ECE 546 Lecture 07 Multiconductors

Size: px
Start display at page:

Download "ECE 546 Lecture 07 Multiconductors"

Transcription

1 ECE 546 Lecture 07 Multiconductors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois ECE 546 Jose Schutt Aine 1

2 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES V 1 (z) V 2 (z) z=0 z=l... V 3 (z) L, C V z L I t I z C V t V and I are the line voltage and line current VECTORS respectively (dimension n). ECE 546 Jose Schutt Aine 2

3 ECE 546 Jose Schutt Aine 3 N-LINE SYSTEM L and C are the inductance and capacitance MATRICES respectively 1 2 n I I I I 1 2 n V V V V nn L L L L L L nn C C C C C C V 3 (z) V 2 (z) V 1 (z)... L, C z=0 z=l

4 N-LINE ANALYSIS V z V LC t 2 2 I z 2 2 I CL t In general LC CL and LC and CL are not symmetric matrices. GOAL: Diagonalize LC and CL which will result in a transformation on the variables V and I. Diagonalize LC and CL is equivalent to finding the eigenvalues of LC and CL. Since LC and CL are adjoint, they must have the same eigenvalues. ECE 546 Jose Schutt Aine 4

5 MODAL ANALYSIS EV z EV t ELCE 2 2 HI z HI t HCLH 2 2 LC and CL are adjoint matrices. Find matrices E and H such that ELCE HCLH m is the diagonal eigenvalue matrix whose entries are the inverses of the modal velocities squared. ECE 546 Jose Schutt Aine 5

6 MODAL ANALYSIS V 1 (z) V 2 (z) z=0 z=l... V 3 (z) L, C I z 2 2 m 2 m 2 m 2 V z I t V t 2 2 m 2 m 2 m 2 V m = EV I m = HI Second-order differential equation in modal space ECE 546 Jose Schutt Aine 6

7 ECE 546 Jose Schutt Aine 7 V m and I m are the modal voltage and current vectors respectively. EIGENVECTORS 1 2 m m m mn V V V V 1 2 m m m mn I I I I I m = HI V m = EV

8 EIGEN ANALYSIS * A scalar is an eigenvalue of a matrix A if there exists a vector X such that AX = X. (i.e. for which multiplication by a matrix is equivalent to an elongation of the vector). * The vector X which satisfies the above requirement is an eigenvector of A. * The eigenvalues of A satisfy the relation A - I = 0 where I is the unit matrix. ECE 546 Jose Schutt Aine 8

9 EIGEN ANALYSIS Assume A is an n x n matrix with n distinct eigenvalues, then, * A has n linearly independent eigenvectors. * The n eigenvectors can be arranged into an n n matrix E; the eigenvector matrix. * Finding the eigenvalues of A is equivalent to diagonalizing A. * Diagonalization is achieved by finding the eigenvector matrix E such that EAE -1 is a diagonal matrix. ECE 546 Jose Schutt Aine 9

10 EIGEN ANALYSIS For an n-line system, it can be shown that * LC can be transformed into a diagonal matrix whose entries are the eigenvalues. * LC possesses n distinct eigenvalues (possibly degenerate). * There exist n eigenvectors which are linearly independent. * Each eigenvalue is associated with a mode; the propagation velocity of that mode is the inverse of the eigenvalue. ECE 546 Jose Schutt Aine 10

11 EIGEN ANALYSIS * Each eigenvector is associated to an eigenvalue and therefore to a particular mode. * Each normalized eigenvector represents the relative line excitation required to excite the associated mode. ECE 546 Jose Schutt Aine 11

12 EIGENVECTORS E : Voltage eigenvector matrix 1 2 ELCE m e e e E e e e e e e H : Current eigenvector matrix 1 2 HCLH m h h h H h h h h h h ECE 546 Jose Schutt Aine 12

13 1 2 ELCE m gives 1 2 HCLH m gives Eigenvalues and Eigenvectors e e e E e e e e e e h h h H h h h h h h v m1 1 m 0 0 v m v m v m1 1 m 0 0 v m v m3 ECE 546 Jose Schutt Aine 13

14 Modal Voltage Excitation Voltage Eigenvector Matrix e e e E e e e e e e e 11 e e MODE A e 21 e e MODE B MATCHING NETWORK MATCHING NETWORK e e 31 e MODE C - MATCHING NETWORK ECE 546 Jose Schutt Aine 14

