EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

Size: px
Start display at page:

Download "EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr."

Transcription

1 EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1

2 11.1 Introduction Wave propagation in unbounded media is used in radio or TV broadcasting, where the information being transmitted is meant for everyone who may be interested. Another means of transmitting power or information is by guided structures. Guided structures serve to guide (or direct) the propagation of energy from the source to the load. Typical examples of such structures are transmission lines and waveguides. Waveguides are discussed in the next chapter; transmission lines are considered in this chapter.

3 Introduction Transmission lines are commonly used in power distribution (at low frequencies) and in communications (at high frequencies). A transmission line basically consists of two or more parallel conductors used to connect a source to a load. Typical transmission lines include coaxial cable, a two-wire line, a parallel-plate line, and a microstrip line. Coaxial cables are used in connecting TV sets to TV antennas. Microstrip lines are particularly important in integrated circuits. Transmission line problems are usually solved using EM field theory and electric circuit theory, the two major theories on which electrical engineering is based. 3

4 Introduction Figure 11.1 Typical transmission lines in cross-sectional view: (a) coaxial line, (b) two-wire line, (c) planar line, (d) wire above conducting plane, (e) microstrip line. 4

5 11. Transmission ine Parameters Transmission line parameters are: R: Resistance per unit length. (Ω/m) : Inductance per unit length. (H/m) G: Conductance per unit length. (S/m) C: Capacitance per unit length. (F/m) Distributed parameters of a two-conductor transmission line 5

6 Transmission ine Parameters 6

7 Transmission ine Parameters The line parameters R,, G, and C are uniformly distributed along the entire length of the line. For each line, the conductors are characterized by σc,µc,εc,=ε, and the homogeneous dielectric separating the conductors is characterized by σ,µ,ε. G 1/R; R is the ac resistance per unit length of the conductors comprising the line and G is the conductance per unit length due to the dielectric medium separating the conductors. For each line: C and G C 7

8 Fields inside transmission line Transmission lines transmit TEM waves. V proportional to E, I proportional to H 8

9 11.3 Transmission ine Equations Two-conductor transmission lines support a TEM wave; E and H are perpendicular to each other and transverse to the direction of propagation. E and H are related to V and I: Using V and I in solving the transmission line problem is simpler than solving E and H (requires Maxwell s equations). Examine an incremental portion of length Δz of a two-conductor transmission line. E., I= H. V dl dl 9

10 Transmission ine Representation 1

11 Transmission ine Equations I ( z, t) Using KV:- V ( z, t) RzI( z, t) z V ( z z, t) t V ( z z, t) V ( z, t) I ( z, t) or RI( z, t) z t Taking the limit as z leads to: V ( z, t) I ( z, t) RI( z, t) z t equivalent circuit model of a two-conductor T.. of differential length z. 11

12 Using KC:- I( z, t) I( z z, t) I V ( z z, t) I( z, t)= I( z z, t) GzV ( z z, t) Cz t I( z z, t) I( z, t) V ( z z, t) or GV ( z z, t) C z t Taking the limit as z leads to: I( z, t) V ( z, t) GV ( z, t) C z t 1

13 The time domain form of the transmission line equations: V ( z, t) I ( z, t) RI( z, t) z t I ( z, t) V ( z, t) GV ( z, t) C z t If we assume harmonic time dependence so that: jt V( zt, ) =Re[ V (z) e ] jt I( z, t)=re[ Is(z) e ] s s Transmission ine Equations where V and I are the phasor forms of V ( z, t) and I( z, t), s dvs ( R j) I dz dis ( G jc) V dz s s 13

14 dvs d Is Transmission ine Equations dvs dis ( R j) Is, ( G jc) V dz dz To solve the previous equations, take second derivative of ( R j)( G jc) Vs dz Now take second derivative of I s gives ( G jc)( R ji ) s dz Hence, the wave equations for voltage and current become s V s gives dvs dz d Is dz V I s s, where j ( R j)( G jc) 14

