Lecture 10 OUTLINE. Reading: Chapter EE105 Spring 2008 Lecture 10, Slide 1 Prof. Wu, UC Berkeley

Size: px
Start display at page:

Download "Lecture 10 OUTLINE. Reading: Chapter EE105 Spring 2008 Lecture 10, Slide 1 Prof. Wu, UC Berkeley"

Transcription

1 Lecture 0 OUTLIN BJT Aplifiers (3) itter follower (Coon-collector aplifier) Analysis of eitter follower core Ipact of source resistance Ipact of arly effect itter follower with biasin eadin: Chapter Sprin 2008 Lecture 0, Slide Prof. Wu, UC Berkeley

2 itter Follower (Coon Collector Aplifier) 05 Sprin 2008 Lecture 0, Slide 2 Prof. Wu, UC Berkeley

3 itter Follower Core When the input is increased by ΔV, output is also increased by an aount that is less than ΔV due to the increase in collector current and hence the increase in potential drop across. Howeer the absolute alues of input and output differ by a V B. 05 Sprin 2008 Lecture 0, Slide 3 Prof. Wu, UC Berkeley

4 Sall Sinal Model of itter Follower V A = out in = rπ β As shown aboe, the oltae ain is less than unity and positie. 05 Sprin 2008 Lecture 0, Slide 4 Prof. Wu, UC Berkeley

5 Unity Gain itter Follower V A A = = The oltae ain is unity because a constant collector current (= I ) results in a constant V B, and hence Vout follows Vin exactly. 05 Sprin 2008 Lecture 0, Slide 5 Prof. Wu, UC Berkeley

6 Analysis of itter Follower as a Voltae Diider V A = 05 Sprin 2008 Lecture 0, Slide 6 Prof. Wu, UC Berkeley

7 itter Follower with Source esistance V A = out in = S β 05 Sprin 2008 Lecture 0, Slide 7 Prof. Wu, UC Berkeley

8 Input Ipedance of itter Follower V i A X X = = r ( β ) π The input ipedance of eitter follower is exactly the sae as that of C stae with eitter deeneration. This is not surprisin because the input ipedance of C with eitter deeneration does not depend on the collector resistance. 05 Sprin 2008 Lecture 0, Slide 8 Prof. Wu, UC Berkeley

9 itter Follower as Buffer Since the eitter follower increases the load resistance to a uch hiher alue, it is suited as a buffer between a C stae and a heay load resistance to alleiate the proble of ain deradation. 05 Sprin 2008 Lecture 0, Slide 9 Prof. Wu, UC Berkeley

10 Output Ipedance of itter Follower s out = β itter follower lowers the source ipedance by a factor of β iproed driin capability. 05 Sprin 2008 Lecture 0, Slide 0 Prof. Wu, UC Berkeley

11 05 Sprin 2008 Lecture 0, Slide Prof. Wu, UC Berkeley itter Follower with arly ffect Since r O is in parallel with, its effect can be easily incorporated into oltae ain and input and output ipedance equations. ( )( ) O s out O S in S O O r r r r r A = = = β β β π

12 Current Gain There is a current ain of (β) fro base to eitter. ffectiely speakin, the load resistance is ultiplied by (β) as seen fro the base. 05 Sprin 2008 Lecture 0, Slide 2 Prof. Wu, UC Berkeley

13 itter Follower with Biasin A biasin technique siilar to that of C stae can be used for the eitter follower. Also, V b can be close to V cc because the collector is also at V cc. 05 Sprin 2008 Lecture 0, Slide 3 Prof. Wu, UC Berkeley

14 Supply Independent Biasin By puttin a constant current source at the eitter, the bias current, V B, and I B B are fixed reardless of the supply alue. 05 Sprin 2008 Lecture 0, Slide 4 Prof. Wu, UC Berkeley