15 Modal Current Excitation Current Eigenvector Matrix h 11 h 12 h 13 MODE A MATCHING NETWORK h h h H h h h h h h h 21 h 22 h 23 MODE B MATCHING NETWORK MATCHING NETWORK h 31 h 32 h 33 MODE C ECE 546 Jose Schutt Aine 15

16 EIGENVECTORS E : voltage eigenvector matrix H : current eigenvector matrix E and H depend on both L and C Special case: For a two-line symmetric system, E and H are equal and independent of L and C. The eigenvectors are [1,1] and [1,-1] Line variables are recovered using V E 1 V m I H 1 I m ECE 546 Jose Schutt Aine 16

17 MODAL AND LINE IMPEDANCE MATRICES By requiring V m = Z m I m, we arrive at Z m m 1 ELH 1 Z m is a diagonal impedance matrix which relates modal voltages to modal currents By requiring V = Z c I, one can define a line impedance matrix Z c. Z c relates line voltages to line currents Z m is diagonal. Z c contains nonzero off-diagonal elements. We can show that Z c E 1 Z m H E 1 m 1 EL ECE 546 Jose Schutt Aine 17

18 ECE 546 Jose Schutt Aine ( ) m m mn j u v j u v j u v e e Wu e m m m mn v v v

19 MATRIX CONSTRUCTION L ii L ( m) s L L ij ij n ( m) ii s ij j1 [ C] C C [ C] ij C ( m) ij [ R] ii R s [ R] ij R m ij n ( m) ii s ij j1 [ G] G G ( m) [ G] ij G ij ECE 546 Jose Schutt Aine 19

20 Modal Variables V m = EV I m = HI General solution in modal space is: V m (z) = W(z)A +W(- z)b - I m (z) = Z 1 m [ W(z)A- W(- z)b] Modal impedance matrix Z m ELH 1 1 m Line impedance matrix Z E Z H E EL c m m ECE 546 Jose Schutt Aine 20

21 N-Line Network Z s : Source impedance matrix Z L : Load impedance matrix V s : Source vector ECE 546 Jose Schutt Aine 21

22 Reflection Coefficients Source reflection coefficient matrix s [1 n EZ s L 1 E 1 m ] 1 [1n EZ s L 1 E 1 m ] Load reflection coefficient matrix L [1 n EZ L L 1 E 1 m ] 1 [1n EZ L L 1 E 1 m ] * The reflection and transmission coefficient are n x n matrices with off-diagonal elements. The off-diagonal elements account for the coupling between modes. * Z s and Z L can be chosen so that the reflection coefficient matrices are zero ECE 546 Jose Schutt Aine 22

23 TERMINATION NETWORK V 1 y p11 y p12 V 2 y p22 I1 = yp11v1 +yp12(v1-v2) I2 = yp22v2 +yp12(v2-v1) In general for a multiline system I YV V ZI Z Y 1 Note : yii ypii, yij = -yji, (i j) Also, z ij 1 y ij ECE 546 Jose Schutt Aine 23

24 Termination Network Construction To get impedance matrix Z Get physical impedance values y pij Calculate y ij 's from y pij 's Construct Y matrix Invert Y matrix to obtain Z matrix Remark: If y pij = 0 for all i j, then Y = Z -1 and z ii = 1/y ii ECE 546 Jose Schutt Aine 24

25 Procedure for Multiconductor Solution 1) Get L and C matrices and calculate LC product 2) Get square root of eigenvalues and eigenvectors of LC matrix m 3) Arrange eigenvectors into the voltage eigenvector matrix E 4) Get square root of eigenvalues and eigenvectors of CL matrix m 5) Arrange eigenvectors into the current eigenvector matrix H 6) Invert matrices E, H, m. 7) Calculate the line impedance matrix Z c Z c = E -1-1 m EL ECE 546 Jose Schutt Aine 25

26 Procedure for Multiconductor Solution 8) Construct source and load impedance matrices Z s (t) and Z L (t) 9) Construct source and load reflection coefficient matrices 1 (t) and 2 (t). 10) Construct source and load transmission coefficient matrices T (t), T 2 (t) 11) Calculate modal voltage sources g 1 (t) and g 2 (t) 12) Calculate modal voltage waves: a 1 (t) = T 1 (t)g 1 (t) + 1 (t)a 2 (t - m) a 2 (t) = T 2 (t)g 2 (t) + 2 (t)a 1 (t - m) b 1 (t) = a 2 (t - m ) b 2 (t) = a 1 (t - m ) ECE 546 Jose Schutt Aine 26

