CDS 101: Lecture 8.2 Tools for PID & Loop Shaping

Size: px
Start display at page:

Download "CDS 101: Lecture 8.2 Tools for PID & Loop Shaping"

Transcription

1 CDS : Lecture 8. Tools for PID & Loop Shapig Richard M. Murray 7 November 4 Goals: Show how to use loop shapig to achieve a performace specificatio Itroduce ew tools for loop shapig desig: Ziegler-Nichols, root locus, lead compesatio Work through some eample cotrol desig problems Readig: Åström ad Murray, Aalysis ad Desig of Feedback Systems, Ch 8

2 Tools for Desigig PID cotrollers d r - e C(s) u P(s) y Cs () = K( Ts D ) Ts I Zeigler-Nichols tuig Desig PID gais based o step respose Works OK for may plats (but uderdamped) Good way to get a first cut cotroller Frequecy domai versio also eists Cautio: PID amplifies high frequecy oise Sol : pole at high frequecy Cautio: Itegrator widup Prologed error causes large itegrated error Effect: large udershoot (to reset itegrator) Sol : move pole at zero to very small value Facier sol : ati-widup compesatio K =. / a T = * L T = L/ 7 Nov 4 R. M. Murray, Caltech CDS a Magitude (db) Step respose L I Poit of maimum slope Bode Diagrams -4-4 Frequecy (rad/sec) D

3 Eample: PID cruise cotrol Ps () / m r = s b/ m s a L =.49 a = step.39 Ziegler-Nichols desig for cruise cotroller Plot step respose, etract L ad a, compute gais Bode Diagrams.. slope Phase (deg); Magitude (db) Ps () Ps () Cs () Frequecy (rad/sec) Cs () L() s L() s Time (sec.) Result: sluggish icrease loop gai 7 Nov 4 R. M. Murray, Caltech CDS 3 Amplitude.5.5 Step Respose Cs () = K( Ts D ) Ts K =. / a T = * L T = L/ I I D

4 r - e Pole Zero Diagrams ad Root Locus Plots C(s) α Pole zero diagram verifies stability Roots of PC give closed loop poles Ca trace the poles as a parameter is chaged: Cs () = K( Ts D ) Ts I α u P(s) y Imag Ais Real Ais Root locus = locus of roots as parameter value is chaged Ca plot pole locatio versus ay parameter; just repeatedly solve for roots Commo choice i cotrol is to vary the loop gai (K) Origial pole locatio (α = ) Pole goes to Poles merge ad split Pole goes ustable for some α Pole goes to termial value 7 Nov 4 R. M. Murray, Caltech CDS 4

5 Oe Parameter Root Locus Basic idea: covert to stadard problem : as () αbs () = Look at locatio of roots as α is varied over positive real umbers If phase of a(s)/b(s) = 8, we ca always choose a real α to solve eq Ca compute the phase from the pole/zero diagram Gs () a() s ( s z)( s z) L( s zm) = = k b() s ( s p )( s p ) L( s p ) G( s ) = ( s z ) L ( s z ) ( s p ) L ( s p ) m φ i = phase cotributio from s to -p i ψ I = phase cotributio from s to -z i Trace out positios i plae where phase = 8 At each of these poits, there eists gai α to satisfy a(s) αb(s) = All such poits are o root locus 7 Nov 4 R. M. Murray, Caltech CDS 5

6 r - e α C(s) Loop gai as root locus parameter Commo choice for cotrol desig Special properties for loop gai Roots go from poles of PC to zeros of PC Ecess poles go to ifiity Ca compute asymptotes, break poits, etc Very useful tool for cotrol desig MATLAB: rlocus Root Locus for Loop Gai u P(s) s () α d( s) α( s) = d() s y Imag Ais Ope loop pole locatio (α = ) Asymptotes for ecess poles at (36 /(P-Z)) Real ais to the left of odd # of real poles & zeros is o root locus Closed pole goes to ope loop zeros Real Ais Additioal commets Although loop gai is the most commo parameter, do t forget that you ca plot roots versus ay parameter Need to lik root locatio to performace 7 Nov 4 R. M. Murray, Caltech CDS 6