15 Suary of Aplifier Topoloies The three aplifier topoloies studied so far hae different properties and are used on different occasions. C and CB hae oltae ain with anitude reater than one, while follower s oltae ain is at ost one. 05 Sprin 2008 Lecture 0, Slide 5 Prof. Wu, UC Berkeley

16 Aplifier xaple I out in = S β 2 The keys in solin this proble are reconizin the AC round between and 2, and Theenin transforation of the input network. 05 Sprin 2008 Lecture 0, Slide 6 Prof. Wu, UC Berkeley C S

17 Aplifier xaple II out C = S in β 2 Aain, AC round/short and Theenin transforation are needed to transfor the coplex circuit into a siple stae with eitter deeneration. 05 Sprin 2008 Lecture 0, Slide 7 Prof. Wu, UC Berkeley S

18 05 Sprin 2008 Lecture 0, Slide 8 Prof. Wu, UC Berkeley Aplifier xaple III The key for solin this proble is first identifyin eq, which is the ipedance seen at the eitter of Q 2 in parallel with the infinite output ipedance of an ideal current source. Second, use the equations for deenerated C stae with replaced by eq. 2 2 C in A r r = = β π π

19 Aplifier xaple IV A = S The key for solin this proble is reconizin that CB at frequency of interest shorts out 2 and proide a round for. appears in parallel with C and the circuit siplifies to a siple CB stae. 05 Sprin 2008 Lecture 0, Slide 9 Prof. Wu, UC Berkeley C

20 Aplifier xaple V in B = β β 2 The key for solin this proble is reconizin the equialent base resistance of Q is the parallel connection of and the ipedance seen at the eitter of Q Sprin 2008 Lecture 0, Slide 20 Prof. Wu, UC Berkeley

21 Aplifier xaple VI out 2 ro = S in 2 ro β S = r S out 2 O β The key in solin this proble is reconizin a DC supply is actually an AC round and usin Theenin transforation to siplify the circuit into an eitter follower. 05 Sprin 2008 Lecture 0, Slide 2 Prof. Wu, UC Berkeley

22 05 Sprin 2008 Lecture 0, Slide 22 Prof. Wu, UC Berkeley Aplifier xaple VII Ipedances seen at the eitter of Q and Q 2 can be luped with C and, respectiely, to for the equialent eitter and collector ipedances. ( ) B B C B C out B in A r = = = β β β β β π

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier.

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier. Whites, EE 320 Lecture 36 Pae 1 of 10 Lecture 36: MOSFET Coon Drain (Source Follower) Aplifier. The third, and last, discrete-for MOSFET aplifier we ll consider in this course is the coon drain aplifier.

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 G 351 lectronics Sprin 2017 Review Topics for xa #1 Please review the xa Policies section of the xas pae at the course web site. Please especially note the followin: 1. You will be allowed to use a non-wireless

More information

EE 330 Lecture 33. Basic amplifier architectures Common Emitter/Source Common Collector/Drain Common Base/Gate. Basic Amplifiers

EE 330 Lecture 33. Basic amplifier architectures Common Emitter/Source Common Collector/Drain Common Base/Gate. Basic Amplifiers 33 Lecture 33 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate asic plifiers nalysis, Operation, and Desin xa 3 Friday pril 3 eview Previous Lecture Two-Port quivalents of Interconnected

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 ECEG 351 Electronics Sprin 017 Review Topics for Exa #3 Please review the Exa Policies section of the Exas pae at the course web site. You should especially note the followin: 1. You will be allowed to

More information

Lecture 25 ANNOUNCEMENTS. Reminder: Prof. Liu s office hour is cancelled on Tuesday 12/4 OUTLINE. General considerations Benefits of negative feedback

Lecture 25 ANNOUNCEMENTS. Reminder: Prof. Liu s office hour is cancelled on Tuesday 12/4 OUTLINE. General considerations Benefits of negative feedback Lecture 25 ANNOUNCEMENTS eminder: Prof. Liu s office hour is cancelled on Tuesday 2/4 Feedback OUTLINE General considerations Benefits of neative feedback Sense andreturn techniques Voltae voltae feedback

More information

Lab 4: Frequency Response of CG and CD Amplifiers.

