Design of CMOS Analog Integrated Circuits. Basic Building Block

Size: px
Start display at page:

Download "Design of CMOS Analog Integrated Circuits. Basic Building Block"

Transcription

1 Desin of CMOS Analo Inteated Cicuits Fanco Malobeti Basic Buildin Block F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block

2 INERTER WITH ACTIE LOAD The simplest fom of ain stae, the DC ain is ien by the slope of the cue F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/

3 Small sinal analysis: C C s + C s,o C C d + C d,o C 3 C db + C db + C d + C d,o + C L At low fequency: A out in + ds m ds Since: m µ C ox W L I D ds λi D F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 3

4 It esults: A µ I D C ox ( λ + λ ) n W L p The DC ain inceases as the squae oot of the bias cuent is deceased. This holds until the deices ente the subtheshold eion. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 4

5 At hih fequency: Mille s theoem is applied to C The output total capacitance is C + C 3 The output esistance is /( ds + ds ) The tansfe function has one pole ω p ds C + + C ds 3 ( λ + λ ) n C p + C I 3 D The unity ain fequency is: f T ω π p A m ( 0) ID π C + C 3 π µ Cox C + C W L 3 It inceases as the squae oot of the bias cuent inceases Due to Mille s theoem the input capacitance becomes: C in C + C ( - A ) if A >> it can become sinificant to the stae diin it. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 5

6 Example Simulate an inete with actie load ( DD 5 ) as the followin fiue with BSIM 3 Models. Find the DC ain and unity ain fequency. Obsee that the achieed ain is about 47 db; the unity ain fequency is faily ood, bein aound 500 MHz and the phase main is about 87 deees. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 6

7 CASCODE The cascode ain stae is used to attenuate the Mille effect on node. Bias oltae such to keep M in the satuation eion B > sat, + GS sat, + Th,n + sat, "" Th,n + µ n C I ox W L + µ n C I ox W L F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 7

8 Small sinal analysis: C C s + C s,o C C d + C d,o C 4 C s + C s,o + C db + C sb C 3 C d + C d,o + C d3 + C d3,o + C db + C db3 + C L Fo low fequency, nelectin ds and ds : m in - m - ds3 0 Hence: A 0 in m ds3 A in m m The Mille effect is sinificantly educed if m m F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 8

9 At hih fequency: The cicuit has two nodes: the output and node. The capacitance at the output is C 3 The output impedance is / ds3 (nelectin the impedance at the dain of M ) The capacitance at the node is (C + C 4 ) The impedance at the node is / m The pole associated to the output node is: f p,out π τ out π ds3 C 3 The pole associated to the node is: f p, π τ π m m / ζ ( C + C4 ) + mc Whee ζ ( + ds3 / ds ) F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 9

10 Since m >> ds, f p,out is dominant. The ain-bandwidth poduct is: f T f p,dom A π C m 3 If a ood phase main is needed, it must be: C m 3 < m / ζ ( C + C4 ) + mc This conditiin can be fulfilled by inceasin C L. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 0

11 Impedance at the dain of M: ix ix + ms x + s ds ds i x ds D i x x ds + ds + m ds ds m ds F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/

12 Impedance at the node, : x R a i x + ds ( i ) x m x s m + ds3 ds ζ m F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/

13 Tansconductance ain stae CASCODE WITH CASCODE LOAD The ain is inceased by inceasin m o out. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 3

14 In the impoed esion the tansconductance of M is inceased by the facto ( I + I ) M 4 I M 4 M 5 B and B must keep M and M 4 out the tiode eion B > sat, + GS B < DD - sat,4 - GS3 The fiue plots the folded stuctue useful if we need to aise the oltae souce of M F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 4

15 Small sinal analysis: The output impedance is (conentional esion): out ( )( ) ds ds m m ds ds + ds4 ds4 m3 m3 ds3 ds3 [fo the impoed and folded esion ds must be eplaced with ( ds // ds5 )] The DC ain is: A m ( )( ) ds ds m m ds ds + ds 4 ds 4 m3 m3 ds3 ds3 ( ) m ds The cicuit has thee nodes: The output node The souce of M The souce of M 3 F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 5

16 The tansfe function will hae thee poles. The dominant one is the output pole f p,out π out C out f π C f 3 π C 3 3 C out, C, C 3 capacitances incident on nodes,, 3. At low fequency: out ( )( ) ds ds m m ds ds + ds4 ds4 m3 m3 ds3 ds3 + m3 ds3 ds4 ds m ds + m ds ds 3 ds4 m3 ds3 >> out, 3 F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 6