27 ai ai a i( t m ) ai mode1 mode2 ( t ( t moden ( t mi is the delay associated with mode i. mi = length/velocity of mode i. The modal volage wave vectors a 1 (t) and a 2 (t) need to be stored since they contain the history of the system. 13) Calculate total modal voltage vectors: V m1 (t) = a 1 (t) + b 1 (t) V m2 (t) = a 2 (t) + b 2 (t) 14) Calculate line voltage vectors: V 1 (t) = E -1 V m1 (t) V 2 (t) = E -1 V m2 (t) Wave Shifting Solution m1 m2 mn ) ) ) ECE 546 Jose Schutt Aine 27

28 7-Line Coupled-Microstrip System ALS04 Drive Line 1 ALS240 ALS04 Drive Line 2 ALS240 ALS04 Drive Line 3 ALS240 Sense Line 4 ALS04 Drive Line 5 ALS240 ALS04 Drive Line 6 ALS240 ALS04 Drive Line 7 ALS240 z=0 z=l L s = 312 nh/m; C s = 100 pf/m; L m = 85 nh/m; C m = 12 pf/m. ECE 546 Jose Schutt Aine 28

29 5 Drive line 3 at Near End Drive Line 3 5 Drive Line 3 at Far End Time (ns) Time (ns) 200 ECE 546 Jose Schutt Aine 29

30 The picture can't be displayed. Sense Line 2 Sense Line at Near End 2 Sense Line at Far End Time (ns) Time (ns) 200 ECE 546 Jose Schutt Aine 30

31 Multiconductor Simulation ECE 546 Jose Schutt Aine 31

32 LOSSY COUPLED TRANSMISSION LINES V 1 (z) V 2 (z) z=0 z=l... V 3 (z) L, C V RI L z I GV C z Solution is best found using a numerical approach (See References) I t V t ECE 546 Jose Schutt Aine 32

33 Three Line Microstrip V1 I1 I2 I L11 L12 L13 z t t t 3 I1 V1 V2 V C11 C12 C13 z t t t 3 V2 I1 I2 I L21 L22 L23 z t t t 3 I2 V1 V2 V C21 C22 C23 z t t t 3 V I I I L L L z t t t I V V V C C C z t t t ECE 546 Jose Schutt Aine 33

34 Three Line Alpha Mode Subtract (1c) from (1a) and (2c) from (2a), we get V I ( L11 L13) z t I V ( C11 C13) z t This defines the Alpha mode with: and I V V1V I 1 I3 3 The wave impedance of that mode is: Z L C L C and the velocity is u 1 L L C C ECE 546 Jose Schutt Aine 34

35 Three Line Modal Decomposition In order to determine the next mode, assume that V V V V I I I I V I I I z t t t L L L L L L L L L I V V V z t t t C C C C C C C C C By reciprocity L 32 = L 23, L 21 = L 12, L 13 = L 31 By symmetry, L 12 = L 23 Also by approximation, L 22 L 11, L 11 +L 13 L 11 ECE 546 Jose Schutt Aine 35

36 Three Line Modal Decomposition V I I3 I L L L 2L L z t t t In order to balance the right-hand side into I, we need to have 2L L I L L L I L L I L L or 2 Therefore the other two modes are defined as The Beta mode with ECE 546 Jose Schutt Aine 36

37 The Beta mode with Three Line Beta Mode V V 2V V I I 2I I The characteristic impedance of the Beta mode is: Z L 2L L C 2C C and propagation velocity of the Beta mode is 1 u L11 2L12 L13 C11 2C12 C13 ECE 546 Jose Schutt Aine 37

38 Three Line Delta Mode The Delta mode is defined such that V V 2V V I I 2I I The characteristic impedance of the Delta mode is Z L 2L L C 2C C The propagation velocity of the Delta mode is: 1 u L11 2L12 L13 C11 2C12 C13 ECE 546 Jose Schutt Aine 38