Lab 4: Frequency Response of CG and CD Amplifiers. ESE 34 Electronics aboratory B Departent of Electrical and Coputer Enineerin Fall 2 ab 4: Frequency esponse of CG and CD Aplifiers.. OBJECTIVES Understand the role of input and output ipedance in deterinin

More information

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium)

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium) Lecture EMINES eiew session: Fri./9,3 5PM306Soda 306 (HP Auditoriu) Midter # (Thursday /5, 3:30 5PM Sibley Auditoriu) OUTLINE Frequency esponse eiew of basic concepts hih frequency MOSFET odel S stae G

More information

EE 330 Lecture 30. Basic amplifier architectures

EE 330 Lecture 30. Basic amplifier architectures 33 Lecture 3 asic aplifier architectures asic plifier Structures MOS and ipolar Transistors oth have 3 priary terinals MOS transistor has a fourth terinal that is generally considered a parasitic D terinal

More information

EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate

EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate 33 Lecture 3 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate eview fro arlier Lecture Two-port representation of aplifiers plifiers can be odeled as a two-port y 2 2 y y 22

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 EEN36: Electronic ircuits Fall 07 ecture 5: Frequency esponse a Palero Analo & Mixed-al enter Texas A&M University Announceents HW5 due / Exa /6 9:0-0:0 (0 extra utes) losed book w/ one standard note sheet

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 ECEN36: Electronic Circuits Fall 07 Lecture 7: Feedback Sa Palero Analo & Mixed-Sal Center Texas A&M University Announceents Hoework 7 due /9 Exa 3 / 8:00-0:00 Closed book w/ one standard note sheet 8.5

More information

Lecture 18. Common Source Stage

Lecture 18. Common Source Stage ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

More information

Mixed Signal IC Design Notes set 4: Broadband Design Techniques

Mixed Signal IC Design Notes set 4: Broadband Design Techniques Mixed Sal C Des Notes set 4: Broadband Des Techniques Mark odwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Gett ore bandwidth At this pot we have learned

More information

Week 9: Multivibrators, MOSFET Amplifiers

Week 9: Multivibrators, MOSFET Amplifiers ELE 2110A Electronc Crcuts Week 9: Multbrators, MOSFET Aplfers Lecture 09-1 Multbrators Topcs to coer Snle-stae MOSFET aplfers Coon-source aplfer Coon-dran aplfer Coon-ate aplfer eadn Assnent: Chap 14.1-14.5

More information

Section J8b: FET Low Frequency Response

Section J8b: FET Low Frequency Response ection J8b: FET ow Frequency epone In thi ection of our tudie, we re o to reiit the baic FET aplifier confiuration but with an additional twit The baic confiuration are the ae a we etiated ection J6 of

More information

Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L

Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L EE05 - Spr 2007 Microelectronic Devices and ircuits ecture 9 Frequency Response hapter Frequency Response. General onsiderations.2 Hih-Frequency Models of Transistors.3 Frequency Response of S Staes.4

More information

Analysis and Design of Analog Integrated Circuits Lecture 7. Differential Amplifiers

Analysis and Design of Analog Integrated Circuits Lecture 7. Differential Amplifiers Analysis and Desin of Analo Interated Circuits ecture 7 Differential Amplifiers Michael H. Perrott February 1, 01 Copyriht 01 by Michael H. Perrott All rihts reserved. Review Proposed Thevenin CMOS Transistor

More information

Introduction: the common and the differential mode components of two voltages. differential mode component: v d = v 1 - v 2 common mode component:

Introduction: the common and the differential mode components of two voltages. differential mode component: v d = v 1 - v 2 common mode component: EECTONCS-1 CHPTE 3 DFFEENT MPFES ntroduction: the common and the differential mode components of two voltaes v d v c differential mode component: v d = v 1 - v common mode component: v1 v v c = v 1 v vd

