Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L

Size: px
Start display at page:

Download "Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L"

Transcription

1 EE05 - Spr 2007 Microelectronic Devices and ircuits ecture 9 Frequency Response hapter Frequency Response. General onsiderations.2 Hih-Frequency Models of Transistors.3 Frequency Response of S Staes.4 Frequency Response of G Staes.5 Frequency Response of Followers.6 Frequency Response of ascode Stae.7 Frequency Response of Differential Pairs 2 Hih Frequency Roll-off of Aplifier Ga Roll-off Thru V R V s D As frequency of operation creases, the a of aplifier decreases. This chapter analyzes this proble. 3 The capacitive load,, is the culprit for a roll-off sce at hih frequency, it will steal away soe sal current and shunt it to round. 4

2 Frequency Response of the S Stae Exaple: Fiure of Merit V V R D R D FOM... VV T At low frequency, the capacitor is effectively open and the a is flat. As frequency creases, the capacitor tends to a short and the a starts to decrease. A special frequency is /(RD), where the a drops by 3dB. 5 This etric quantifies a circuit s a, bandwidth, and power dissipation. In the bipolar case, low teperature, supply, and load capacitance ark a superior fiure of erit. 6 Bode Plot Exaple: Bode Plot H() s A 0 s s + + z z2 s s + + p p2 When we hit a zero, zj, the Bode anitude rises with a slope of +20dB/dec. p R D When we hit a pole, pj, the Bode anitude falls with a slope of -20dB/dec The circuit only has one pole (no zero) at /(R D ), so the slope drops fro 0 to -20dB/dec as we pass p. 7 8

3 Pole Identification Exaple I Pole Identification Exaple II p p2 R S R D p R S p2 R D 9 0 ircuit with Float apacitor Miller s Theore The pole of a circuit is coputed by fd the effective resistance and capacitance fro a node to GROUND. The circuit above creates a proble sce neither teral of F is rounded. Z ZF ZF Z2 A / A v If A v is the a fro node to 2, then a float ipedance Z F can be converted to two rounded ipedances Z and Z 2. v 2

4 Miller Multiplication Exaple: Miller Theore With Miller s theore, we can separate the float capacitor. However, the put capacitor is larer than the orial float capacitor. We call this Miller ultiplication. R R ( + ) S D F R D + R D F 3 4 MOS Intrsic apacitances Gate Oxide apacitance Partition and Full Model For a MOS, there exist oxide capacitance fro ate to channel, junction capacitances fro source/dra to substrate, and overlap capacitance fro ate to source/dra. 5 The ate oxide capacitance is often partitioned between source and dra. In saturation, 2 ~ ate, and ~ 0. They are parallel with the overlap capacitance to for GS and GD. 6

5 Exaple: apacitance Identification Transit Frequency π f 2π ft 2 T π Transit frequency, f T, is defed as the frequency where the current a fro put to put drops to. GS 7 8 Unified Model for E and S Staes Unified Model Us Miller s Theore 9 20

6 Direct Analysis of E and S Staes Exaple: E and S Direct Analysis z p p2 XY ( + R ) XY RThev + RThev + R ( XY + ) ( + R ) XY RThev + RThev + R ( XY + ) R R( + + ) Direct analysis yields different pole locations and an extra zero. Thev XY XY p + ( ro ro 2) XY RS + RS + ( ro ro 2) ( XY + ) p2 ( ) ( ) R ( r r )( + + ) + ro ro 2 XY RS + RS + ro ro 2 ( XY + ) S O O2 XY XY 2 22 Z Input Ipedance of E and S Staes r π π + ( + R) μ s + ( + ) Z GS RD GD s 23 Frequency Response of G Stae r O px, RS + X GS SB py, R D Y + Y GD DB Siilar to a B stae, the put pole is on the order of f T, so rarely a speed bottleneck. X 24