17 At hih fequency: m 3 m3 Output swin: The output swin is limited by the conditions fo which one of the tansistos of the stae is bouht out of satuation out max B + GS3 sat3 out min B + GS sat B and B must keep M, M4, and M5 out of the tiode eion. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 7

18 Example Simulate the folded cascode amplifie, shown in the followin fiue, with DD 3.5. Use the models BSIM 3 to find the ain and the phase fom input to output and fom input to node. We obsee that the ain and the phase plots of the output show a 0 db oll-off with a ood phase main (60 deees). The low fequency ain is 77 db and the unity ain fequency is aound 80 MHz. The behaio of the ain fom the input to node is inteestin: aboe the dominant pole, it holds 4 db, just db moe than the expected alue m / m. At low fequency climbs to 34 db. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 8

19 DIFFERENTIAL STAGE M, M in satuation with (W/L) (W/L) I I µ C W ( ) ox GS Th L µ C W ( ) ox GS Th L assume: GS GS0 + in ; GS GS0 in F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 9

20 The output aiable is the diffeential cuent: I I W ( ) I µ Cox in GS0 Th L since the bias cuent can be expessed as: I SS I + I µ C ox W L ( ) GS0 Th it esults: I in µ C ox W L I SS at small sinal: i in m with a common mode sinal: i CM m + i CMMR i CM d m CM i in i m i F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 0

21 Example eify equation I µ C (W/L) 00 µm and Iss 00 µa. in ox W L I SS. Conside an n-channel diffeential pai usin The tansconductance tansfe function is faily linea oe a wide ane of input sinal. It stats to satuate only when the input sinal appoaches the oedie oltae of the diffeential pai (75 m). F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/

22 Used as buffe o as DC-leel shifte SOURCE FOLLOWER at low fequency: ( + ) + 0 ds ds out ds out m s hence: A out in m + ds m + ds + mb F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/

23 If m >> ds + ds + mb then A at hih fequency: A ( S) C C + C out whee: C C + C + C + C + C C C + C L d d o db sb s so The output impedance is obtained by applyin a test souce x at the output node. Hence: x ( ds + ds + mb m ) x i + R out ds + ds + mb + m m The output is not symmetical. Fo n-channel input deice out max DD GS out min sat F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 3

24 Example Simulate the lae sinal behaio and deie the dc small sinal oltae ain. I B 0. ma and DD 3.3. The output oltae, pactically, follows the input shifted by GS. Howee, due to the body effect, the alue of GS is not constant; it ises fom 73 m to.3. Theefoe, the inputoutput chaacteistic is not but 0.8. The fiue shows also the dc ain: its alue anes fom 0.74 to 0.86 quite well match as theoetical esults. F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 4

25 IMPROED OUTPUT STAGES Pefomances impoed by the use of neatie feedback. x ( m + ds ) x + m4 mds 3x i R out m ( + m4ds3 ) + ds F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 5

26 Class AB push-pull: GS3 + GS4 Th,n + Th,p + I 5 µ n L 3 3 W C ox + µ p L 4 4 W C ox let: With R out 0: W L k W L W L W k 3 L 4 GS GS3; GS GS4; I I ki5; The output conductance is: + out m m With esistie load, the dop oltae acoss the output esistance detemines (oin out cuent): GS > GS3 ; GS < GS4 ; I I I out F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 6

27 Fo a ien load I --> 0; the output conductance becomes out m In eneal an output stae has the followin equialent cicuit: ( + α I + α I...) Rout Rout0 out out + It detemines hamonic distotion F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 7

28 Class AB push-pull with ain stae if it is eified the condition: m4 + m5 << ds6 F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 8

29 oltae diide Analo cicuits nomally hae only two dc oltae supplies In ode to obtain dc bias oltaes, oltae diides can be used Resistie o capacitie diides can be used, howee they ae complex o silicon aea consumin MOS in the diode confiuation can be used The tansistos ae in satuation k W L ( ) ( ) DS Th k W L + DS DS DD DS Th F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 9

30 DS α α + α DD + α DS α α + α Th α W L ; α W L It esults a oltae diision of DD plus an offset. If a sinal (usually undesied) is supeposed to DD, the small sinal equialent cicuit must be consideed. C Cs + Cdb + Csb ; C Cs At low fequency (assumin m >> ds and m >> ds ) F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 30