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVEITY OF CAIFONIA Collee of Enineerin Departent of Electrical Enineerin and Coputer cience E. Alon Hoework # olution EEC 40 P. Nuzzo Ue the EEC40 90n CMO proce in all hoework and project unle noted

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

A Novel PSR Enhancement Technique for Full on-chip Low-Dropout Regulator

A Novel PSR Enhancement Technique for Full on-chip Low-Dropout Regulator 3r International onference on oputer an Electrical Enineerin (IEE ) IPSIT ol. 53 () () IASIT Press, Sinapore DOI:.7763/IPSIT..V53.No..77 A Noel PS Enhanceent Technique for Full on-hip Low-Dp eulator Lin

More information

EE 434 Lecture 16. Small signal model Small signal applications in amplifier analysis and design

EE 434 Lecture 16. Small signal model Small signal applications in amplifier analysis and design EE 434 Lecture 16 Sall sinal odel Sall sinal applications in aplifier analysis and desin Quiz 13 The of an n-channel OS transistor that has a quiescent current of 5A was easured to be 10A/. If the lenth

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Chapter 2 Resistive Circuits

Chapter 2 Resistive Circuits Chapter esistie Circuits Goal. Sole circuits by combining resistances in Series and Parallel.. Apply the Voltage-Diision and Current-Diision Principles.. Sole circuits by the Node-Voltage Technique.. Sole

More information

EECE488: Analog CMOS Integrated Circuit Design. Set 2: Background

EECE488: Analog CMOS Integrated Circuit Design. Set 2: Background EECE488: Analo CMOS Interated Circuit esin Set : Backround Shahriar Mirabbasi epartent of Electrical and Coputer Enineerin Uniersity of British Colubia shahriar@ece.ubc.ca Technical contributions of Pedra

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων «Low Noie Aplifier» Φώτης Πλέσσας fplea@e-ce.uth.r F eceiver Antenna BPF LNA BPF Mixer BPF3 IF Ap Deodulator F front end LO LNA De Conideration

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Chapter 2 Resistive Circuits

Chapter 2 Resistive Circuits 1. Sole circuits (i.e., find currents and oltages of interest) by combining resistances in series and parallel. 2. Apply the oltage-diision and current-diision principles. 3. Sole circuits by the node-oltage

More information

Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

EECE488: Analog CMOS Integrated Circuit Design. 3. Single-Stage Amplifiers

EECE488: Analog CMOS Integrated Circuit Design. 3. Single-Stage Amplifiers EECE488: Analo CM Inteated Cicuit esin 3. inle-tae Aplifies hahia Miabbasi epatent of Electical and Copute Enineein Uniesity of Bitish Colubia shahia@ece.ubc.ca Technical contibutions of Peda Lajeadi in

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design Introduction to CMO F Interated Circuit Dein III. Low Noie Aplifier Introduction to CMO F Interated Circuit Dein Fall 0, Prof. JianJun Zhou III- Outline Fiure of erit Baic tructure Input and output atchin

More information

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors V. Transistors 3.1 III. Bipolar-Junction (BJT) Transistors A bipolar junction transistor is formed by joining three sections of semiconductors with alternatiely different dopings. The middle section (base)

More information

Lecture 15: Differential Pairs (Part 2)

Lecture 15: Differential Pairs (Part 2) Lecure 5: ifferenial Pairs (Par ) Gu-Yeon Wei ivision of Enineerin and Applied Sciences Harvard Universiy uyeon@eecs.harvard.edu Wei Overview eadin S&S: Chaper 6.6 Suppleenal eadin S&S: Chaper 6.9 azavi,

More information

Vector Spaces in Physics 8/6/2015. Chapter 4. Practical Examples.