7 Exaple: G Stae Pole Identification Eitter and Source Followers px, RS SB + GS ( ) py, 2 ( ) DB GD GS 2 DB2 25 The follow will discuss the frequency response of eitter and source followers us direct analysis. Eitter follower is treated first and source follower is derived easily by allow r π to o to fity. 26 Direct Analysis of Source Follower Stae Exaple: Source Follower V GS + s V as bs V GS + s V as bs R ( ) S a GDGS + GDSB + GSSB b R + S GD GD + SB 27 R [ ( )( )] S a GDGS GD GS SB GD2 DB b RSGD + GD SB GD2 DB2 28

8 Input apacitance of Eitter/Source Follower Exaple: Source Follower Input apacitance r O π μ + + R GS GD + + R + + r r ( ) GD GS O O Output Ipedance of Source Follower Active Inductor VX R S GSs+ I s+ X GS 3 The plot above shows the put ipedance of eitter and source followers. Sce a follower s priary duty is to lower the driv ipedance (R S >/ ), the active ductor characteristic on the riht is usually observed. 32

9 Exaple: Output Ipedance Frequency Response of ascode Stae r O ( ) V ro ro2 GS3s+ X I s+ X GS A vxy, x 2 2 For cascode staes, there are three poles and Miller ultiplication is saller than the E/S stae. XY 34 Poles of MOS ascode MOS ascode Exaple p, X R + + S GS GD 2 p, R ( + ) DB2 GD2 p, X R + + S GS GD 2 p, R ( + ) DB2 GD2 py, DB GS 2 GD 2 35 py, DB GS 2 GD GD3 DB3 2 36

10 I/O Ipedance of MOS ascode MOS Differential Pair Frequency Response Z GS+ + GD s 2 Z R s ( + ) GD2 DB2 37 Sce MOS differential pair can be analyzed us halfcircuit, its transfer function, I/O ipedances, locations of poles/zeros are the sae as that of the half circuit s. 38 Exaple: MOS Differential Pair px, py, p, RS[ GS + ( + / 3) GD] R 3 DB GS 3 GD 3 ( + ) DB3 GD3 39

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium)

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium) Lecture EMINES eiew session: Fri./9,3 5PM306Soda 306 (HP Auditoriu) Midter # (Thursday /5, 3:30 5PM Sibley Auditoriu) OUTLINE Frequency esponse eiew of basic concepts hih frequency MOSFET odel S stae G

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 EEN36: Electronic ircuits Fall 07 ecture 5: Frequency esponse a Palero Analo & Mixed-al enter Texas A&M University Announceents HW5 due / Exa /6 9:0-0:0 (0 extra utes) losed book w/ one standard note sheet

More information

Example: High-frequency response of a follower

Example: High-frequency response of a follower Example: Hih-requency response o a ollower o When body eects are cluded, db actually appears between dra and round. ce both termals o db are rounded, it does not aect the circuit. o d is also between the

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 ECEN36: Electronic Circuits Fall 07 Lecture 7: Feedback Sa Palero Analo & Mixed-Sal Center Texas A&M University Announceents Hoework 7 due /9 Exa 3 / 8:00-0:00 Closed book w/ one standard note sheet 8.5

More information

Mixed Signal IC Design Notes set 4: Broadband Design Techniques

Mixed Signal IC Design Notes set 4: Broadband Design Techniques Mixed Sal C Des Notes set 4: Broadband Des Techniques Mark odwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Gett ore bandwidth At this pot we have learned

More information

Lab 4: Frequency Response of CG and CD Amplifiers.

Lab 4: Frequency Response of CG and CD Amplifiers. ESE 34 Electronics aboratory B Departent of Electrical and Coputer Enineerin Fall 2 ab 4: Frequency esponse of CG and CD Aplifiers.. OBJECTIVES Understand the role of input and output ipedance in deterinin

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 ECEG 351 Electronics Sprin 017 Review Topics for Exa #3 Please review the Exa Policies section of the Exas pae at the course web site. You should especially note the followin: 1. You will be allowed to

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response. PART C: High Frequency Response Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

More information

Exact Analysis of a Common-Source MOSFET Amplifier

Exact Analysis of a Common-Source MOSFET Amplifier Exact Analysis of a Common-Source MOSFET Amplifier Consider the common-source MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier.