39 Symmetric 3 Line Microstrip In summary: we have 3 modes for the 3-line system E Alpha mode Beta mode* Delta mode* *neglecting coupling between nonadjacent lines ECE 546 Jose Schutt Aine 39

40 Coplanar Waveguide r = LnH ( / m) C( pf/ m) E H ECE 546 Jose Schutt Aine 40

41 Coplanar Waveguide r = 4.3 Z m ( ) Z c ( ) vp ( m/ ns) ECE 546 Jose Schutt Aine 41

42 Coplanar Waveguide S' W S W S' h r Kk ( ) : Complete Elliptic Integral of the first kind S k 30 K'( k) S 2W Zocp (ohm) ( ) r 1 Kk K'( k) K( k') 2 k' (1 k ) 2 1/2 v cp 2 r 1 1/2 c ECE 546 Jose Schutt Aine 42

43 Coplanar Strips W S W h r Z ocs 120 K'( k) (ohm) 1 Kk ( ) r 2 ECE 546 Jose Schutt Aine 43

44 Qualitative Comparison Characteristic Microstrip Coplanar Wguide Coplanar strips eff * ~6.5 ~5 ~5 Power handling High Medium Medium Radiation loss Low Medium Medium Unloaded Q High Medium Low or High Dispersion Small Medium Medium Mounting (shunt) Hard Easy Easy Mounting (series) Easy Easy Easy * Assuming r =10 and h=0.025 inch ECE 546 Jose Schutt Aine 44

ECE 598 JS Lecture 06 Multiconductors

ECE 598 JS Lecture 06 Multiconductors ECE 598 JS Lecture 06 Multiconductors Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES

More information

ECE 497 JS Lecture -07 Planar Transmission Lines

ECE 497 JS Lecture -07 Planar Transmission Lines ECE 497 JS Lecture -07 Planar Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Microstrip ε Z o w/h < 3.3 2 119.9 h h =

More information

ECE 546 Lecture 13 Scattering Parameters

ECE 546 Lecture 13 Scattering Parameters ECE 546 Lecture 3 Scattering Parameters Spring 08 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Transfer Function Representation

More information

ECE 451 Transmission Lines & Packaging

ECE 451 Transmission Lines & Packaging Transmission Lines & Packaging Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Radio Spectrum Bands The use of letters to designate bands has long ago

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) James E. Morris Dept of Electrical & Computer Engineering Portland State University 1 Lecture topics

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

ECE 497 JS Lecture - 18 Noise in Digital Circuits

ECE 497 JS Lecture - 18 Noise in Digital Circuits ECE 497 JS Lecture - 18 Noise in Digital Circuits Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 15 th Speaker:

More information

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson JUST THE MATHS UNIT NUMBER 9.9 MATRICES 9 (Modal & spectral matrices) by A.J.Hobson 9.9. Assumptions and definitions 9.9.2 Diagonalisation of a matrix 9.9.3 Exercises 9.9.4 Answers to exercises UNIT 9.9

More information

a 11 a 12 a 11 a 12 a 13 a 21 a 22 a 23 . a 31 a 32 a 33 a 12 a 21 a 23 a 31 a = = = = 12

a 11 a 12 a 11 a 12 a 13 a 21 a 22 a 23 . a 31 a 32 a 33 a 12 a 21 a 23 a 31 a = = = = 12 24 8 Matrices Determinant of 2 2 matrix Given a 2 2 matrix [ ] a a A = 2 a 2 a 22 the real number a a 22 a 2 a 2 is determinant and denoted by det(a) = a a 2 a 2 a 22 Example 8 Find determinant of 2 2

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Lecture - 32 Network Function (3) 2-port networks: Symmetry Equivalent networks Examples

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

Matrix Algebra: Summary

Matrix Algebra: Summary May, 27 Appendix E Matrix Algebra: Summary ontents E. Vectors and Matrtices.......................... 2 E.. Notation.................................. 2 E..2 Special Types of Vectors.........................