7 Secod Order System Respose Secod order system respose Sprig mass dyamics, writte i caoical form Guidelies for pole placemet Dampig ratio gives Re/Im ratio Settig time determied by Re(λ) H() s ω ω = = s ςω s ω ( s ςω jω )( s ςω jω ) d d ω = ω ς d Performace specificatios T T r s.8/ ω 3.9 / ςω M e p e = SS πς / ς Root Locus Editor (C) T s < ζ.77.5 M p 4% 6% Slope Imag Ais - -4 Desired regio for closed loop poles M p < y.5 44% Nov 4 R. M. Murray, Caltech CDS Real Ais 7

8 Effect of pole locatio o performace Idea: look at domiat poles Poles earest the imagiary ais (earest to istability) Aalyze usig aalogy to secod order system PZmap complemets iformatio o Bode/Nyquist plots Similar to gai ad phase calculatios Shows performace i terms of the closed loop poles Particularly useful for choosig system gai Also useful for decidig where to put cotroller poles ad zeros (with practice [ad SISOtool]) Imag Ais Imag Ais Imag Ais Real Ais Time (sec.) 7 Nov 4 R. M. Murray, Caltech CDS 8 Pole-zero map Real Ais Pole-zero map Pole-zero map Real Ais Amplitude Amplitude Amplitude To: Y() To: Y() To: Y() Step Respose From: U() Step Respose From: U() Time (sec.) 3 Step Respose From: U() Time (sec.)

9 Eample: PID cruise cotrol Start with PID cotrol desig: / m r Ps () = s b/ m s a Cs () = K( Ts D ) Ts I Modify gai to improve performace Use MATLAB sisotool Adjust loop gai (K) to reduce overshoot ad decrease settlig time ζ less tha 5% overshoot Re(p) < -.5 T s less tha sec 7 Nov 4 R. M. Murray, Caltech CDS 9

10 Eample: Pitch Cotrol for Caltech Ducted Fa System descriptio Vector thrust egie attached to wig Iputs: fa thrust, thrust agle (vectored) Outputs: positio ad orietatio States:, y, θ derivatives Dyamics: flight aerodyamics Cotrol approach Desig ier loop cotrol law to regulate pitch (θ ) usig thrust vectorig Secod outer loop cotroller regulates the positio ad altitude by commadig the pitch ad thrust Basically the same approach as aircraft cotrol laws 7 Nov 4 R. M. Murray, Caltech CDS

11 Phase (deg); Magitude (db) 5 Performace Specificatio ad Desig Approach Performace Specificatio % steady state error Zero frequecy gai > % trackig error up to rad/sec Gai > from - rad/sec 45 phase margi Gives good relative stability Provides robustess to Frequecy (rad/sec) ucertaity r Desig approach Ps () = Js ds mgl Ope loop plat has poor phase margi Add phase lead i 5-5 rad/sec rage a = 5 Icrease the gai to achieve steady s a Cs () = K b = 3 state ad trackig performace specs s b K = 5 3 Avoid itegrator to miimize phase Nov 4 R. M. Murray, Caltech CDS

12 Summary: PID ad Root Locus PID cotrol desig Very commo (ad classical) cotrol techique Good tools for choosig gais u = K e K e K e& p I D Bode Diagrams Root locus Show closed loop poles as fuctio of a free parameter Performace limits RHP poles ad zeros place limits o achievable performace Waterbed effect Phase (deg); Magitude (db) ω = T I ω = T D Imag Ais Frequecy (rad/sec) Real Ais 7 Nov 4 R. M. Murray, Caltech CDS

EE Control Systems

EE Control Systems Copyright FL Lewis 7 All rights reserved Updated: Moday, November 1, 7 EE 4314 - Cotrol Systems Bode Plot Performace Specificatios The Bode Plot was developed by Hedrik Wade Bode i 1938 while he worked

More information

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B. Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the s-plae 4 Mar Block Diagrams Assig

More information

Lab(8) controller design using root locus

Lab(8) controller design using root locus Lab(8) cotroller desig usig root locus I this lab we will lear how to desig a cotroller usig root locus but before this we eed to aswer the followig questios: What is root locus? What is the purpose of

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

CDS 101: Lecture 5.1 Controllability and State Space Feedback

CDS 101: Lecture 5.1 Controllability and State Space Feedback CDS, Lecture 5. CDS : Lecture 5. Cotrollability ad State Space Feedback Richard M. Murray 8 October Goals: Deie cotrollability o a cotrol system Give tests or cotrollability o liear systems ad apply to