31 At hih fequency dd m mb + m m m + + m m mb m DD C C + C It esults an injectin of the noise fom the powe supply ( DD ) F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 3

32 Leel Shifte Essential fo NMOS cicuits, useful fo CMOS cicuits Hih-impedance leel shift Low-impedance, o battey, leel shift Hih Input Impedances: F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 3

33 L GS I + Th o + kw Th Body effect nelected Theshold oltae aiation effect ( Th +50 m) Input and output swin limitation Leel shift theshold-independent: L L ( I I ) I k W W (assumin M in satuation and nelectin λ) usually < Th F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 33

34 Low Impedances: It behaes like a oltae souce a) b) L I + kw DS Th GS + GS Th + Th + L kw I + L kw I a) Simple leel shifte b) Shunt feedback leel shifte a) out / m b) affected by twice oltae theshold aiation F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block 3/ 34

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

EECE488: Analog CMOS Integrated Circuit Design. 3. Single-Stage Amplifiers

EECE488: Analog CMOS Integrated Circuit Design. 3. Single-Stage Amplifiers EECE488: Analo CM Inteated Cicuit esin 3. inle-tae Aplifies hahia Miabbasi epatent of Electical and Copute Enineein Uniesity of Bitish Colubia shahia@ece.ubc.ca Technical contibutions of Peda Lajeadi in

More information

Basic Building Blocks for Analog Design

Basic Building Blocks for Analog Design ICTP Micopocesso Laboatoy Second Cental Aeican eional Couse on Adanced VLSI Des Techniques Beneéita Uniesidad Autónoa de Puebla, Puebla, Mexico 9 Noebe 7 Decebe 004 Basic Build Blocks fo Analo Des Gioanni

More information

rectangle, triangle, saw tooth, pulse, etc.

rectangle, triangle, saw tooth, pulse, etc. Nonsinusoidal Signal Geneatos ectangle, tiangle, saw tooth, pulse, etc. Multiibato cicuits: astable no stable states (two quasi-stable states; it emains in each state fo pedetemined times) monostable one

More information

KIRCHHOFF CURRENT LAW

KIRCHHOFF CURRENT LAW KICHHOFF CUENT LAW ONE OF THE FUNDAMENTAL CONSEATION PINCIPLES IN ELECTICAL ENGINEEING CHAGE CANNOT BE CEATED NO DESTOYED NODES, BANCHES, LOOPS A NODE CONNECTS SEEAL COMPONENTS. BUT IT DOES NOT HOLD ANY

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electonic icuits BJT eview Sections in hapte 5 & 6 in Textbook A. Kuge BJT eview, Page- 1 npn Output Family of uves A. Kuge BJT eview, Page- 2 npn BJT dc Equivalent evese biased Fowad biased i B

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, Actuating Sande Stuij (s.stuij@tue.nl) Depatment of Electical Engineeing Electonic Systems SENSING TEMPEATUE, SELF-HEATING (Chapte.,., 5.) 3 Engine coolant tempeatue senso https://www.youtube.com/watch?=q5637fsca

More information

Lecture 28 Field-Effect Transistors

Lecture 28 Field-Effect Transistors Lecture 8 Field-Effect Transistors Field-Effect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use small-signal equialent

More information

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C UNVERSTY OF CALFORNA Collee of Enineerin Department of Electrical Enineerin and Computer Sciences E. Alon Homework #3 Solutions EECS 40 P. Nuzzo Use the EECS40 90nm CMOS process in all home works and projects

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Dual N-Channel 20 V (D-S) MOSFET

Dual N-Channel 20 V (D-S) MOSFET Si988DH Dual NChannel V (DS) MOSFET PRODUCT SUMMARY V DS (V) R DS(on) (Ω) I D (A) a Q g (Typ.). at V GS =. V. a.6 nc 8 at V GS =. V. a. at V GS =.8 V. a SOT6 SC7 (6LEADS) FEATURES Halogenfee Accoding to

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Contol Systems Fequency Domain Analysis The fequency esponse of a system is defined as the steady-state esponse of the system to a sinusoidal (hamonic) input. Fo linea systems, the esulting steady-state

More information

Experiment I Voltage Variation and Control

Experiment I Voltage Variation and Control ELE303 Electicity Netwoks Expeiment I oltage aiation and ontol Objective To demonstate that the voltage diffeence between the sending end of a tansmission line and the load o eceiving end depends mainly

