EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

Size: px
Start display at page:

Download "EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture"

Transcription

1 EE C45 ME C8 Itroductio to MEMS Desig Fall 003 Roger Howe ad Thara Sriiasa Lecture 3 Capacitie Positio Sesig: Electroic ad Mechaical Noise EE C45 ME C8 Fall 003 Lecture 3 Today s Lecture Basic CMOS buffer amplifiers for positio sesig Electroic oise sources: trasistors ad resistors Browia oise Sigaltooise ratio Readig: Gray, P.R., ad Meyer, R. G., Aalysis ad Desig of Aalog Itegrated Circuits, 3 rd Ed., 993. EE C45 ME C8 Fall 003 Lecture 3

2 C () The Capacitie HalfBridge, Reisited ( t) = Vˆ C i 0 X out C () = ε o A/(g o ) C () = ε o A/(g o ) C () ( t) = Vˆ How do we desig a X buffer with C i 0? Z Z V = Vˆ ( ) Vˆ ( ) out Z Z ( ) Z ( ) Z V out = V i = Vˆ g o EE C45 ME C8 Fall 003 Lecture 3 3 Precisio Uity Gai ia Feedback V DD out =A d ( ), A d is large i = i = out out = A d ( i out ) out Ad = A d i i EE C45 ME C8 Fall 003 Lecture 3 4

3 Basic CMOS Differetial Amplifier B V DD I SS / Simplified aalysis: = = ( )/ M M out A b i,d r o,cs out I SS r o g m gs gs a EE C45 ME C8 Fall 003 Lecture 3 Nodes a ad b are icremetal grouds 5 Differetial Gai A d out r o g m gs gs out = (g m gs )r o out = g m r o i.d = = Typical alues g m r o = 00 A d = 00 out = g m r o ( i,d /) out = (g m r o /) i,d A d EE C45 ME C8 Fall 003 Lecture 3 6 3

4 Basic UityGai Buffer V DD I SS / shortcircuit output to iertig iput Z i M M out i I SS Iput resistace R i = Ω Iput capacitace = C i =? EE C45 ME C8 Fall 003 Lecture 3 7 Iput Capacitace C i C i C gd V i V g mv gs r o gs C gs r o r o,cs gatedrai short o trasistor M g m V gs =g m V ds r o,cs Resistor R = (g m ) r o r o,cs Equialet to a resistor = (g m ) Therefore, V gs 0 V phasor curret through C gs 0 A C gs does t eist (it s bee bootstrapped ). I practice, C gs is reduced 00 fold. R Iput capacitace is due to gatedrai capacitace of M : EE C45 ME C8 Fall 003 Lecture 3 C i C gd 8 4

5 Improed UityGai Buffer V DD Weijie Yu, Ph.D. EECS, 99 M 3 M 4 I SS / M 3, M 4 cause V d to track V i C gd is bootstrapped, too! Z i M M out i I SS Result: C i approaches zero. EE C45 ME C8 Fall 003 Lecture 3 9 V DD Settig the DC Bias ( t) = Vˆ C () C () ( t) = Vˆ A M 3 M 4 I SS I SS / M M Node A has o path to groud; so it s called a floatig ode out Solutios:. W. Yu ad G. K. Fedder: zerobiased diode to leak A to a kow DC oltage (e.g., V DD /). W. Clark, M. Palaiapa: MOSFET biased i subthreshold to set A to DC potetial of M s drai. 3. M. Lemki: MOSFET switch EE C45 ME C8 Fall 003 Lecture 3 0 5

6 Electroic Noise Sources. Thermal oise i resistors geerated by radom motio of electros or holes white spectral desity (up to 0 THz) = 4k TR f B spectral desity / f = 4k TR Eample: R = kω, T = 300 K B / f 4V / Hz rms = 4mV EE C45 ME C8 Fall 003 Lecture 3 (i a MHz badwidth) Thermal Noise (Cot.) Thermal oise curret: fid Norto equialet R Directio of arrow is arbitary R i i / f 4kBT = R Eample: R = kω, T = 300 K, BW = MHz 4k BT i = BW = 4µ A R EE C45 ME C8 Fall 003 Lecture 3 6