Vector Spaces in Physics 8/6/2015. Chapter 4. Practical Examples. Vector Spaces in Physics 8/6/15 Chapter 4. Practical Exaples. In this chapter we will discuss solutions to two physics probles where we ae use of techniques discussed in this boo. In both cases there are

More information

different formulas, depending on whether or not the vector is in two dimensions or three dimensions.

different formulas, depending on whether or not the vector is in two dimensions or three dimensions. ectors The word ector comes from the Latin word ectus which means carried. It is best to think of a ector as the displacement from an initial point P to a terminal point Q. Such a ector is expressed as

More information

Lecture 4: RL Circuits. Inductive Kick. Diode Snubbers.

Lecture 4: RL Circuits. Inductive Kick. Diode Snubbers. Whites, EE 322 Lecture 4 Page 1 of 6 Lecture 4: RL Circuits. Inductive Kick. Diode Snubbers. Inductors are the third basic discrete coponent listed in Lecture 2. Uses for inductors in the NorCal 40A include

More information

Final Exam Practice: Part II Math MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question.

Final Exam Practice: Part II Math MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE Choose the one alternative that best copletes the stateent or answers the question. 1) Solve for y: y y 0 D) 4 9 ) Solve for : 0, 0 D) ) To Quig traveled 80 iles east of St. Louis. For

More information

A nonstandard cubic equation

A nonstandard cubic equation MATH-Jan-05-0 A nonstandard cubic euation J S Markoitch PO Box West Brattleboro, VT 050 Dated: January, 05 A nonstandard cubic euation is shown to hae an unusually econoical solution, this solution incorporates

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

Chapter 2. Small-Signal Model Parameter Extraction Method

Chapter 2. Small-Signal Model Parameter Extraction Method Chapter Sall-Signal Model Paraeter Extraction Method In this chapter, we introduce a new paraeter extraction technique for sall-signal HBT odeling. Figure - shows the sall-signal equivalent circuit of

More information

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design EE 435 Lecture 13 ascaded Amplifiers -- Two-Stae Op Amp Desin Review from Last Time Routh-Hurwitz Stability riteria: A third-order polynomial s 3 +a 2 s 2 +a 1 s+a 0 has all poles in the LHP iff all coefficients

More information

1 S = G R R = G. Enzo Paterno

1 S = G R R = G. Enzo Paterno ECET esistie Circuits esistie Circuits: - Ohm s Law - Kirchhoff s Laws - Single-Loop Circuits - Single-Node Pair Circuits - Series Circuits - Parallel Circuits - Series-Parallel Circuits Enzo Paterno ECET

More information

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi Execises f Cascde plifies ECE 0, Fall 0, F. Najabadi F. Najabadi, ECE0, Fall 0 /6 Execise : Cpute assue and Eey Cascde stae inceases by uble Cascde Execise : Cpute all indicated s, s, and i s. ssue tansists

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University EMA500 Lecture Interstitial Diffusion & Fick s st Law Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Substitutional Diffusion Different possibilities Exchange Mechanis

More information

Chapter 4: Techniques of Circuit Analysis

Chapter 4: Techniques of Circuit Analysis Chapter 4: Techniques of Circuit Analysis This chapter gies us many useful tools for soling and simplifying circuits. We saw a few simple tools in the last chapter (reduction of circuits ia series and

More information

Lecture 28 Field-Effect Transistors

Lecture 28 Field-Effect Transistors Lecture 8 Field-Effect Transistors Field-Effect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use small-signal equialent

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (nal) VSI ircuit Desin Sprin 0 ecture 3: Flded ascde & Tw Stae Miller OT Sa Paler nal & Mixed-Sinal enter Texas &M University nnunceents Exa dates reinder Exa is n pr. 0 Exa 3 is n May 3 (3PM-5PM)

More information

A Small-Signal Analysis of a BJT

A Small-Signal Analysis of a BJT 3/28/2011 A mall ignal Analysis of a BJ lecture 1/12 A mall-ignal Analysis of a BJ he collector current i of a BJ is related to its base-emitter oltage as: i i e Jim tiles he Uni. of Kansas Dept. of EE