15 j ( R j)( G jc) : is the propagation constant : attenuation constant (Np/m or db/m) : phase constant ( rad/m) wavelength is: =, wave velocity is: u f The solutions to the wave equations are: V V e V e, I I e I e s z z z z s +z -z +z -z where V, V, I, I are wave amplitudes. sign wave traveling along +z direction. - sign wave traveling along -z direction. 15

16 Transmission ine Equations V V e V e s s z I I e I e z z z In time domain: j t V ( z, t) Re[ V ( z) e ] s V ( z, t) V e cos( t z) V e cos( t z z z) Similarly for current: z I( z, t) I e cos( t z) I e cos( t z) z 16

17 V ( z) V e, I( z) I e Characteristic Impedance, The Characteristic Impedance of the line is the ratio of the positively travelling voltage wave to the current wave at any point on the line. z z dv ( z) since ( R j) I( z), dz ( V e ) ( R j) I e z z V R j R j V R jx o o o I G jc I R j Characterestic 1 R jx, Y o o o G jc Admittance 17

18 ossless ine (R=G=) A transmission line is said to be lossless if the conductors of the line are perfect (σc ) and the dielectric medium separating them is lossless (σ ) For lossless line, R=G= Since j = ( R j)( G jc), j, C 1 u f, C X R o o o C 18

19 Distortionless ine Any signal that carries significant information must has some non-zero bandwidth. In other words, the signal energy (as well as the information it carries) is spread across many frequencies. If the different frequencies that comprise a signal travel at different velocities, that signal will arrive at the end of a transmission line distorted. We call this phenomenon signal dispersion. Recall for lossless lines, however, the phase velocity is independent of frequency no dispersion will occur! u 1/ C Of course, a perfectly lossless line is impossible, but we find phase velocity is approximately constant if the line is low-loss. 19

20 Distortionless ine (R/=G/C) A distortionless line is one in which the attenuation constant α is frequency independent while the phase constant β is linearly dependent on frequency. A distorionless line results if the line parameters are such that R G C j jc Thus, = ( R j)( G jc)= RG 1 1 R G jc α does not depend on = RG 1 j G frequency, whereas β is a linear or RG, C function of frequency. u / 1/ C (frequency independent)

21 u= Notes: Shape distortion of signals happen if α and u are frequency dependent. u and for distortionless line are the same as lossless line. A lossless line is also a distortionless line, but a distortionless line is not necessarily lossless. Distortionless ine (R/=G/C) R j R 1 j / R R G jc G 1 jc / G G C 1 C ossless lines are desirable in power transmission, and telephone lines are required to be distortionless. 1 (Real)

22 Distortionless ine Practical use To achieve the required condition of R/=G/C for a transmission line, may be increased by loading the cable with a metal with high magnetic permeability (μ). A common practice is to replace repeaters in long lines to maintain the desired shape and duration of pulses for long distance transmission.

23 o General ossless Distortionless C j G j R o o o R C ) )( ( C j G j R C R o o Summary j C RG j C

24 Example 11.1 An air line has characteristic impedance of 7 Ω and a phase constant of 3 rad/m at 1 MHz. Calculate the inductance per meter and the capacitance per meter of the line. An air line can be regarded as lossless line because and. Hence R G and = c = R = C C R 1 Deviding the two equations yields: C or C pf 6 R 1 1 (7) = R C (7) (68. 1 ) 334. nh/m 1 4

25 A distortionless line has =6 Ω, α= mnp/m, u=.6c, where c is the speed of light. Find R,,G, C and λ at 1 MHz. RC 1 A distortionless line has RC G or G, u C C R, = RG R C R Example ( 1 )(6) 1. /m 6 41 Since = RG G 333 S/m R 1. 1 Dividing by u C C 6 = 333 nh/m u 8.6(3 1 ) gives 5

26 Example 11. solution continued Multiplying u 1 by u gives C C = C 9.59 pf/m.6(3 1 )6 8 C u 8 u.6(31 ) = 1.8 m 8 f 1 6

27 11.4 Input impedance, standing wave ratio, power Consider a transmission line of length l, characterised by and, connected to a load. Generator sees the line with the load as an input impedance in. 7