7 Resistor Noise i MEMS Itercoect resistace R it to capacitie positio sesors > routig i polysi 0 ca lead to a high resistaces, due to relatiely high sheet resistace of this layer > iertial MEMS ofte hae compliat suspesios large umber of squares i polysi ad sigificat cotributio to R it ( t) = Vˆ R R it C () X out R it C () ˆ ( t) = V EE C45 ME C8 Fall 003 Lecture 3 3 Flicker (/f) Noise Noise mechaism requires a DC curret, i cotrast to thermal oise Origi of /f oise i MOSFETs: surface states i = KI f a f Near DC, the oise curret dierges! EE C45 ME C8 Fall 003 Lecture 3 4 7

8 MOSFET Noise Sources Whe biased i saturatio, (V DS > V DS,sat ), the oise ca be represeted by a iput oise oltage ad a iput oise curret Origi of /f oise i MOSFETs: surface states i = 4kBT 3 g m f K f WLC o f f chael resistace i saturatio ierse depedece o gate area larger trasistors hae lower /f oise i i ω Cgs gm [4kBT f 3 gm KI f D f ] (eglectig DC gate curret ad it s shot oise) EE C45 ME C8 Fall 003 Lecture 3 5 MOSFET Noise Sources (Cot.) Equialet MOSFET smallsigal model with iputreferred oise sources i i i C gd C gs g m gs r o i d Crossoer frequecy betwee thermal ad flicker oise ca rage from khz to MHz EE C45 ME C8 Fall 003 Lecture 3 6 8

9 Buffer Equialet Iput Noise Substitute oise oltage ad curret for each MOSFET i buffer ad fid the total equialet oise at the iput i ( t) = Vˆ 4 g m6 = 4kBT f K flicker oise terms 3 gm g m R R it C () i R R it C () X out ( t) = Vˆ EE C45 ME C8 Fall 003 Lecture 3 7 Mechaical (Browia) Noise Impigig molecules gie rise to a Browia oise force: f = 4k Tb f B b = (Mω )/Q = dampig coefficiet Noise force applied to Mkb system results i radom Browia motio with a frequecydepedet power spectrum: = Implicatios: f << f ( 4kBTb / k) [ ( f / f ) ] f f Qf EE C45 ME C8 Fall 003 Lecture 3 8 9

10 Combiig Noise Sources If oise sources are ucorrelated, the their powers ca be added. For two oltage oise sources: = rms = = For a sesor, it is coeiet to refer all oise sources to the iput, by scalig them appropriately. For a capacitie diider positio sesor, the positio oise due to electroic oise at the iput of the buffer is:, = ˆ e V go V, e = go ˆ EE C45 ME C8 Fall 003 Lecture 3 9 SNR ad DR, Defied Sigaltooise ratio = SNR P = = s s s SNR = 0 log = 0 log 0 log 0 log P, Note : P oise is calculated oer a limited badwidth Note :,rms is take as the miimum detectable sigal, i the absece of special codig or sigal processig Dyamic rage = DR Ps,ma = s DR = 0 log 0 log P oise,ma = 0 log s,ma, rms s rms EE C45 ME C8 Fall 003 Lecture 3 0 0

11 Sigal ad Noise Waeforms Siusoid with amplitude ormalized to Gaussia oise with rms leel ormalized to ; ote that peakpeak oise leel is occasioally as high as 6! EE C45 ME C8 Fall 003 Lecture 3 SNR = ad 0 for Gaussia Noise EE C45 ME C8 Fall 003 Lecture 3

Compact Modeling of Noise in the MOS Transistor

Compact Modeling of Noise in the MOS Transistor Compact Modelig of Noise i the MOS Trasistor Aada Roy, Christia Ez, ) Swiss Federal Istitute of Techology, ausae (EPF), Switzerlad ) Swiss Ceter for Electroics ad Microtechology (CSEM) Neuchâtel, Swtzerlad

More information

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information

KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU ARE TOLD TO BEGIN.

KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU ARE TOLD TO BEGIN. Name: Sigature Date: (Prit ECE 300 -- Quiz # S.. Brakoic Sectio W :30 A October, 00 KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU AE TOLD TO BEGIN.. This quiz is closed book, closed otes. You may use oe

More information

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3 ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio Digital IC outlie CMOS at a glace CMOS static behavior

More information

ECE594I Notes set 13: Two-port Noise Parameters

ECE594I Notes set 13: Two-port Noise Parameters C594 otes, M. Rodwell, copyrighted C594 Notes set 13: Two-port Noise Parameters Mark Rodwell Uiversity of Califoria, Sata Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Refereces ad Citatios:

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

2.CMOS Transistor Theory

2.CMOS Transistor Theory CMOS LSI esig.cmos rasistor heory Fu yuzhuo School of microelectroics,sju Itroductio omar fadhil,baghdad outlie PN juctio priciple CMOS trasistor itroductio Ideal I- characteristics uder static coditios

More information

Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction

Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction Digital Itegrated Circuits Iverter YuZhuo Fu Itroductio outlie CMOS at a glace CMOS static behavior CMOS dyamic behavior Power, Eergy, ad Eergy Delay Persective tech. /48 outlie CMOS at a glace CMOS static

More information

EE 505. Lecture 29. ADC Design. Oversampled

EE 505. Lecture 29. ADC Design. Oversampled EE 505 Lecture 29 ADC Desig Oversampled Review from Last Lecture SAR ADC V IN Sample Hold C LK V REF DAC DAC Cotroller DAC Cotroller stores estimates of iput i Successive Approximatio Register (SAR) At

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio outlie CMOS at a glace CMOS static behavior CMOS dyamic

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigal Represetatio ad Basebad Processig ersio ECE IIT, Kharagpur Lesso 17 Noise ersio ECE IIT, Kharagpur After readig this lesso, you will lear about Basic features of Short Noise; Thermal (Johso)

More information

Crash course part 2. Frequency compensation

Crash course part 2. Frequency compensation Crash course part Frequecy compesatio Ageda Frequecy depedace Feedback amplifiers Frequecy depedace of the Trasistor Frequecy Compesatio Phatom Zero Examples Crash course part poles ad zeros I geeral a

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

Regenerative Property

Regenerative Property DESIGN OF LOGIC FAMILIES Some desirable characteristics to have: 1. Low ower dissiatio. High oise margi (Equal high ad low margis) 3. High seed 4. Low area 5. Low outut resistace 6. High iut resistace

More information

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to:

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to: OBJECTIVES Chapter 1 INTRODUCTION TO INSTRUMENTATION At the ed of this chapter, studets should be able to: 1. Explai the static ad dyamic characteristics of a istrumet. 2. Calculate ad aalyze the measuremet

More information

Rounding Answers. => Z=12.03±0.15 cm

Rounding Answers. => Z=12.03±0.15 cm Roudig Aswers The ucertaity should be rouded off to oe or two sigificat figures. If the leadig figure i the ucertaity is 1, we use two sigificat figures, otherwise we use oe sigificat figure. The aswer

More information

577. Estimation of surface roughness using high frequency vibrations

577. Estimation of surface roughness using high frequency vibrations 577. Estimatio of surface roughess usig high frequecy vibratios V. Augutis, M. Sauoris, Kauas Uiversity of Techology Electroics ad Measuremets Systems Departmet Studetu str. 5-443, LT-5368 Kauas, Lithuaia

More information

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design MOS Digital Itegrated ircuits Aalysis ad Desig hapter 9 Dyamic Logic ircuits 1 Itroductio Static logic circuit Output correspodig to the iput voltage after a certai time delay Preservig its output level

More information

EEC 118 Lecture #4: CMOS Inverters. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #4: CMOS Inverters. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #4: CMOS Iverters ajeeva Amirtharajah Uiversity of Califoria, Davis Jeff Parhurst Itel Cororatio Outlie eview: Iverter Trasfer Characteristics Lecture 3: Noise Margis, ise & Fall Times,

More information

Modelisation and Simulation of Noise in CMOS Active Pixel Sensor for Low light Applications

Modelisation and Simulation of Noise in CMOS Active Pixel Sensor for Low light Applications Modelisatio ad Simulatio of Noise i CMOS Active Pixel Sesor for Low light Applicatios HASSAN BELAHRACH a, YAVUZ DEGERLY b, MOHAMMED KARIM c, JEAN FARRE b a- Ecole Royale de l Air & Faculté des Scieces