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

TASK A. TRANSMISSION LINE AND DISCONTINUITIES

TASK A. TRANSMISSION LINE AND DISCONTINUITIES TASK A. TRANSMISSION LINE AND DISCONTINUITIES Task A. Transmission Line and Discontinuities... 1 A.I. TEM Transmission Line... A.I.1. Circuit Representation of a Uniform Transmission Line... A.I.. Time

More information

Determinants by Cofactor Expansion (III)

Determinants by Cofactor Expansion (III) Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

Analysis of Characteristics of Coplanar Waveguide with Finite Ground-planes by the Method of Lines

Analysis of Characteristics of Coplanar Waveguide with Finite Ground-planes by the Method of Lines PIERS ONLINE, VOL. 6, NO. 1, 21 46 Analysis of Characteristics of Coplanar Waveguide with Finite Ground-planes by the Method of Lines Min Wang, Bo Gao, Yu Tian, and Ling Tong College of Automation Engineering,

More information

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF ECE 342 Electronic Circuits ecture 25 Frequency esponse of CG, CB,SF and EF Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 342 Jose Schutt Aine 1 Common

More information

ECE 546 Lecture 15 Circuit Synthesis

ECE 546 Lecture 15 Circuit Synthesis ECE 546 Lecture 15 Circuit Synthesis Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 MOR via Vector Fitting Rational

More information

Lecture 12. Microwave Networks and Scattering Parameters

Lecture 12. Microwave Networks and Scattering Parameters Lecture Microwave Networs and cattering Parameters Optional Reading: teer ection 6.3 to 6.6 Pozar ection 4.3 ElecEng4FJ4 LECTURE : MICROWAE NETWORK AND -PARAMETER Microwave Networs: oltages and Currents

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic - Generalization ABC... ABC...

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Network Theory and the Array Overlap Integral Formulation

Network Theory and the Array Overlap Integral Formulation Chapter 7 Network Theory and the Array Overlap Integral Formulation Classical array antenna theory focuses on the problem of pattern synthesis. There is a vast body of work in the literature on methods

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

ECE 451 Advanced Microwave Measurements. Requirements of Physical Channels

ECE 451 Advanced Microwave Measurements. Requirements of Physical Channels ECE 451 Advanced Microwave Measurements Requirements of Physical Channels Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 451 Jose Schutt Aine 1

More information

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write 1 MATH FACTS 11 Vectors 111 Definition We use the overhead arrow to denote a column vector, ie, a number with a direction For example, in three-space, we write The elements of a vector have a graphical

More information

ECE 451 Advanced Microwave Measurements. Circular and Coaxial Waveguides

ECE 451 Advanced Microwave Measurements. Circular and Coaxial Waveguides ECE 451 Advanced Microwave Measurements Circular and Coaxial Waveguides Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 Circular

More information

Topic 5: Transmission Lines

Topic 5: Transmission Lines Topic 5: Transmission Lines Profs. Javier Ramos & Eduardo Morgado Academic year.13-.14 Concepts in this Chapter Mathematical Propagation Model for a guided transmission line Primary Parameters Secondary

More information

Scattering Parameters

Scattering Parameters Berkeley Scattering Parameters Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad September 7, 2017 1 / 57 Scattering Parameters 2 / 57 Scattering Matrix Voltages and currents are

More information

18.S34 linear algebra problems (2007)

18.S34 linear algebra problems (2007) 18.S34 linear algebra problems (2007) Useful ideas for evaluating determinants 1. Row reduction, expanding by minors, or combinations thereof; sometimes these are useful in combination with an induction

More information

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Lecture 2 INF-MAT 4350 2009: 7.1-7.6, LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Tom Lyche and Michael Floater Centre of Mathematics for Applications, Department of Informatics,

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

Eigenvalues by row operations

Eigenvalues by row operations Eigenvalues by row operations Barton L. Willis Department of Mathematics University of Nebraska at Kearney Kearney, Nebraska 68849 May, 5 Introduction There is a wonderful article, Down with Determinants!,

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Math 489AB Exercises for Chapter 2 Fall Section 2.3

Math 489AB Exercises for Chapter 2 Fall Section 2.3 Math 489AB Exercises for Chapter 2 Fall 2008 Section 2.3 2.3.3. Let A M n (R). Then the eigenvalues of A are the roots of the characteristic polynomial p A (t). Since A is real, p A (t) is a polynomial

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

Lecture 10 - Eigenvalues problem

Lecture 10 - Eigenvalues problem Lecture 10 - Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10 - Eigenvalues problem Introduction Eigenvalue problems form an important class of problems

More information

How to measure complex impedance at high frequencies where phase measurement is unreliable.