28 V ( z) V e V e z V V V V Is( z) e e, = I I At generator terminals (sending end): et s z z z V V ( z ), I I( z ), Substitute in prev. equs.: V V V 1 V V I V V 1 V V I I If the input impedance at the terminals is, then V V, I Input impedance in g g in g in g V in... (1) 8

29 V V V ( z) V e V e, I ( z) e e s At the load: z z z z s et V V ( z l), I I( z l), Substitute in prev. V V e V e 1 V V I e equs. l l l V l V l 1 V V l I e I e e Input impedance... () Now determine the input impedance = V ( z) / I ( z) at any point on the line. in s s 9

30 At the generator, recall,, s in = s ( ) V ( z) V V V I z I V V Input impedance Substituting eq. and utilizing the fact that: l l l l e e e e cosh l, sinh l, l l sinh l e e or tanh l l l cosh l e e V V V V V I then we get tanh l in tanh l (General - ossy ine) 3

31 Input impedance (ossless ine) tanh l in (General - ossy ine) tanh l For a lossless line, = j, tanh jl j tan l, then j tan l in j tan l ( ossless ine) βl is known as electrical length, in degrees or radians Note: To find in at a distance l ' from load, replace l by l' :- j tan l ' ' in j tan l 31

32 Reflection Coefficient, (at load) Define as the voltage reflection coefficient (at the load), as the ratio of the voltage reflection wave to the incident wave at the load, Since V e V e l l 1 V V I e 1 V V I e l l, and V I ( Voltage Reflection coefficient at load) 3

33 Define (at z ) as the voltage reflection coefficient at the source, as the ratio of the voltage reflection wave to the incident wave at source, V e V V e V Since Reflection Coefficient, (at generator) 1 V V I 1 V V I, and V I in in in ( Voltage Reflection coefficient at source) 33

34 Reflection Coefficient The voltage reflection coefficient at any point on the line is the ratio of the reflected voltage wave to that of the incident wave. V e V That is: ( z) V e z z V e z The current reflection coefficient at any point on the line is the negative of the voltage reflection coefficient at that point. Thus the current reflection coefficient at the load is I e / I e l l 34

35 The standing wave ratio s is defined as: (as we did for plane waves) V I 1 s= V I max max min min 1 When load is perfectly matched ( ) Total Transmission s 1 When load is a short circuit : Total Reflection 1 1 s When load is an open circuit : Total Reflection s Standing Wave Ratio Whenever there is a reflected wave, a standing wave will form out of the combination of incident and reflected waves.

36 The time-average power flow along the line at the point z is: 1 Re[ ( ) * ave s s ( )]. For a line, this can be reduced to: P V z I z lossless P ave V 1, The average power flow is constant at any point on the lossless The total power delivered to the load ( P ) is equal to the incident minus power ( V / ) the reflected power ( V / ) If, maximum power is delivered to the load, while no power is delivered for 1. Power / / P V V ave Incident Power (Pi) The above discussion assumes that the generator is matched. av Reflected Power (Pr) line. 36

37 Special Cases, =, =, = Short Circuited ine (=) Open Circuited ine (= ) Matched ine (=) 37

38 Shorted ine (=) j tan l j tan l in j tan l s 1, (Total Reflection) 38

39 Open-Circuited ine (= ) j tan l, ( ) in j tan l 1 j tan l in jcot l jtan l jtan l 1, (Total Reflection) s 39

40 Matched ine (=) Most desired case from practical point of view. Since in in s, 1 The whole wave is transmitted, and there is no reflection. The incident power is fully absorbed by the load. ( Maximum power transfer) 4

41 Solution ( a) Since 1 Np=8.686 db Example 11.3 A certain transmission line m long operating at ω=1 6 rad/s has α=8 db/m, β=1 rad/m, and = 6+j4 Ω. If the line is connected to a source of 1 V, g =4 Ω and transmitted by a load of +j5 Ω, determine (a) The input impedance (b) The sending end current (c) The current at the middle of the line. 8 =.91 Np / m = + j.91 j1 l=(.91 j1) 1.84 j 41