More information

Chapter 2 Feedback Control Theory Continued

Chapter 2 Feedback Control Theory Continued Chapter Feedback Cotrol Theor Cotiued. Itroductio I the previous chapter, the respose characteristic of simple first ad secod order trasfer fuctios were studied. It was show that first order trasfer fuctio,

More information

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C) Aswer: (A); (C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 0(A); (A); (C); 3(C). A two loop positio cotrol system is show below R(s) Y(s) + + s(s +) - - s The gai of the Tacho-geerator iflueces maily the

More information

CHAPTER NINE. Frequency Response Methods

CHAPTER NINE. Frequency Response Methods CHAPTER NINE 9. Itroductio It as poited earlier that i practice the performace of a feedback cotrol system is more preferably measured by its time - domai respose characteristics. This is i cotrast to

More information

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response MEM 55 Itroductio to Cotrol Systems: Aalyzig Dyamic Respose Harry G. Kwaty Departmet of Mechaical Egieerig & Mechaics Drexel Uiversity Outlie Time domai ad frequecy domai A secod order system Via partial

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpeCourseWare http://ocw.mit.edu 2.004 Dyamics ad Cotrol II Sprig 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Istitute of Techology

More information

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex:

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex: ME375 Hadouts Bode Diagrams Recall that if m m bs m + bm s + + bs+ b Gs () as + a s + + as+ a The bm( j z)( j z) ( j zm) G( j ) a ( j p )( j p ) ( j p ) bm( s z)( s z) ( s zm) a ( s p )( s p ) ( s p )

More information

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352, 732 Aedix E: Previous EEE0 Exams EEE0 Exam 2, Srig 2008 A.A. Rodriguez Rules: Oe 8. sheet ermitted, calculators ermitted. GWC 32, 9-372 Problem Aalysis of a Feedback System Cosider the feedback system

More information

Lecture 13. Graphical representation of the frequency response. Luca Ferrarini - Basic Automatic Control 1

Lecture 13. Graphical representation of the frequency response. Luca Ferrarini - Basic Automatic Control 1 Lecture 3 Graphical represetatio of the frequecy respose Luca Ferrarii - Basic Automatic Cotrol Graphical represetatio of the frequecy respose Polar plot G Bode plot ( j), G Im 3 Re of the magitude G (

More information

Crash course part 2. Frequency compensation

Crash course part 2. Frequency compensation Crash course part Frequecy compesatio Ageda Frequecy depedace Feedback amplifiers Frequecy depedace of the Trasistor Frequecy Compesatio Phatom Zero Examples Crash course part poles ad zeros I geeral a

More information

1the 1it is said to be overdamped. When 1, the roots of

1the 1it is said to be overdamped. When 1, the roots of Homework 3 AERE573 Fall 08 Due 0/8(M) ame PROBLEM (40pts) Cosider a D order uderdamped system trasfer fuctio H( s) s ratio 0 The deomiator is the system characteristic polyomial P( s) s s (a)(5pts) Use

More information

Frequency Response Methods

Frequency Response Methods Frequecy Respose Methods The frequecy respose Nyquist diagram polar plots Bode diagram magitude ad phase Frequecy domai specificatios Frequecy Respose Methods I precedig chapters the respose ad performace

More information

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1 Case Study ME375 Frequecy Respose - Case Study SUPPORT POWER WIRE DROPPERS Electric trai derives power through a patograph, which cotacts the power wire, which is suspeded from a cateary. Durig high-speed

More information

Analysis of the No-Load Characteristic of the Moving Coil Linear Compressor

Analysis of the No-Load Characteristic of the Moving Coil Linear Compressor Purdue Uiversity Purdue e-pubs Iteratioal Compressor Egieerig Coferece School of Mechaical Egieerig 008 Aalysis of the No-Load Characteristic of the Movig Coil Liear Compressor Yigbai Xie North Chia Electric

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

EE 4343 Lab#4 PID Control Design of Rigid Bodies

EE 4343 Lab#4 PID Control Design of Rigid Bodies EE 44 Lab#4 PID Cotrol Desig of Rigid Bodies Prepared by: Stacy Caso E-mail: scaso@arri.uta.edu Updated: July 9, 1999 This lab demostrates some key cocepts associated with proportioal plus derivative (PD