More information

EE 435. Lecture 25. Data Converters

EE 435. Lecture 25. Data Converters EE 435 Lecture 5 Data Coverters . Review from last lecture. Basic Operatio of CMFB Block V DD V FB V O1 V O CMFB Circuit V FB V OUT C L M 3 M 4 V OUT V IN M 1 M V IN C L V OXX CMFB Circuit V B M 9 V OXX

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

ECE 145A / 218 C, notes set 13: Very Short Summary of Noise

ECE 145A / 218 C, notes set 13: Very Short Summary of Noise class otes, M. odwell, copyrighted 009 C 45A / 8 C, otes set 3: Very hort ummary o Noise Mark odwell Uiversity o Calioria, ata Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36 ax Backgroud / tet class

More information

Mixed Signal IC Design Notes set 7: Electrical device noise models.

Mixed Signal IC Design Notes set 7: Electrical device noise models. C145C /18C otes, M. owell, copyrighte 007 Mixe Sigal C Desig Notes set 7: lectrical evice oise moels. Mark owell Uiversity of Califoria, Sata Barbara rowell@ece.ucsb.eu 805-893-344, 805-893-36 fax Topics

More information

EE 505. Lecture 13. String DACs

EE 505. Lecture 13. String DACs EE 505 Lecture 13 Strig DACs -Strig DAC V FF S 1 S 2 Simple structure Iheretly mootoe Very low DNL Challeges: S N-2 S N-1 S N S k d k Maagig INL Large umber of devices for large outig thermometer/bubble

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 090 EE4555 Fudaetals of Seicoductor evices Fall 0 ecture : MOSFE hapter 0.3, 0.4 090 J. E. Morris Reider: Here is what the MOSFE looks like 090 N-chael MOSFEs: Ehaceet & epletio odes 090 J. E. Morris 3

More information

Introduction to Semiconductor Devices and Circuit Model

Introduction to Semiconductor Devices and Circuit Model Itroductio to Semicoductor Devices ad Circuit Model Readig: Chater 2 of Howe ad Sodii Electrical Resistace I + V _ W homogeeous samle t L Resistace R V I L = ρ Wt (Uits: Ω) where ρ is the resistivity (Uits:

More information

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1 Case Study ME375 Frequecy Respose - Case Study SUPPORT POWER WIRE DROPPERS Electric trai derives power through a patograph, which cotacts the power wire, which is suspeded from a cateary. Durig high-speed

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio Review cotet Tye Cocet 15, Comutig 10 hours Fri. 6

More information

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write:

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write: Siusoidal stimulus Si i Si at every ode! We are goig to aalyze circuits for a sigle siusoid at a time which we are goig to write: vi ( t i si( t + φ But we are goig to use expoetial otatio v ( t si( t

More information

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 = ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.

More information

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples:

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples: 5.6 4 Lecture #3-4 page HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT Do t restrict the wavefuctio to a sigle term! Could be a liear combiatio of several wavefuctios e.g. two terms:

More information

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING Mechaical Vibratios FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING A commo dampig mechaism occurrig i machies is caused by slidig frictio or dry frictio ad is called Coulomb dampig. Coulomb dampig

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

DIRECTION OF ARRIVAL ESTIMATION

DIRECTION OF ARRIVAL ESTIMATION Research Article DIRECTION OF ARRIVAL ESTIMATION Lalita Gupta, R P Sigh Address for correspodece Dept. of Electroics & Commuicatio Egieerig, Maulaa Azad Natioal Istitute of Techology, Bhopal MP Email:gupta.lalita@gmail.com

More information

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 9: Broadband antennas

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 9: Broadband antennas School of Electrical Egieerig EI2400 Applied Atea Theory Lecture 9: Broadbad ateas Questio 1 What is the badwidth of a atea? It is the rage of frequecies withi which the performace of the atea with respect

More information

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping CDS : Lecture 8. Tools for PID & Loop Shapig Richard M. Murray 7 November 4 Goals: Show how to use loop shapig to achieve a performace specificatio Itroduce ew tools for loop shapig desig: Ziegler-Nichols,