42 tanh l tanh 1.84 j 1.33 j.399 tanh l in tanh l in in Example 11.3 Solution continued j5 (6 j4)(1.33 j.399) (6 j4) 6 j4 ( j5)(1.33 j.399) 6.5 j38.79 ( b) The sending end current is I( z ) I Vg j in g I ma 4

43 ( c) To find the current at any point, we need V and V. But I V ma in Example 11.3 Solution continued I ( )( ) V (6 4)( ) V I j 1 1 V (6 4)( ).5186 V I j 43

44 Example 11.3 Solution continued At the middle of the line, z l /, z= l /.91+j1, Hence the current at this point is: V V Is( z l / ) e e l/ l/ (6.687 e ) e (.518 e ) e = 6 j4 6 j4 j j1 j6.91 j1 Note that j1 is in radians and is equivalent to j57.3,( j118/ ):- (6.687 e ) e e (.518 e ) e e Is( z l / )= j33.69 j e 7.1e j j57.3 j6.91 j j ma j e.185 = ma e j

ANTENNAS and MICROWAVES ENGINEERING (650427)

ANTENNAS and MICROWAVES ENGINEERING (650427) Philadelphia University Faculty of Engineering Communication and Electronics Engineering ANTENNAS and MICROWAVES ENGINEERING (65427) Part 2 Dr. Omar R Daoud 1 General Considerations It is a two-port network

More information

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

Lecture Outline 9/27/2017. EE 4347 Applied Electromagnetics. Topic 4a

Lecture Outline 9/27/2017. EE 4347 Applied Electromagnetics. Topic 4a 9/7/17 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4a Transmission Lines Transmission These Lines notes may

More information

Topic 5: Transmission Lines

Topic 5: Transmission Lines Topic 5: Transmission Lines Profs. Javier Ramos & Eduardo Morgado Academic year.13-.14 Concepts in this Chapter Mathematical Propagation Model for a guided transmission line Primary Parameters Secondary

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

Transmission and Distribution of Electrical Power

Transmission and Distribution of Electrical Power KINGDOM OF SAUDI ARABIA Ministry Of High Education Umm Al-Qura University College of Engineering & Islamic Architecture Department Of Electrical Engineering Transmission and Distribution of Electrical

More information

Kimmo Silvonen, Transmission lines, ver

Kimmo Silvonen, Transmission lines, ver Kimmo Silvonen, Transmission lines, ver. 13.10.2008 1 1 Basic Theory The increasing operating and clock frequencies require transmission line theory to be considered more and more often! 1.1 Some practical

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

Lecture Outline. Attenuation Coefficient and Phase Constant Characteristic Impedance, Z 0 Special Cases of Transmission Lines

Lecture Outline. Attenuation Coefficient and Phase Constant Characteristic Impedance, Z 0 Special Cases of Transmission Lines Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4b Transmission Line Parameters Transmission These Line notes

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 http://www.empowermentresources.com/stop_cointelpro/electromagnetic_warfare.htm RF Design In RF circuits RF energy has to be transported

More information

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Introduction to RF Design RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Objectives Understand why RF design is different from lowfrequency design. Develop RF models of passive components.

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

Lecture Outline. Shorted line (Z L = 0) Open circuit line (Z L = ) Matched line (Z L = Z 0 ) 9/28/2017. EE 4347 Applied Electromagnetics.

Lecture Outline. Shorted line (Z L = 0) Open circuit line (Z L = ) Matched line (Z L = Z 0 ) 9/28/2017. EE 4347 Applied Electromagnetics. 9/8/17 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4b Transmission ine Behavior Transmission These ine notes

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jackson Dept. of ECE Notes 7 1 TEM Transmission Line conductors 4 parameters C capacitance/length [F/m] L inductance/length [H/m] R resistance/length

More information

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM 28 April 15 Examiner:

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

EELE 3332 Electromagnetic II Chapter 10

EELE 3332 Electromagnetic II Chapter 10 EELE 333 Electromagnetic II Chapter 10 Electromagnetic Wave Propagation Ilamic Univerity of Gaza Electrical Engineering Department Dr. Talal Skaik 01 1 Electromagnetic wave propagation A changing magnetic

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018 ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