More information

ME 375 FINAL EXAM Friday, May 6, 2005

ME 375 FINAL EXAM Friday, May 6, 2005 ME 375 FINAL EXAM Friay, May 6, 005 Divisio: Kig 11:30 / Cuigham :30 (circle oe) Name: Istructios (1) This is a close book examiatio, but you are allowe three 8.5 11 crib sheets. () You have two hours

More information

Dr. Seeler Department of Mechanical Engineering Fall 2009 Lafayette College ME 479: Control Systems and Mechatronics Design and Analysis

Dr. Seeler Department of Mechanical Engineering Fall 2009 Lafayette College ME 479: Control Systems and Mechatronics Design and Analysis Dr. Seeler Departmet of Mechaical Egieerig Fall 009 Lafayette College ME 479: Cotrol Systems ad Mechatroics Desig ad Aalysis Lab 0: Review of the First ad Secod Order Step Resposes The followig remarks

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s CONTROL SYSTEMS Chapter 7 : Bode Plot GATE Objective & Numerical Type Solutio Quetio 6 [Practice Book] [GATE EE 999 IIT-Bombay : 5 Mark] The aymptotic Bode plot of the miimum phae ope-loop trafer fuctio

More information

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information

Class 07 Time domain analysis Part II 2 nd order systems

Class 07 Time domain analysis Part II 2 nd order systems Class 07 Time domai aalysis Part II d order systems Time domai aalysis d order systems iput S output Secod order systems of the type α G(s) as + bs + c Time domai aalysis d order systems iput S α as +

More information

Course Outline. Problem Identification. Engineering as Design. Amme 3500 : System Dynamics and Control. System Response. Dr. Stefan B.

Course Outline. Problem Identification. Engineering as Design. Amme 3500 : System Dynamics and Control. System Response. Dr. Stefan B. Course Outlie Amme 35 : System Dyamics a Cotrol System Respose Week Date Cotet Assigmet Notes Mar Itrouctio 8 Mar Frequecy Domai Moellig 3 5 Mar Trasiet Performace a the s-plae 4 Mar Block Diagrams Assig

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

Contents Kreatryx. All Rights Reserved.

Contents Kreatryx. All Rights Reserved. Cotets Maual for K-Notes... Basics of Cotrol Systems... 3 Sigal Flow Graphs... 7 Time Respose Aalysis... 0 Cotrol System Stability... 6 Root locus Techique... 8 Frequecy Domai Aalysis... Bode Plots...

More information

Introduction to Control Systems

Introduction to Control Systems Itroductio to Cotrol Sytem CLASSIFICATION OF MATHEMATICAL MODELS Icreaig Eae of Aalyi Static Icreaig Realim Dyamic Determiitic Stochatic Lumped Parameter Ditributed Parameter Liear Noliear Cotat Coefficiet

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 6 - Small Signal Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 6 - Small Signal Stability ECE 4/5 Power System Operatios & Plaig/Power Systems Aalysis II : 6 - Small Sigal Stability Sprig 014 Istructor: Kai Su 1 Refereces Kudur s Chapter 1 Saadat s Chapter 11.4 EPRI Tutorial s Chapter 8 Power

More information

Automatic Control Systems

Automatic Control Systems Automatic Cotrol Sytem Lecture-5 Time Domai Aalyi of Orer Sytem Emam Fathy Departmet of Electrical a Cotrol Egieerig email: emfmz@yahoo.com Itrouctio Compare to the implicity of a firt-orer ytem, a eco-orer

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

EE 505. Lecture 28. ADC Design SAR

EE 505. Lecture 28. ADC Design SAR EE 505 Lecture 28 ADC Desig SAR Review from Last Lecture Elimiatio of Iput S/H C LK X IN S/H Stage 1 r 1 Stage 2 r 2 Stage k r k Stage m r m 1 2 k m Pipelied Assembler (Shift Register

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Sinusoidal Steady-state Analysis

Sinusoidal Steady-state Analysis Siusoidal Steady-state Aalysis Complex umber reviews Phasors ad ordiary differetial equatios Complete respose ad siusoidal steady-state respose Cocepts of impedace ad admittace Siusoidal steady-state aalysis

More information

21. Control Systems. Easy: Incremental Linear: P PI PID Intuitive: Fuzzy Logic. It says to cook your food until burned food!

21. Control Systems. Easy: Incremental Linear: P PI PID Intuitive: Fuzzy Logic. It says to cook your food until burned food! 21. Cotrol Systems Easy: Icremetal Liear: P PI PID Ituitive: Fuzzy Logic Dad, I hate It says to cook your food util bured food! the ceter is o loger red. Not eough colors of black to describe your cookig.