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier. Whites, EE 320 Lecture 36 Pae 1 of 10 Lecture 36: MOSFET Coon Drain (Source Follower) Aplifier. The third, and last, discrete-for MOSFET aplifier we ll consider in this course is the coon drain aplifier.

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF ECE 342 Electronic Circuits ecture 25 Frequency esponse of CG, CB,SF and EF Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 342 Jose Schutt Aine 1 Common

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

Multistage Amplifier Frequency Response

Multistage Amplifier Frequency Response Multistage Amplifier Frequency Response * Summary of frequency response of single-stages: CE/CS: suffers from Miller effect CC/CD: wideband -- see Section 0.5 CB/CG: wideband -- see Section 0.6 (wideband

More information

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων «Low Noie Aplifier» Φώτης Πλέσσας fplea@e-ce.uth.r F eceiver Antenna BPF LNA BPF Mixer BPF3 IF Ap Deodulator F front end LO LNA De Conideration

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering High-Frequency Model BJT & MOS B or G r x C f C or D r

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005 6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response

More information

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:

More information

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair Frequency epone of Aplifier General onideration Miller Effect Aociation of Pole with Node oon ource tage ource Follower ifferential Pair Haan Abouhady Univerity of Pari I eference B. azavi, eign of Analog

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

Digital Microelectronic Circuits ( )

Digital Microelectronic Circuits ( ) Digital Microelectronic ircuits (361-1-3021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,

More information

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003 6.0 Microelectronic Devices and Circuits Spring 003 Lecture 3 Lecture 3 Frequency Resp onse of Amplifiers (I) CommonSource Amplifier May 6, 003 Contents:. Intro duction. Intrinsic frequency resp onse of

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

EE 330 Lecture 33. Basic amplifier architectures Common Emitter/Source Common Collector/Drain Common Base/Gate. Basic Amplifiers

EE 330 Lecture 33. Basic amplifier architectures Common Emitter/Source Common Collector/Drain Common Base/Gate. Basic Amplifiers 33 Lecture 33 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate asic plifiers nalysis, Operation, and Desin xa 3 Friday pril 3 eview Previous Lecture Two-Port quivalents of Interconnected

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate

EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate 33 Lecture 3 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate eview fro arlier Lecture Two-port representation of aplifiers plifiers can be odeled as a two-port y 2 2 y y 22

More information

EE 330 Lecture 30. Basic amplifier architectures

EE 330 Lecture 30. Basic amplifier architectures 33 Lecture 3 asic aplifier architectures asic plifier Structures MOS and ipolar Transistors oth have 3 priary terinals MOS transistor has a fourth terinal that is generally considered a parasitic D terinal

More information

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C UNVERSTY OF CALFORNA Collee of Enineerin Department of Electrical Enineerin and Computer Sciences E. Alon Homework #3 Solutions EECS 40 P. Nuzzo Use the EECS40 90nm CMOS process in all home works and projects

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

Lecture 10 OUTLINE. Reading: Chapter EE105 Spring 2008 Lecture 10, Slide 1 Prof. Wu, UC Berkeley

Lecture 10 OUTLINE. Reading: Chapter EE105 Spring 2008 Lecture 10, Slide 1 Prof. Wu, UC Berkeley Lecture 0 OUTLIN BJT Aplifiers (3) itter follower (Coon-collector aplifier) Analysis of eitter follower core Ipact of source resistance Ipact of arly effect itter follower with biasin eadin: Chapter 5.3.3-5.4

More information

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University ECEN 67 (ESS) Op-Amps Stability and Frequency Compensation Techniques Analog & Mixed-Signal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

The K-Input Floating-Gate MOS (FGMOS) Transistor

The K-Input Floating-Gate MOS (FGMOS) Transistor The K-Input Floating-Gate MOS (FGMOS) Transistor C 1 V D C 2 V D I V D I V S Q C 1 C 2 V S V K Q V K C K Layout V B V K C K Circuit Symbols V S Control Gate Floating Gate Interpoly Oxide Field Oxide Gate