. -2 (ZL+jZotanf3l) Zo + jzl J31 _ (60+j20)+j50tan(21trad/mx2.5m))

. -2 (ZL+jZotanf3l) Zo + jzl J31 _ (60+j20)+j50tan(21trad/mx2.5m)) CHAPTER 8 277 Section 8-6: Input Impedance Problem 8.17 At an operating frequency of 300 MHz, a loss less 50-0. air-spaced transmission line 2.501 in length is terminated with an impedance 4'. = (60+ j20)

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 2 21 March 2016, 18:00

More information

Determining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line

Determining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line Exercise 2-1 Determining Characteristic Impedance and Velocity EXERCISE OBJECTIVES Upon completion of this exercise, you will know how to measure the distributed capacitance and distributed inductance

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information

Chapter 1: Introduction: Waves and Phasors

Chapter 1: Introduction: Waves and Phasors Chapter : Introduction: Waves and Phasors Lesson # Chapter Section: Chapter Topics: EM history and how it relates to other fields Highlights: EM in Classical era: 000 BC to 900 Examples of Modern Era Technology

More information

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104 CHAPTER 1 1.1. A uniform plane wave in air, E + x1 E+ x10 cos(1010 t βz)v/m, is normally-incident on a copper surface at z 0. What percentage of the incident power density is transmitted into the copper?

More information

Circuit Representation of TL s A uniform TL may be modeled by the following circuit representation:

Circuit Representation of TL s A uniform TL may be modeled by the following circuit representation: TRANSMISSION LINE THEORY (TEM Line) A uniform transmission line is defined as the one whose dimensions and electrical properties are identical at all planes transverse to the direction of propaation. Circuit

More information

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff CHARLES R. BOYD, JR. Microwave Applications Group, Santa Maria, California, U. S. A. ABSTRACT Unlike conventional waveguides, lossless

More information

ELG4125: Power Transmission Lines Steady State Operation

ELG4125: Power Transmission Lines Steady State Operation ELG4125: Power Transmission Lines Steady State Operation Two-Port Networks and ABCD Models A transmission line can be represented by a two-port network, that is a network that can be isolated from the

More information

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 3 p. 1/23 Transmission Line

More information

Module 5 : Plane Waves at Media Interface. Lecture 39 : Electro Magnetic Waves at Conducting Boundaries. Objectives

Module 5 : Plane Waves at Media Interface. Lecture 39 : Electro Magnetic Waves at Conducting Boundaries. Objectives Objectives In this course you will learn the following Reflection from a Conducting Boundary. Normal Incidence at Conducting Boundary. Reflection from a Conducting Boundary Let us consider a dielectric

More information

Transmission Line Basics II - Class 6

Transmission Line Basics II - Class 6 Transmission Line Basics II - Class 6 Prerequisite Reading assignment: CH2 Acknowledgements: Intel Bus Boot Camp: Michael Leddige Agenda 2 The Transmission Line Concept Transmission line equivalent circuits

More information

6 Lectures 3 Main Sections ~2 lectures per subject

6 Lectures 3 Main Sections ~2 lectures per subject P5-Electromagnetic ields and Waves Prof. Andrea C. errari 1 1 6 ectures 3 Main Sections ~ lectures per subject Transmission ines. The wave equation.1 Telegrapher s Equations. Characteristic mpedance.3

More information

Engineering Electromagnetic Fields and Waves

Engineering Electromagnetic Fields and Waves CARL T. A. JOHNK Professor of Electrical Engineering University of Colorado, Boulder Engineering Electromagnetic Fields and Waves JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CHAPTER

More information

COURTESY IARE. Code No: R R09 Set No. 2

COURTESY IARE. Code No: R R09 Set No. 2 Code No: R09220404 R09 Set No. 2 II B.Tech II Semester Examinations,APRIL 2011 ELECTRO MAGNETIC THEORY AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication Engineering,

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 2018 Eugene V. Colla Definition Distributed parameters network Pulses in transmission line Wave equation and wave propagation Reflections. Resistive load

More information

Time-harmonic form Phasor form. =0 (1.11d)

