical Engineering UNR

Discrete-Time State-Space Equations. M. Sami Fadali Professor of Electrical Engineering UNR Discrete-Time State-Space Equations M. Sami Fadali Professor of Electrical Engineering UNR 1 Outline Discrete-time (DT) state equation from solution of continuous-time state equation. Expressions in terms

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

The norms can also be characterized in terms of Riccati inequalities.

The norms can also be characterized in terms of Riccati inequalities. 9 Analysis of stability and H norms Consider the causal, linear, time-invariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements

More information

MODELING AND SIMULATION OF EMBEDDED PASSIVES USING RATIONAL FUNCTIONS IN MULTI-LAYERED SUBSTRATES

MODELING AND SIMULATION OF EMBEDDED PASSIVES USING RATIONAL FUNCTIONS IN MULTI-LAYERED SUBSTRATES MODELING AND SIMULATION OF EMBEDDED PASSIVES USING RATIONAL FUNCTIONS IN MULTI-LAYERED SUBSTRATES A Thesis Presented to The Academic Faculty By Kwang Lim Choi In Partial Fulfillment Of the Requirements

More information

Network Synthesis. References :

Network Synthesis. References : References : Network ynthesis Gabor C. Temes & Jack W. Lapatra, Introduction to Circuit ynthesis and Design, McGraw-Hill Book Company. M.E. Van Valkenburg, Introduction to Modern Network ynthesis, John

More information

EE348L Lecture 1. EE348L Lecture 1. Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis. Motivation

EE348L Lecture 1. EE348L Lecture 1. Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis. Motivation EE348L Lecture 1 Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis 1 EE348L Lecture 1 Motivation Example CMOS 10Gb/s amplifier Differential in,differential out, 5 stage dccoupled,broadband

More information

AS VERY large scale integration (VLSI) technology advances

AS VERY large scale integration (VLSI) technology advances 1496 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 8, AUGUST 2006 Wideband Passive Multiport Model Order Reduction and Realization of RLCM Circuits Zhenyu

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

Canonical Forms of Multi-Port Dynamic Thermal Networks

Canonical Forms of Multi-Port Dynamic Thermal Networks Canonical Forms o Multi-Port Dynamic Thermal Networs orenzo Codecasa Dario D Amore and Paolo Maezzoni Politecnico di Milano Dipartimento di Elettronica e Inormazione Piazza eonardo da Vinci Milan Italy

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

ECE 255, Frequency Response

ECE 255, Frequency Response ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

More information

Chapter 2 Voltage-, Current-, and Z-source Converters

Chapter 2 Voltage-, Current-, and Z-source Converters Chapter 2 Voltage-, Current-, and Z-source Converters Some fundamental concepts are to be introduced in this chapter, such as voltage sources, current sources, impedance networks, Z-source, two-port network,

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode

A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode Progress In Electromagnetics Research C, Vol. 67, 59 69, 2016 A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode Hassan Aldeeb and Thottam S. Kalkur * Abstract A novel

More information

ECE 546 Lecture 04 Resistance, Capacitance, Inductance

ECE 546 Lecture 04 Resistance, Capacitance, Inductance ECE 546 Lecture 04 Resistance, Capacitance, Inductance Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 546 Jose Schutt Aine 1 What is

More information

Network Theory 1 Analoge Netzwerke

Network Theory 1 Analoge Netzwerke etwork Theory Analoge etzwerke Prof. Dr.-Ing. Ingolf Willms and Prof. Dr.-Ing. Peter Laws Prof. Dr.-Ing. I. Willms etwork Theory S. Chapter Introduction and Basics Prof. Dr.-Ing. I. Willms etwork Theory

More information

Transfer Function and Impulse Response Synthesis using Classical Techniques

Transfer Function and Impulse Response Synthesis using Classical Techniques University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2007 Transfer Function and Impulse Response Synthesis using Classical Techniques Sonal S. Khilari University

More information

Voltage-Controlled Oscillator (VCO)

Voltage-Controlled Oscillator (VCO) Voltage-Controlled Oscillator (VCO) Desirable characteristics: Monotonic f osc vs. V C characteristic with adequate frequency range f max f osc Well-defined K vco f min slope = K vco VC V C in V K F(s)

More information

Statistical approach in complex circuits by a wavelet based Thevenin s theorem

Statistical approach in complex circuits by a wavelet based Thevenin s theorem Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 185 Statistical approach in complex circuits by a wavelet based Thevenin s theorem

More information

Hurwitz Stable Reduced Order Modeling and D2M Delay Calculation Metric Motivation Review: Moments. Content. Moments: Review. Motivation.

Hurwitz Stable Reduced Order Modeling and D2M Delay Calculation Metric Motivation Review: Moments. Content. Moments: Review. Motivation. Hurwitz Stable Reduced Order Modeling and D2M Delay Calculation Metric Motivation Review: Moments Content Zhong Wang Electrical and Computer Engineering University of Toronto Feb 13, 2002 Hurwitz Stable

More information

XVI. CIRCUIT THEORY. Prof. S. J. Mason A. B. Lehman Prof. H. J. Zimmermann R. D. Thornton A. SOME LIMITATIONS OF LINEAR AMPLIFIERS

XVI. CIRCUIT THEORY. Prof. S. J. Mason A. B. Lehman Prof. H. J. Zimmermann R. D. Thornton A. SOME LIMITATIONS OF LINEAR AMPLIFIERS XVI. CIRCUIT THEORY Prof. S. J. Mason A. B. Lehman Prof. H. J. Zimmermann R. D. Thornton A. SOME LIMITATIONS OF LINEAR AMPLIFIERS If a network is to be constructed by imbedding a linear device in a network

More information