More information

The Miller Approximation

The Miller Approximation The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

Jordan Journal of Physics

Jordan Journal of Physics Volue 5, Nuber 3, 212. pp. 113-118 ARTILE Jordan Journal of Physics Networks of Identical apacitors with a Substitutional apacitor Departent of Physics, Al-Hussein Bin Talal University, Ma an, 2, 71111,

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Voltage AmpliÞer Frequency Response

Voltage AmpliÞer Frequency Response Voltage AmpliÞer Frequency Response Chapter 9 multistage voltage ampliþer 5 V M 7B M 7 M 5 R 35 kω M 6B M 6 Q 4 100 µa X M 3 Q B Q v OUT V s M 1 M 8 M9 V BIAS M 10 Approaches: 1. brute force OCTC -- do

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Chapter 5 MOSFET Theory for Submicron Technology

Chapter 5 MOSFET Theory for Submicron Technology Chapter 5 MOSFET Theory for Submicron Technology Short channel effects Other small geometry effects Parasitic components Velocity saturation/overshoot Hot carrier effects ** Majority of these notes are

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 2 What do digital IC designers need to know? 5 EE4 EECS4 6 3 0< V GS - V T < V DS Pinch-off 7 For (V GS V T )

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 G 351 lectronics Sprin 2017 Review Topics for xa #1 Please review the xa Policies section of the xas pae at the course web site. Please especially note the followin: 1. You will be allowed to use a non-wireless

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn ) The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max = - φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

Lecture 18. Common Source Stage

Lecture 18. Common Source Stage ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

Section J8b: FET Low Frequency Response

Section J8b: FET Low Frequency Response ection J8b: FET ow Frequency epone In thi ection of our tudie, we re o to reiit the baic FET aplifier confiuration but with an additional twit The baic confiuration are the ae a we etiated ection J6 of

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

EECS 105: FALL 06 FINAL

EECS 105: FALL 06 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design EE 435 Lecture 13 ascaded Amplifiers -- Two-Stae Op Amp Desin Review from Last Time Routh-Hurwitz Stability riteria: A third-order polynomial s 3 +a 2 s 2 +a 1 s+a 0 has all poles in the LHP iff all coefficients

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

N-Channel Lateral DMOS FETs

N-Channel Lateral DMOS FETs N-Channel Lateral DMOS FETs (Available Only In Extended Hi-Rel Flow) SDDE-/DE- Part Number V (BR)DS Min (V) V GS(th) Max (V) r DS(on) Max ( ) C rss Max (pf) t ON Max (ns) SDDE-. @ V GS = V. SDDE-. @ V

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

Differential Amplifiers (Ch. 10)

Differential Amplifiers (Ch. 10) Differential Amplifiers (h. 0) 김영석 충북대학교전자정보대학 0.9. Email: kimys@cbu.ac.kr 0- ontents 0. General onsiderations 0. Bipolar Differential Pair 0.3 MOS Differential Pair 0.4 ascode Differential Amplifiers

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2012

ECEN474: (Analog) VLSI Circuit Design Fall 2012 EEN474: (Aalo) VS ircuit Desi Fall 0 ecture 3: Three urret Mirror OTA Sa Palero Aalo & Mixed-Sial eter Texas A&M Uiersity Aouceets & Aeda H4 due edesday 0/3 Exa Friday / Siple OTA Reiew Three urret Mirror

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D 6.012 - Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter asics - Outline Announcements Handout - Lecture Outline and Summary The MOSFET alpha factor - use definition in lecture,

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 0: Ampliier requency response Pro. Manar Mohaisen Department o EEC Engineering Review o the Precedent Lecture Reviewed o the JFET and MOSFET Explained and analyzed

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

EE382M-14 CMOS Analog Integrated Circuit Design

EE382M-14 CMOS Analog Integrated Circuit Design EE382M-14 CMOS Analog Integrated Circuit Design Lecture 3, MOS Capacitances, Passive Components, and Layout of Analog Integrated Circuits MOS Capacitances Type of MOS transistor capacitors Depletion capacitance

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information