Time-harmonic form Phasor form. =0 (1.11d) Chapter 2 Wave in an Unbounded Medium Maxwell s Equations Time-harmonic form Phasor form (Real quantity) (complex quantity) B E = Eˆ = jωbˆ (1.11 a) t D= ρ Dˆ = ρ (1.11 b) D H = J + Hˆ = Jˆ+ jωdˆ ( 1.11

More information

Antenna Theory (Engineering 9816) Course Notes. Winter 2016

Antenna Theory (Engineering 9816) Course Notes. Winter 2016 Antenna Theory (Engineering 9816) Course Notes Winter 2016 by E.W. Gill, Ph.D., P.Eng. Unit 1 Electromagnetics Review (Mostly) 1.1 Introduction Antennas act as transducers associated with the region of

More information

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, 2012 Time: 2 hours. Closed book, closed notes. Calculator provided. For oblique incidence of

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 013 Eugene V. Colla Definition Distributed parameters networ Pulses in transmission line Wave equation and wave propagation eflections. esistive load Thévenin's

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

1.3 Sinusoidal Steady State

1.3 Sinusoidal Steady State 1.3 Sinusoidal Steady State Electromagnetics applications can be divided into two broad classes: Time-domain: Excitation is not sinusoidal (pulsed, broadband, etc.) Ultrawideband communications Pulsed

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

Transmission line equations in phasor form

Transmission line equations in phasor form Transmission line equations in phasor form Kenneth H. Carpenter Department of Electrical and Computer Engineering Kansas State University November 19, 2004 The text for this class presents transmission

More information

University of Saskatchewan Department of Electrical Engineering

University of Saskatchewan Department of Electrical Engineering University of Saskatchewan Department of Electrical Engineering December 9,2004 EE30 1 Electricity, Magnetism and Fields Final Examination Professor Robert E. Johanson Welcome to the EE301 Final. This

More information

Transmission-Line Essentials for Digital Electronics

Transmission-Line Essentials for Digital Electronics C H A P T E R 6 Transmission-Line Essentials for Digital Electronics In Chapter 3 we alluded to the fact that lumped circuit theory is based on lowfrequency approximations resulting from the neglect of

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances)

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) A 1 General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) 1. Waves Propagating on a Transmission Line General A transmission line is a 1-dimensional medium which can

More information

3 December Lesson 5.5

3 December Lesson 5.5 Preparation Assignments for Homework #8 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3 December Lesson 5.5 A uniform plane wave is

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Instructor s Guide Fundamentals of Applied Electromagnetics 2006 Media Edition Fawwaz T. Ulaby

Instructor s Guide Fundamentals of Applied Electromagnetics 2006 Media Edition Fawwaz T. Ulaby Instructor s Guide Fundamentals of Applied Electromagnetics 006 Media Edition Fawwaz T. Ulaby Dear Instructor: This Instructor s Guide is intended for use by the course instructor only. It was developed

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

TASK A. TRANSMISSION LINE AND DISCONTINUITIES

TASK A. TRANSMISSION LINE AND DISCONTINUITIES TASK A. TRANSMISSION LINE AND DISCONTINUITIES Task A. Transmission Line and Discontinuities... 1 A.I. TEM Transmission Line... A.I.1. Circuit Representation of a Uniform Transmission Line... A.I.. Time

More information

Prepared by: Eng. Talal F. Skaik

Prepared by: Eng. Talal F. Skaik Islamic University of Gaza Faculty of Engineering Electrical & Computer Dept. Prepared by: Eng. Talal F. Skaik Microwaves Lab Experiment #3 Single Stub Matching Objectives: Understanding Impedance Matching,

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Dr. Vahid Nayyeri. Microwave Circuits Design

Dr. Vahid Nayyeri. Microwave Circuits Design Lect. 8: Microwave Resonators Various applications: including filters, oscillators, frequency meters, and tuned amplifiers, etc. microwave resonators of all types can be modelled in terms of equivalent

More information

ECE 3300 Standing Waves

ECE 3300 Standing Waves Standing Waves ECE3300 Lossless Transmission Lines Lossless Transmission Line: Transmission lines are characterized by: and Zo which are a function of R,L,G,C To minimize loss: Use high conductivity materials