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal

More information

Minimum Source/Drain Area AS,AD = (0.48µm)(0.60µm) - (0.12µm)(0.12µm) = µm 2

Minimum Source/Drain Area AS,AD = (0.48µm)(0.60µm) - (0.12µm)(0.12µm) = µm 2 UNIERSITY OF CALIFORNIA College of Egieerig Departmet of Electrical Egieerig ad Computer Scieces Last modified o February 1 st, 005 by Chris Baer (crbaer@eecs Adrei ladimirescu Homewor #3 EECS141 Due Friday,

More information

3. Modeling of MOSFET for analog design. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

3. Modeling of MOSFET for analog design. Kanazawa University Microelectronics Research Lab. Akio Kitagawa 3. Modelig of MOSFET for aalog desig Kaazawa Uiversity Microelectroics Research Lab. Akio Kitagawa SPCE model of MOSFET Model Feature Level 1 Basic physical model(l > 10um Level 3 Basic semi-empirical

More information

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25)

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25) Lecture 5: Codig of Aalog Sources Samplig ad Quatizatio Images ad souds are ot origially digital! The are cotiuous sigals i space/time as well as amplitude Typical model of a aalog source: A statioary

More information

ECE 145B / 218B, notes set 3: Electrical device noise models.

ECE 145B / 218B, notes set 3: Electrical device noise models. class otes, M. owell, copyrighte 2012 C 145B / 218B, otes set 3: lectrical evice oise moels. Mark owell Uiversity of Califoria, Sata Barbara rowell@ece.ucsb.eu 805-893-3244, 805-893-3262 fax class otes,

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

LECTURE 5 PART 2 MOS INVERTERS STATIC DESIGN CMOS. CMOS STATIC PARAMETERS The Inverter Circuit and Operating Regions

LECTURE 5 PART 2 MOS INVERTERS STATIC DESIGN CMOS. CMOS STATIC PARAMETERS The Inverter Circuit and Operating Regions LECTURE 5 PART 2 MOS INVERTERS STATIC ESIGN CMOS Objectives for Lecture 5 - Part 2* Uderstad the VTC of a CMOS iverter. Uderstad static aalysis of the CMOS iverter icludig breakpoits, VOL, V OH,, V IH,

More information

Semiconductor Electronic Devices

Semiconductor Electronic Devices Semicoductor lectroic evices Course Codes: 3 (UG) 818 (PG) Lecturer: Professor thoy O eill mail: athoy.oeill@cl.ac.uk ddress: 4.31, Merz Court ims: To provide a specialist kowledge of semicoductor devices.

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

EE 505 Lecture 9. Statistical Circuit Modeling

EE 505 Lecture 9. Statistical Circuit Modeling EE 505 Lecture 9 Statistical Circuit Modelig eview from previous lecture: Statistical Aalysis Strategy Will first focus o statistical characterizatio of resistors, the exted to capacitors ad trasistors

More information

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE Diode aalysis ad applicatios cotiued The MOFET The MOFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOFET Readig Howe

More information

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220 ECE 564/645 - Digital Commuicatio Systems (Sprig 014) Fial Exam Friday, May d, 8:00-10:00am, Marsto 0 Overview The exam cosists of four (or five) problems for 100 (or 10) poits. The poits for each part

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

The state space model needs 5 parameters, so it is not as convenient to use in this control study.

The state space model needs 5 parameters, so it is not as convenient to use in this control study. Trasfer fuctio for of the odel G θ K ω 2 θ / v θ / v ( s) = = 2 2 vi s + 2ζωs + ω The followig slides detail a derivatio of this aalog eter odel both as state space odel ad trasfer fuctio (TF) as show

More information

Statistical Noise Models and Diagnostics

Statistical Noise Models and Diagnostics L. Yaroslavsky: Advaced Image Processig Lab: A Tutorial, EUSIPCO2 LECTURE 2 Statistical oise Models ad Diagostics 2. Statistical models of radom iterfereces: (i) Additive sigal idepedet oise model: r =

More information

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t, Lecture 5 omplex Variables II (Applicatios i Physics) (See hapter i Boas) To see why complex variables are so useful cosider first the (liear) mechaics of a sigle particle described by Newto s equatio

More information

Lecture 28 Field-Effect Transistors

Lecture 28 Field-Effect Transistors Lecture 8 Field-Effect Transistors Field-Effect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use small-signal equialent