More information

The Operational Amplifier

The Operational Amplifier The Operational Amplifier The operational amplifier i a building block of modern electronic intrumentation. Therefore, matery of operational amplifier fundamental i paramount to any practical application

More information

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t = τ). Consequently,

More information

Chapter 10 ACSS Power

Chapter 10 ACSS Power Objectives: Power concepts: instantaneous power, average power, reactive power, coplex power, power factor Relationships aong power concepts the power triangle Balancing power in AC circuits Condition

More information

th Annual IEEE Power Electronics Specialists Conference Aachen, Germany, Parallel Connection of Piezoelectric Transformers

th Annual IEEE Power Electronics Specialists Conference Aachen, Germany, Parallel Connection of Piezoelectric Transformers 004 35th Annual IEEE ower Electronics Specialists Conference Aachen, Gerany, 004 arallel Connection of iezoelectric Transforers Svetlana Bronstein, Gregory Ivensky and Sa Ben-Yaakov* ower Electronics Laboratory

More information

Analysis of ground vibration transmission in high precision equipment by Frequency Based Substructuring

Analysis of ground vibration transmission in high precision equipment by Frequency Based Substructuring Analysis of ground vibration transission in high precision equipent by Frequency Based Substructuring G. van Schothorst 1, M.A. Boogaard 2, G.W. van der Poel 1, D.J. Rixen 2 1 Philips Innovation Services,

More information

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C UNVERSTY OF CALFORNA Collee of Enineerin Department of Electrical Enineerin and Computer Sciences E. Alon Homework #3 Solutions EECS 40 P. Nuzzo Use the EECS40 90nm CMOS process in all home works and projects

More information

High Speed Mixed Signal IC Design notes set 8. Noise in Electrical Circuits: circuit noise analysis

High Speed Mixed Signal IC Design notes set 8. Noise in Electrical Circuits: circuit noise analysis C145C /18C otes, M. odwell, copyrihted 007 Hih peed Mixed ial C Desi otes set 8 Noise i lectrical Circuits: circuit oise aalysis Mark odwell Uiversity of Califoria, ata Barbara rodwell@ece.ucsb.edu 805-893-344,

More information

Section 1: Common Emitter CE Amplifier Design

Section 1: Common Emitter CE Amplifier Design ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open

More information

Polytech Montpellier MEA M2 EEA Systèmes Microélectroniques. Analog IC Design

Polytech Montpellier MEA M2 EEA Systèmes Microélectroniques. Analog IC Design ours I - 03/04 - Séane 6 8/03/04 Polyteh Montpellier ME M EE Systèmes Miroéletroniques nalo I Desin hapter VII OP stability and ompensation Pasal Nouet / 03-04 nouet@lirmm.r http://www.lirmm.r/~nouet/homepae/leture_ressoures.html

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2. Page 1 of 6

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2.  Page 1 of 6 TEST-7 TOPIC: ELECTRONIC DEICES ND DUL NTURE OF MTTER Q.1 Lights of two different frequencies whose photons have energies 1e and.5 e respectively, successively illuinate a etal of work function.5 e. The

More information

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 )

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 ) Chapter Seenteen: Electric Potential and Electric Energy Key Ter Electric Potential electrical potential energy per unit charge (JC -1 ) Page 1 of Electrical Potential Difference between two points is

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

Comparison of bulk driven, floating gate and sub threshold methods in designing of a typical amplifier

Comparison of bulk driven, floating gate and sub threshold methods in designing of a typical amplifier Journal of Novel Applied ciences Available online at www.jnasci.or 03 JNA Journal-03--9/49-436 IN 3-549 03 JNA Coparison of bulk driven, floatin ate and sub threshold ethods in desinin of a typical aplifier

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

CHAPTER 13. Solutions for Exercises

CHAPTER 13. Solutions for Exercises HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