More information

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with n = 1.71 4 30 λ 0 (λ 0 in µm), where λ 0 is the wavelength in vacuum, was used to disperse

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

II Transmitter and Receiver Design

II Transmitter and Receiver Design 8/3/6 transmission lines 1/7 II Transmitter and Receiver Design We design radio systems using RF/microwave components. Q: Why don t we use the usual circuit components (e.g., resistors, capacitors, op-amps,

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Notes Set 1 Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Introduction (1) atom Electromagnetism

More information

Contents. ! Transmission Lines! The Smith Chart! Vector Network Analyser (VNA) ! Measurements. ! structure! calibration! operation

Contents. ! Transmission Lines! The Smith Chart! Vector Network Analyser (VNA) ! Measurements. ! structure! calibration! operation Contents! Transmission Lines! The Smith Chart! Vector Network Analyser (VNA)! structure! calibration! operation! Measurements Göran Jönsson, EIT 2009-11-16 Network Analysis 2! Waves on Lines! If the wavelength

More information

ECE 5260 Microwave Engineering University of Virginia. Some Background: Circuit and Field Quantities and their Relations

ECE 5260 Microwave Engineering University of Virginia. Some Background: Circuit and Field Quantities and their Relations ECE 5260 Microwave Engineering University of Virginia Lecture 2 Review of Fundamental Circuit Concepts and Introduction to Transmission Lines Although electromagnetic field theory and Maxwell s equations

More information

STUDY OF LOSS EFFECT OF TRANSMISSION LINES AND VALIDITY OF A SPICE MODEL IN ELECTROMAG- NETIC TOPOLOGY

STUDY OF LOSS EFFECT OF TRANSMISSION LINES AND VALIDITY OF A SPICE MODEL IN ELECTROMAG- NETIC TOPOLOGY Progress In Electromagnetics Research, PIER 90, 89 103, 2009 STUDY OF LOSS EFFECT OF TRANSMISSION LINES AND VALIDITY OF A SPICE MODEL IN ELECTROMAG- NETIC TOPOLOGY H. Xie, J. Wang, R. Fan, andy. Liu Department

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15 ECE 634 Intermediate EM Waves Fall 6 Prof. David R. Jackson Dept. of ECE Notes 5 Attenuation Formula Waveguiding system (WG or TL): S z Waveguiding system Exyz (,, ) = E( xye, ) = E( xye, ) e γz jβz αz

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Lecture 2 - Transmission Line Theory

Lecture 2 - Transmission Line Theory Lecture 2 - Transmission Line Theory Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 2 - Transmission Line Theory Slide1 of 54

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

Contents. Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.

Contents. Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU. 1 Contents 2 Transmission lines 3 2.1 Transmission Lines: General Considerations...... 3 2.1.1 Wavelength and transmission lines....... 4 2.1.2 Propagation modes................ 8 2.2 Lumped element model.................

More information

Your RF Cable, the unknown Entity

Your RF Cable, the unknown Entity HAM RADIO 2018 Your RF Cable, the unknown Entity PROF. DR. THOMAS BAIER E-mail: baier@hs-ulm.de DG8SAQ Hochschule Ulm University of Applied Sciences Prittwitzstrasse 10 89075 Ulm Thanks to: Dan Maguire

More information

Transmission Lines. Transmission lines. Telegraphist Equations. Reflection Coefficient. Transformation of voltage, current and impedance

Transmission Lines. Transmission lines. Telegraphist Equations. Reflection Coefficient. Transformation of voltage, current and impedance Transmission Lines Transmission lines Telegraphist Equations Reflection Coefficient Transformation of voltage, current and impedance Application of trasnmission lines 1 ENGN4545/ENGN6545: Radiofrequency

More information

Resonant Matching Networks

Resonant Matching Networks Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that

More information

Chapter 7. Time-Varying Fields and Maxwell s Equations

Chapter 7. Time-Varying Fields and Maxwell s Equations Chapter 7. Time-arying Fields and Maxwell s Equations Electrostatic & Time arying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are not