More information

DESCRIPTION OF THE SYSTEM

DESCRIPTION OF THE SYSTEM Sychroous-Serial Iterface for absolute Ecoders SSI 1060 BE 10 / 01 DESCRIPTION OF THE SYSTEM TWK-ELEKTRONIK GmbH D-001 Düsseldorf PB 1006 Heirichstr. Tel +9/11/6067 Fax +9/11/6770 e-mail: ifo@twk.de Page

More information

Diversity Combining Techniques

Diversity Combining Techniques Diversity Combiig Techiques Whe the required sigal is a combiatio of several waves (i.e, multipath), the total sigal amplitude may experiece deep fades (i.e, Rayleigh fadig), over time or space. The major

More information

Waves and rays - II. Reflection and transmission. Seismic methods: Reading: Today: p Next Lecture: p Seismic rays obey Snell s Law

Waves and rays - II. Reflection and transmission. Seismic methods: Reading: Today: p Next Lecture: p Seismic rays obey Snell s Law Seismic methods: Waves ad rays - II Readig: Today: p7-33 Net Lecture: p33-43 Reflectio ad trasmissio Seismic rays obey Sell s Law (just like i optics) The agle of icidece equals the agle of reflectio,

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Spring 2014, EE123 Digital Signal Processing

Spring 2014, EE123 Digital Signal Processing Aoucemets EE3 Digital Sigal Processig Last time: FF oday: Frequecy aalysis with DF Widowig Effect of zero-paddig Lecture 9 based o slides by J.M. Kah Spectral Aalysis with the DF Spectral Aalysis with

More information

100m m 01.0

100m m 01.0 EKT Priciples of Measureet ad struetatio Se. 0/0 Solutio Tutorial (Chapter ) Q. (a) Briefly discuss the operatio of a Peraet Maget Movig Coil (PMMC) oveet ad also describe TWO() advatages of PMMC. PMMC

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Monolithic semiconductor technology

Monolithic semiconductor technology Moolithic semicoductor techology 1 Ageda Semicoductor techology: Backgroud o Silico ad Gallium Arseide (GaAs) roerties. Diode, BJT ad FET devices. Secod order effect ad High frequecy roerties. Modelig

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Itegrated Circuit Devices Professor Ali Javey 9/04/2007 Semicoductor Fudametals Lecture 3 Readig: fiish chapter 2 ad begi chapter 3 Aoucemets HW 1 is due ext Tuesday, at the begiig of the class.

More information

Key Questions. ECE 340 Lecture 36 : MOSFET II 4/28/14

Key Questions. ECE 340 Lecture 36 : MOSFET II 4/28/14 Thigs you should kow whe you leae C 40 Lecture 6 : MOSFT Class Outlie: Short Chael ffects Key Questios Why is the mobility i the chael lower tha i the bulk? Why do strog electric fields degrade chael mobility?

More information

Microscopic Theory of Transport (Fall 2003) Lecture 6 (9/19/03) Static and Short Time Properties of Time Correlation Functions

Microscopic Theory of Transport (Fall 2003) Lecture 6 (9/19/03) Static and Short Time Properties of Time Correlation Functions .03 Microscopic Theory of Trasport (Fall 003) Lecture 6 (9/9/03) Static ad Short Time Properties of Time Correlatio Fuctios Refereces -- Boo ad Yip, Chap There are a umber of properties of time correlatio

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 UNIVERSITY OF BOLTON TW30 SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 06/07 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: Thursday Jauary 07 Time:

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 6: Output

More information

Op Amp Packaging. Op Amps. JFET Application Current Source

Op Amp Packaging. Op Amps. JFET Application Current Source JET pplication Current Source Op mps, 5 Imperfections Op amp applications Household application: battery charger (car, laptop, mp players) Differential amplifier current source amp waeform generator High

More information

ELEN 610 Data Converters

ELEN 610 Data Converters Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation Module 8 Discrete Time Sigals ad Z-Trasforms Objective:To uderstad represetig discrete time sigals, apply z trasform for aalyzigdiscrete time sigals ad to uderstad the relatio to Fourier trasform Itroductio

More information

EE 435. Lecture 25. Data Converters. Architectures. Characterization

EE 435. Lecture 25. Data Converters. Architectures. Characterization EE 435 Lecture 5 Data Coverters Architectures Characterizatio . eview from last lecture. Data Coverters Types: A/D (Aalog to Digital) Coverts Aalog Iput to a Digital Output D/A (Digital to Aalog) Coverts