HORIZONTAL MOTION WITH RESISTANCE

HORIZONTAL MOTION WITH RESISTANCE DOING PHYSICS WITH MATLAB MECHANICS HORIZONTAL MOTION WITH RESISTANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS ec_fr_b. This script

More information

Design of CMOS Analog Integrated Circuits. Basic Building Block

Design of CMOS Analog Integrated Circuits. Basic Building Block Desin of CMOS Analo Inteated Cicuits Fanco Malobeti Basic Buildin Block F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block INERTER WITH ACTIE LOAD The simplest fom of ain stae, the

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 ECEN6: Electnic Cicuits Fall 07 Lectue : Diffeential Aplifies Sa Pale Anal & Mixed-Sinal Cente Texas A&M Uniesity Annunceents Lab Use the updated Lab specs psted n the website Get the actual 6 lab kit

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES V.Raachran, Ravi P.Raachran C.S.Gargour Departent of Electrical Coputer Engineering, Concordia University, Montreal, QC, CANADA,

More information

Differential Amplifiers (Ch. 10)

Differential Amplifiers (Ch. 10) Differential Amplifiers (h. 0) 김영석 충북대학교전자정보대학 0.9. Email: kimys@cbu.ac.kr 0- ontents 0. General onsiderations 0. Bipolar Differential Pair 0.3 MOS Differential Pair 0.4 ascode Differential Amplifiers

More information

A new small-signal RF MOSFET model

A new small-signal RF MOSFET model A new sall-sinal F MOSFET odel KWO-MING HANG, HAN-PANG WANG Departent of Electronics Enineerin, National hiao-tun Uniersity, Hsinchu, Taiwan 3,. O.. Tel: 8863573887. Fax: 8863573887. Astract: In this paper,

More information

EE 435. Lecture 10: Current Mirror Op Amps

EE 435. Lecture 10: Current Mirror Op Amps EE 435 ecture 0: urrent Mirror Op mps Review from last lecture: Folded ascode mplifier DD DD B3 B3 B B3 B2 B2 B3 DD DD B B B4 I T QURTER IRUIT Op mp 2 Review from last lecture: Folded ascode Op mp DD M

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

Modeling Diaphragms in 2D Models with Linear and Nonlinear Elements

Modeling Diaphragms in 2D Models with Linear and Nonlinear Elements Modeling Diaphrags in 2D Models with Linear and Nonlinear Eleents Vesna Terzic UC Berkeley October 2011 Introduction to the proble (1) Floor diaphrag need to be axially rigid to assure proper distribution

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:

More information

Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design

Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design Analo C Desin - Academic year 05/06 - Session 3 04/0/5 Polytech Montellier MEA4 M EEA Systèmes Microélectroniques Analo C Desin From transistor in to current sources Pascal Nouet 05/06 - nouet@lirmm.fr

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t τ). Consequently,

More information

A Link Between Integrals and Higher-Order Integrals of SPN Ciphers

A Link Between Integrals and Higher-Order Integrals of SPN Ciphers Link Between Integrals and Higher-Order Integrals of SPN Ciphers Ruilin Li, Bing Sun, and Chao Li Integral cryptanalysis, which is based on the existence of (higher-order) integral distinguishers, is a

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Lectures 8 & 9: The Z-transform.

Lectures 8 & 9: The Z-transform. Lectures 8 & 9: The Z-transfor. 1. Definitions. The Z-transfor is defined as a function series (a series in which each ter is a function of one or ore variables: Z[] where is a C valued function f : N

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

before the collision and v 1 f and v 2 f after the collision. Since conservation of the linear momentum

before the collision and v 1 f and v 2 f after the collision. Since conservation of the linear momentum Lecture 7 Collisions Durin the preious lecture we stared our discussion of collisions As it was stated last tie a collision is an isolated eent in which two or ore odies (the collidin odies) exert relatiely

More information