How to measure complex impedance at high frequencies where phase measurement is unreliable. Objectives In this course you will learn the following Various applications of transmission lines. How to measure complex impedance at high frequencies where phase measurement is unreliable. How and why

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

1 Pythagorean triples

1 Pythagorean triples ECE 98JA NS #3 Version 1.6 September 19, 017 Fall 017 Univ. of Illinois Due Monday, Sept 18, 017 Prof. Allen Topic of this homework: Pythagorean triples, Pell s equation, Fibonacci sequence Deliverable:

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

ECE 546 Lecture 03 Waveguides

ECE 546 Lecture 03 Waveguides ECE 546 Lecture 03 Waveguides Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering Universit o Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Parallel-Plate Waveguide Maxwell s Equations

More information

ECE Networks & Systems

ECE Networks & Systems ECE 342 1. Networks & Systems Jose E. Schutt Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 What is Capacitance? 1 2 3 Voltage=0 No Charge No Current Voltage build

More information

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another.

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another. Homework # due Thursday, Oct. 0. Show that the diagonals of a square are orthogonal to one another. Hint: Place the vertices of the square along the axes and then introduce coordinates. 2. Find the equation

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Eigenvalues, Eigenvectors, and Diagonalization

Eigenvalues, Eigenvectors, and Diagonalization Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

More information

Diagonalization of Matrix

Diagonalization of Matrix of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Math 240 Calculus III

Math 240 Calculus III Generalized Calculus III Summer 2015, Session II Thursday, July 23, 2015 Agenda 1. 2. 3. 4. Motivation Defective matrices cannot be diagonalized because they do not possess enough eigenvectors to make

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Systems of Linear Equations Matrices Algebraic Properties of Matrix Operations Special Types of Matrices and Partitioned Matrices Matrix Transformations

More information

ELECTROMAGNETIC propagation eigenvectors in a multimodal

ELECTROMAGNETIC propagation eigenvectors in a multimodal IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 65, NO. 10, OCTOBER 2017 5289 Theory of Exceptional Points of Degeneracy in Uniform Coupled Waveguides and Balance of Gain and Loss Mohamed A. K. Othman,

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. #07 Jordan Canonical Form Cayley Hamilton Theorem (Refer Slide Time:

More information

Novel concept for pulse compression via structured spatial energy distribution

Novel concept for pulse compression via structured spatial energy distribution arxiv: [physics.optics] 8 October 013 V. A. amma, A. Figotin, F. Capolino, Novel concept for pulse compression, Oct. 013 Novel concept for pulse compression via structured spatial energy distribution Venkata

More information

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. 3.3 Diagonalization Let A = 4. Then and are eigenvectors of A, with corresponding eigenvalues 2 and 6 respectively (check). This means 4 = 2, 4 = 6. 2 2 2 2 Thus 4 = 2 2 6 2 = 2 6 4 2 We have 4 = 2 0 0

More information

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Eigenvalues and Eigenvectors Ramani Duraiswami, Dept. of Computer Science Eigen Values of a Matrix Recap: A N N matrix A has an eigenvector x (non-zero) with corresponding

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Implementation of Single and Coupled Microstrip Lines in APLAC

Implementation of Single and Coupled Microstrip Lines in APLAC Implementation of Single and Coupled Microstrip Lines in APLAC Luis Costa and Martti Valtonen CT-33 December 1997 Abstract The transmission line model for the single and coupled microstrip line components

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

ECE 546 Lecture 04 Resistance, Capacitance, Inductance

ECE 546 Lecture 04 Resistance, Capacitance, Inductance ECE 546 Lecture 04 Resistance, Capacitance, Inductance Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 546 Jose Schutt Aine 1 What is

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

ELG4125: Power Transmission Lines Steady State Operation

ELG4125: Power Transmission Lines Steady State Operation ELG4125: Power Transmission Lines Steady State Operation Two-Port Networks and ABCD Models A transmission line can be represented by a two-port network, that is a network that can be isolated from the

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280 Math 307 Spring 2019 Exam 2 3/27/19 Time Limit: / Name (Print): Problem Points Score 1 15 2 20 3 35 4 30 5 10 6 20 7 20 8 20 9 20 10 20 11 10 12 10 13 10 14 10 15 10 16 10 17 10 Total: 280 Math 307 Exam

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

ECE 451 Circuit Synthesis

ECE 451 Circuit Synthesis ECE 451 Circuit Synthesis Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 MOR via Vector Fitting Rational function approximation:

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information