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Butterworth LC Filter Designer

Butterworth LC Filter Designer Butterworth LC Filter Desiger R S = g g 4 g - V S g g 3 g R L = Fig. : LC filter used for odd-order aalysis g R S = g 4 g V S g g 3 g - R L = useful fuctios ad idetities Uits Costats Table of Cotets I.

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

Methods for analysis and control of. Lecture 4: The root locus design method

Methods for analysis and control of. Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

CDS 101/110a: Lecture 10-2 Control Systems Implementation

CDS 101/110a: Lecture 10-2 Control Systems Implementation CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 UNIVERSITY OF BOLTON TW30 SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 06/07 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: Thursday Jauary 07 Time:

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: etwork Theory Broadbad Circuit Deig Fall 04 Lecture 3: PLL Aalyi Sam Palermo Aalog & Mixed-Sigal Ceter Texa A&M Uiverity Ageda & Readig PLL Overview & Applicatio PLL Liear Model Phae & Frequecy

More information

Exercises for lectures 13 Design using frequency methods

Exercises for lectures 13 Design using frequency methods Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31-3-17 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)

More information

Spectral Analysis. This week in lab. Next classes: 3/26 and 3/28. Your next experiment Homework is to prepare

Spectral Analysis. This week in lab. Next classes: 3/26 and 3/28. Your next experiment Homework is to prepare Spectral Aalysis This week i lab Your ext experimet Homework is to prepare Next classes: 3/26 ad 3/28 Aero Testig, Fracture Toughess Testig Read the Experimets 5 ad 7 sectios of the course maual Spectral

More information

System Diagnostics using Kalman Filter Estimation Error

System Diagnostics using Kalman Filter Estimation Error System Diagostics usig Kalma Filter Estimatio Error Prof. Seugchul Lee, Seugtae Park, Heechag Kim, Hyusuk Huh ICMR2015 (11/25/2015) Machie Health Diagostics Desig Desig DNA + + Blue Prit phagocytes lymphocytes

More information

Easy Tuning of PID Controllers for Specified Performance

Easy Tuning of PID Controllers for Specified Performance IFAC Coferece o Advaces i PID Cotrol PID' Brescia (Italy, arch 8-, FrPS. Easy Tuig of PID Cotrollers for Specified Performace Š. Bucz*, A. Kozáková* ad V. Veselý* *Istitute of Cotrol ad Idustrial Iformatics,

More information

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

More information

Chapter 6 - Solved Problems

Chapter 6 - Solved Problems Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal

More information

CDS 101: Lecture 4.1 Linear Systems

CDS 101: Lecture 4.1 Linear Systems CDS : Lecture 4. Linear Systems Richard M. Murray 8 October 4 Goals: Describe linear system models: properties, eamples, and tools Characterize stability and performance of linear systems in terms of eigenvalues

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

More information

MA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity

MA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity MA 1910 Lesso 6 Notes Graphs of Ratioal Fuctios (Asymptotes) Limits at ifiity Defiitio of a Ratioal Fuctio: If P() ad Q() are both polyomial fuctios, Q() 0, the the fuctio f below is called a Ratioal Fuctio.

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This

More information

Engraving Machine Example

Engraving Machine Example Engraving Machine Example MCE44 - Fall 8 Dr. Richter November 24, 28 Basic Design The X-axis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional

More information

Dynamic System Response

Dynamic System Response Solutio of Liear, Costat-Coefficiet, Ordiary Differetial Equatios Classical Operator Method Laplace Trasform Method Laplace Trasform Properties 1 st -Order Dyamic System Time ad Frequecy Respose d -Order

More information

Transfer func+ons, block diagram algebra, and Bode plots. by Ania- Ariadna Bae+ca CDS Caltech 11/05/15

Transfer func+ons, block diagram algebra, and Bode plots. by Ania- Ariadna Bae+ca CDS Caltech 11/05/15 Transfer func+ons, block diagram algebra, and Bode plots by Ania- Ariadna Bae+ca CDS Caltech 11/05/15 Going back and forth between the +me and the frequency domain (1) Transfer func+ons exist only for