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm - Problem 7 points Given in

More information

NOISE IN SC CIRCUITS. NLCOTD: Gain Booster CMFB. Highlights (i.e. What you will learn today) Review. Course Goals. ECE1371 Advanced Analog Circuits

NOISE IN SC CIRCUITS. NLCOTD: Gain Booster CMFB. Highlights (i.e. What you will learn today) Review. Course Goals. ECE1371 Advanced Analog Circuits EE37 Advaced Aalog ircuits Lecture 0 NIE IRUIT Richard chreier richard.schreier@aalog.com Trevor aldwell trevor.caldwell@utoroto.ca ourse Goals Deepe Uderstadig o M aalog circuit desig through a top-dow

More information

Semiconductors a brief introduction

Semiconductors a brief introduction Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) 1.7-1.9 Trasport (drift-diffusio) Hyperphysics (lik o course homepage)

More information

Analog Integrated Circuit Design (Analog CMOS Circuit Design)

Analog Integrated Circuit Design (Analog CMOS Circuit Design) Aalog tegrate ircuit Desig (Aalog MOS ircuit Desig) Ali Heiary, Electrical Egieerig, g, Guila Uiversity Table of tets - MOs techology - troucti to MOS trasistor 3- urret mirror 4- Amplifier, active loa

More information

The Scattering Matrix

The Scattering Matrix 2/23/7 The Scatterig Matrix 723 1/13 The Scatterig Matrix At low frequecies, we ca completely characterize a liear device or etwork usig a impedace matrix, which relates the currets ad voltages at each

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

ELECTRICAL PROPEORTIES OF SOLIDS

ELECTRICAL PROPEORTIES OF SOLIDS DO PHYSICS ONLINE ELECTRICAL PROPEORTIES OF SOLIDS ATOMIC STRUCTURE ucleus: rotos () & electros electros (-): electro cloud h h DE BROGLIE wave model of articles mv ELECTRONS IN ATOMS eergy levels i atoms

More information

Sinusoidal Steady-state Analysis

Sinusoidal Steady-state Analysis Siusoidal Steady-state Aalysis Complex umber reviews Phasors ad ordiary differetial equatios Complete respose ad siusoidal steady-state respose Cocepts of impedace ad admittace Siusoidal steady-state aalysis

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

MORE TUTORIALS FOR VERILOG DIGITAL ELECTRONICS SYSTEM DESIGN HOMEWORK ASSIGNMENTS DATASHEETS FOR PARTS 10/3/2018

MORE TUTORIALS FOR VERILOG DIGITAL ELECTRONICS SYSTEM DESIGN HOMEWORK ASSIGNMENTS DATASHEETS FOR PARTS 10/3/2018 //8 DIGITA EECTRONICS SYSTEM DESIGN FA 8 PROFS. IRIS BAHAR & ROD BERESFORD OCTOBER, 8 ECTURE 9: CMOS TRANSIENT BEHAIOR MORE TUTORIAS FOR ERIOG O the course website you ca fid some useful liks to additioal

More information

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8 Digital Commuicatio Chael codig, liear block codes, Hammig ad cyclic codes Lecture - 8 Ir. Muhamad Asial, MSc., PhD Ceter for Iformatio ad Commuicatio Egieerig Research (CICER) Electrical Egieerig Departmet

More information

On the convergence rates of Gladyshev s Hurst index estimator

On the convergence rates of Gladyshev s Hurst index estimator Noliear Aalysis: Modellig ad Cotrol, 2010, Vol 15, No 4, 445 450 O the covergece rates of Gladyshev s Hurst idex estimator K Kubilius 1, D Melichov 2 1 Istitute of Mathematics ad Iformatics, Vilius Uiversity

More information

Sound II. Sound intensity level. Question. Energy and Intensity of sound waves

Sound II. Sound intensity level. Question. Energy and Intensity of sound waves Soud. Eergy ad tesity terferece of soud waes Stadig waes Complex soud waes Eergy ad tesity of soud waes power tesity eergy P time power P area A area A (uits W/m ) Soud itesity leel β 0log o o 0 - W/m

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information