More information

Noise Estimation Due To Signal Activity For Capacitively Coupled CMOS Logic Gates

Noise Estimation Due To Signal Activity For Capacitively Coupled CMOS Logic Gates Noise Estimation Due To Sinal Activit Fo Capacitivel Coupled CMOS Loic Gates Kevin T Tan and Eb G Fiedman Depatment of Electical and Compute Enineein Univesit of Rocheste Rocheste, New Yok 14627-021 Abstact

More information

Analysis and Design of Analog Integrated Circuits Lecture 7. Differential Amplifiers

Analysis and Design of Analog Integrated Circuits Lecture 7. Differential Amplifiers Analysis and Desin of Analo Interated Circuits ecture 7 Differential Amplifiers Michael H. Perrott February 1, 01 Copyriht 01 by Michael H. Perrott All rihts reserved. Review Proposed Thevenin CMOS Transistor

More information

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES EKT 356 MICROWAVE COMMUNICATIONS CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and

More information

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES EKT 345 MICROWAVE ENGINEERING CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and close

More information

Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations

Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations LETTE IEICE Electonics Expess, Vol.10, No.11, 1 9 Powe efficiency and optimum load fomulas on F ectifies featuing flow-angle equations Takashi Ohia a) Toyohashi Univesity of Technology, 1 1 Hibaigaoka,

More information

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design EE 435 Lecture 13 ascaded Amplifiers -- Two-Stae Op Amp Desin Review from Last Time Routh-Hurwitz Stability riteria: A third-order polynomial s 3 +a 2 s 2 +a 1 s+a 0 has all poles in the LHP iff all coefficients

More information

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( ) EE-Conventional Pape-I IES-013 www.gatefoum.com Conventional Pape-I-013 1. (a) Eplain the concept of gadient. Detemine the gadient of the given field: V ρzsin φ+ z cos φ+ρ What is polaization? In a dielectic

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design

Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design Analo C Desin - Academic year 05/06 - Session 3 04/0/5 Polytech Montellier MEA4 M EEA Systèmes Microélectroniques Analo C Desin From transistor in to current sources Pascal Nouet 05/06 - nouet@lirmm.fr

More information

CHAPTER 3 DIODES. NTUEE Electronics L. H. Lu 3-1

CHAPTER 3 DIODES. NTUEE Electronics L. H. Lu 3-1 CHAPER 3 OE Chapte Outline 3.1 he eal ioe 3.2 eminal Chaacteistics of Junction ioes 3.3 Moeling the ioe Fowa Chaacteistics 3.4 Opeation in the Reese Beakown Region ene ioes 3.5 Rectifie Cicuits 3.6 Limiting

More information

Lecture 2 Date:

Lecture 2 Date: Lectue 2 Date: 5.1.217 Definition of Some TL Paametes Examples of Tansmission Lines Tansmission Lines (contd.) Fo a lossless tansmission line the second ode diffeential equation fo phasos ae: LC 2 d I

More information

Contact impedance of grounded and capacitive electrodes

Contact impedance of grounded and capacitive electrodes Abstact Contact impedance of gounded and capacitive electodes Andeas Hödt Institut fü Geophysik und extateestische Physik, TU Baunschweig The contact impedance of electodes detemines how much cuent can

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

A DETAILED STUDY OF THE HIGH ORDER SERIAL RESONANT INVERTER FOR INDUCTION HEATING

A DETAILED STUDY OF THE HIGH ORDER SERIAL RESONANT INVERTER FOR INDUCTION HEATING ELECTRONICS 005 1 3 Septembe, Sozopol, BULGARIA A DETAILED STUDY OF THE HIGH ORDER SERIAL RESONANT INVERTER FOR INDUCTION HEATING Evgeniy Ivanov Popov, Liliya Ivanova Pindeva, Elisaveta Histova Mileva,

More information

RESONANCE SERIES RESONANT CIRCUITS. 5/2007 Enzo Paterno 1

RESONANCE SERIES RESONANT CIRCUITS. 5/2007 Enzo Paterno 1 ESONANCE SEIES ESONANT CICUITS 5/007 Enzo Pateno ESONANT CICUITS A vey impotant cicuit, used in a wide vaiety o electical and electonic systems today (i.e. adio & television tunes), is called the esonant

More information

FARADAY'S LAW dt

FARADAY'S LAW dt FAADAY'S LAW 31.1 Faaday's Law of Induction In the peious chapte we leaned that electic cuent poduces agnetic field. Afte this ipotant discoey, scientists wondeed: if electic cuent poduces agnetic field,