More information

PID SELF-TUNING CONTROLLERS USED IN DIFFERENT STRUCTURES OF THE CONTROL LOOPS

PID SELF-TUNING CONTROLLERS USED IN DIFFERENT STRUCTURES OF THE CONTROL LOOPS FASCICLE III, Vol.31, No., ISSN 11-454X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS PID SELF-TUNING CONTROLLERS USED IN DIFFERENT STRUCTURES OF THE CONTROL LOOPS Viorel DUGAN a, Adria

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

More information

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Describe and motivate linear system models: Summarize properties, examples, and tools Joel Burdick (substituting for Richard Murray) jwb@robotics.caltech.edu,

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

A New Accurate Analytical Expression for Rise Time Intended for Mechatronics Systems Performance Evaluation and Validation

A New Accurate Analytical Expression for Rise Time Intended for Mechatronics Systems Performance Evaluation and Validation Iteratioal Joural of Automatio, Cotrol ad Itelliget Systems Vol., No., 05, pp. 5-60 http://www.aisciece.org/joural/ijacis A New Accurate Aalytical Expressio for Rise Time Iteded for Mechatroics Systems

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Computational Fluid Dynamics. Lecture 3

Computational Fluid Dynamics. Lecture 3 Computatioal Fluid Dyamics Lecture 3 Discretizatio Cotiued. A fourth order approximatio to f x ca be foud usig Taylor Series. ( + ) + ( + ) + + ( ) + ( ) = a f x x b f x x c f x d f x x e f x x f x 0 0

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to:

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to: OBJECTIVES Chapter 1 INTRODUCTION TO INSTRUMENTATION At the ed of this chapter, studets should be able to: 1. Explai the static ad dyamic characteristics of a istrumet. 2. Calculate ad aalyze the measuremet

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

Lyapunov Stability Analysis for Feedback Control Design

Lyapunov Stability Analysis for Feedback Control Design Copyright F.L. Lewis 008 All rights reserved Updated: uesday, November, 008 Lyapuov Stability Aalysis for Feedbac Cotrol Desig Lyapuov heorems Lyapuov Aalysis allows oe to aalyze the stability of cotiuous-time

More information

Jitter Transfer Functions For The Reference Clock Jitter In A Serial Link: Theory And Applications

Jitter Transfer Functions For The Reference Clock Jitter In A Serial Link: Theory And Applications Jitter Trasfer Fuctios For The Referece Clock Jitter I A Serial Lik: Theory Ad Applicatios Mike Li, Wavecrest Ady Martwick, Itel Gerry Talbot, AMD Ja Wilstrup, Teradye Purposes Uderstad various jitter

More information

Mechatronics II Laboratory Exercise 5 Second Order Response

Mechatronics II Laboratory Exercise 5 Second Order Response Mechatroics II Laboratory Exercise 5 Seco Orer Respose Theoretical Backgrou Seco orer ifferetial equatios approximate the yamic respose of may systems. The respose of a geeric seco orer system ca be see

More information

AMME3500: System Dynamics & Control

AMME3500: System Dynamics & Control Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the

More information

5. Fast NLMS-OCF Algorithm

5. Fast NLMS-OCF Algorithm 5. Fast LMS-OCF Algorithm The LMS-OCF algorithm preseted i Chapter, which relies o Gram-Schmidt orthogoalizatio, has a compleity O ( M ). The square-law depedece o computatioal requiremets o the umber

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

Dynamic Response of Second Order Mechanical Systems with Viscous Dissipation forces

Dynamic Response of Second Order Mechanical Systems with Viscous Dissipation forces Hadout #b (pp. 4-55) Dyamic Respose o Secod Order Mechaical Systems with Viscous Dissipatio orces M X + DX + K X = F t () Periodic Forced Respose to F (t) = F o si( t) ad F (t) = M u si(t) Frequecy Respose

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform

More information

FIR Filter Design: Part I

FIR Filter Design: Part I EEL3: Discrete-Time Sigals ad Systems FIR Filter Desig: Part I. Itroductio FIR Filter Desig: Part I I this set o otes, we cotiue our exploratio o the requecy respose o FIR ilters. First, we cosider some

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline

More information

EE 435. Lecture 25. Data Converters. Architectures. Characterization

EE 435. Lecture 25. Data Converters. Architectures. Characterization EE 435 Lecture 5 Data Coverters Architectures Characterizatio . eview from last lecture. Data Coverters Types: A/D (Aalog to Digital) Coverts Aalog Iput to a Digital Output D/A (Digital to Aalog) Coverts

More information