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS The vector Helmholtz equations satisfied by the phasor) electric and magnetic fields are where. In low-loss media and for a high frequency, i.e.,

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

Lecture 36 Date:

Lecture 36 Date: Lecture 36 Date: 5.04.04 Reflection of Plane Wave at Oblique Incidence (Snells Law, Brewster s Angle, Parallel Polarization, Perpendicular Polarization etc.) Introduction to RF/Microwave Introduction One

More information

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos

More information

Contents. Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation. Measurements

Contents. Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation. Measurements Contents Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation Measurements Göran Jönsson, EIT 2015-04-27 Vector Network Analysis 2 Waves on Lines If the

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

Understanding EMC Basics

Understanding EMC Basics 1of 7 series Webinar #1 of 3, February 27, 2013 EM field theory, and 3 types of EM analysis Webinar Sponsored by: EurIng CEng, FIET, Senior MIEEE, ACGI AR provides EMC solutions with our high power RF/Microwave

More information

(12a x +14a y )= 8.5a x 9.9a y A/m

(12a x +14a y )= 8.5a x 9.9a y A/m Chapter 11 Odd-Numbered 11.1. Show that E xs Ae jk 0z+φ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for k 0 ω µ 0 ɛ 0 and any φ and A:We take d dz Aejk 0z+φ (jk 0 ) Ae jk 0z+φ

More information

6-1 Chapter 6 Transmission Lines

6-1 Chapter 6 Transmission Lines 6-1 Chapter 6 Transmission ines ECE 3317 Dr. Stuart A. ong 6-2 General Definitions p.133 6-3 Voltage V( z) = α E ds ( C z) 1 C t t ( a) Current I( z) = α H ds ( C0 closed) 2 C 0 ( b) http://www.cartoonstock.com

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay. Module 02 Lecture 08 Dipole Antennas-I

Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay. Module 02 Lecture 08 Dipole Antennas-I Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay Module 02 Lecture 08 Dipole Antennas-I Hello, and welcome to today s lecture. Now in the last lecture

More information

Chapter 7. Time-Varying Fields and Maxwell s Equation

Chapter 7. Time-Varying Fields and Maxwell s Equation Chapter 7. Time-Varying Fields and Maxwell s Equation Electrostatic & Time Varying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are

More information

Plot the voltage magnitude and current magnitude over a distance of 5000 km. % ************* GIVEN VALUES *************************************

Plot the voltage magnitude and current magnitude over a distance of 5000 km. % ************* GIVEN VALUES ************************************* Tom Penick EE368 Electrical Power Transmission and Distribution Homework 1 1/29/99 Problem: A single 795ACSR conductor is 10 meters above the earth. Assume the radius is 1 centimeter. R = 0, G = 0 (lossless

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Short Wire Antennas: A Simplified Approach Part I: Scaling Arguments. Dan Dobkin version 1.0 July 8, 2005

Short Wire Antennas: A Simplified Approach Part I: Scaling Arguments. Dan Dobkin version 1.0 July 8, 2005 Short Wire Antennas: A Simplified Approach Part I: Scaling Arguments Dan Dobkin version 1.0 July 8, 2005 0. Introduction: How does a wire dipole antenna work? How do we find the resistance and the reactance?

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN70: High-Speed Links Circuits and Systems Spring 07 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Lab Lab begins

More information

ro 2n x 300 x 106 P = - = ~ _~n = 21t rad/m.

ro 2n x 300 x 106 P = - = ~ _~n = 21t rad/m. 32 CHAPTER 2 Section 2-6: Input Impedance Problem 2.17 At an operating frequency of 300 MHz. a Iossless 50-0 air-spaced transmission line 2.5 m in length is terminated with an impedance ZL = (60+ j20)

More information

Lecture 12. Microwave Networks and Scattering Parameters

Lecture 12. Microwave Networks and Scattering Parameters Lecture Microwave Networs and cattering Parameters Optional Reading: teer ection 6.3 to 6.6 Pozar ection 4.3 ElecEng4FJ4 LECTURE : MICROWAE NETWORK AND -PARAMETER Microwave Networs: oltages and Currents

More information