More information

EE 435. Lecture 18. Two-Stage Op Amp with LHP Zero Loop Gain - Breaking the Loop

EE 435. Lecture 18. Two-Stage Op Amp with LHP Zero Loop Gain - Breaking the Loop EE 435 Lecture 8 Two-Stae Op Amp with LHP Zero Loop Gain - Breakin the Loop Review from last lecture Nyquist and Gain-Phase Plots Nyquist and Gain-Phase Plots convey identical information but ain-phase

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi Execises f Cascde plifies ECE 0, Fall 0, F. Najabadi F. Najabadi, ECE0, Fall 0 /6 Execise : Cpute assue and Eey Cascde stae inceases by uble Cascde Execise : Cpute all indicated s, s, and i s. ssue tansists

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129 Current source Ideal goal Small signal model: Open

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors V. Transistors 3.1 III. Bipolar-Junction (BJT) Transistors A bipolar junction transistor is formed by joining three sections of semiconductors with alternatiely different dopings. The middle section (base)

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering High-Frequency Model BJT & MOS B or G r x C f C or D r

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

Systematic Design of Operational Amplifiers

Systematic Design of Operational Amplifiers Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 061 Table of contents Design of Single-stage OTA Design of

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

P-N Junction in equilibrium. Diode. Diode bias. Forward and reverse bias. Diode current-voltage characteristics. Models. Applications.

P-N Junction in equilibrium. Diode. Diode bias. Forward and reverse bias. Diode current-voltage characteristics. Models. Applications. Unit 12: Semiconducto devices. Diode. P-N Junction in equilibium. Diode. Diode bias. Fowad and evese bias. Diode cuent-voltage chaacteistics. Models. Applications. PN junction in equilibium Electons Holes

More information

Lecture 18. Common Source Stage

Lecture 18. Common Source Stage ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

More information

Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere

Solution of a Spherically Symmetric Static Problem of General Relativity for an Elastic Solid Sphere Applied Physics eseach; Vol. 9, No. 6; 7 ISSN 96-969 E-ISSN 96-9647 Published by Canadian Cente of Science and Education Solution of a Spheically Symmetic Static Poblem of Geneal elativity fo an Elastic

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Efficiency Optimization of PMSM Based Drive System

Efficiency Optimization of PMSM Based Drive System 1 IEEE 7th Intenational Powe Electonics and Motion Contol Confeence - ECCE Asia June -, 1, Habin, China Efficiency Optimization of PMSM Based Die System Waleed Hassan and Bingsen Wang Depatment of Electical

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

LC transfer of energy between the driving source and the circuit will be a maximum.

LC transfer of energy between the driving source and the circuit will be a maximum. The Q of oscillatos efeences: L.. Fotney Pinciples of Electonics: Analog and Digital, Hacout Bace Jovanovich 987, Chapte (AC Cicuits) H. J. Pain The Physics of Vibations and Waves, 5 th edition, Wiley

More information

( ) v v v / 2. vapparent GHz

( ) v v v / 2. vapparent GHz JEE MINS 7 SOLUTIONS PHYSICS. n obsee is moing with half the speed of light towads a stationay micowae souce emitting waes at fequency GHz. What isthe fequency of hte micowae measued by the obsee? (a).

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

( ) [ ] 1 v. ( ) E v. ( ) 2 and, thus, Equation [ IX-1 ] simplifies to. ( ) = 3 4 ε χ 3. ( ) + k 0 2 ε 0 ( ) = 0 [ IX-4 ]

( ) [ ] 1 v. ( ) E v. ( ) 2 and, thus, Equation [ IX-1 ] simplifies to. ( ) = 3 4 ε χ 3. ( ) + k 0 2 ε 0 ( ) = 0 [ IX-4 ] ON CLASSICAL ELECTROMAGNETIC FIELDS PAGE 75 IX. OPTICAL PULSE PROPAGATION THE ELECTROMAGNETIC N ONLINEAR S CHRÖDINGER EQUATION : We begin ou discussion of optical pulse popagation 35 with a deiation of

More information

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier.

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier. Whites, EE 320 Lecture 36 Pae 1 of 10 Lecture 36: MOSFET Coon Drain (Source Follower) Aplifier. The third, and last, discrete-for MOSFET aplifier we ll consider in this course is the coon drain aplifier.

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Senss and Actuats Intductin t senss Sande Stuij (s.stuij@tue.nl) Depatment f Electical Engineeing Electnic Systems AMPLIFIES (Chapte 5.) Infmatin pcessing system nncntact sens cntact sens abslute sens

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Polytech Montpellier MEA M2 EEA Systèmes Microélectroniques. Analog IC Design

Polytech Montpellier MEA M2 EEA Systèmes Microélectroniques. Analog IC Design ours I - 03/04 - Séane 6 8/03/04 Polyteh Montpellier ME M EE Systèmes Miroéletroniques nalo I Desin hapter VII OP stability and ompensation Pasal Nouet / 03-04 nouet@lirmm.r http://www.lirmm.r/~nouet/homepae/leture_ressoures.html

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005 Fields and Waves I Sping 005 Homewok 8 Tansmission Lines Due: 3 May 005. Multiple Choice (6) a) The SWR (standing wave atio): a) is a measue of the match between the souce impedance and line impedance

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

Falls in the realm of a body force. Newton s law of gravitation is:

Falls in the realm of a body force. Newton s law of gravitation is: GRAVITATION Falls in the ealm of a body foce. Newton s law of avitation is: F GMm = Applies to '' masses M, (between thei centes) and m. is =. diectional distance between the two masses Let ˆ, thus F =

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Basic Bridge Circuits

Basic Bridge Circuits AN7 Datafoth Copoation Page of 6 DID YOU KNOW? Samuel Hunte Chistie (784-865) was bon in London the son of James Chistie, who founded Chistie's Fine At Auctionees. Samuel studied mathematics at Tinity

More information

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits Phys-7 ectue 8 Mutual nductance Self-nductance - Cicuits Mutual nductance f we have a constant cuent i in coil, a constant magnetic field is ceated and this poduces a constant magnetic flux in coil. Since

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L6: Common Source Amplifier-1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L - CC A 100

More information

Dynamic Performances of Self-Excited Induction Generator Feeding Different Static Loads

Dynamic Performances of Self-Excited Induction Generator Feeding Different Static Loads SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 3, No. 1, June 2006, 63-76 Dynamic Pefomances of Self-Excited Induction Geneato Feeding Diffeent Static Loads Ali Nesba 1, Rachid Ibtiouen 2, Oma Touhami

More information

Chapter 6 Balanced Incomplete Block Design (BIBD)

Chapter 6 Balanced Incomplete Block Design (BIBD) Chapte 6 Balanced Incomplete Bloc Design (BIBD) The designs lie CRD and RBD ae the complete bloc designs We now discuss the balanced incomplete bloc design (BIBD) and the patially balanced incomplete bloc

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

Chapter 33 Alternating Current

Chapter 33 Alternating Current hapte 33 Altenating uent icuits Most of the electical enegy is poduced by electical geneatos in the fom of sinusoidal altenating cuent. Why do we use the sinusoidal electic potential but neithe the tiangula

More information

Analytical calculation of the power dissipated in the LHC liner. Stefano De Santis - LBNL and Andrea Mostacci - CERN

Analytical calculation of the power dissipated in the LHC liner. Stefano De Santis - LBNL and Andrea Mostacci - CERN Analytical calculation of the powe dissipated in the LHC line Stefano De Santis - LBNL and Andea Mostacci - CERN Contents What is the Modified Bethe s Diffaction Theoy? Some inteesting consequences of

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016 EEN7/70: (nal) VS icuit Desin Spin 06 ectue 0: Siple OT Sa Pale nal & Mixed-Sinal ente Texas &M Uniesity nnunceents H is due tday H is due Ma 0 Exa is n p 9:0-0:5PM (0 exta inutes) lsed bk w/ ne standad

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E. Lecture 070 Stage Frequency esponse I (/0/0) Page 070 LECTUE 070 SINGLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 488504) Objective The objective of this presentation is:.) Illustrate the frequency analysis

More information

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators IsLab Analog Integrated ircuit Design OMP-21 MOS omparators כ Kyungpook National University IsLab Analog Integrated ircuit Design OMP-1 omparators A comparator is used to detect whether a signal is greater

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Open-loop Gain: g m r o

More information

Do Managers Do Good With Other People s Money? Online Appendix

Do Managers Do Good With Other People s Money? Online Appendix Do Manages Do Good With Othe People s Money? Online Appendix Ing-Haw Cheng Haison Hong Kelly Shue Abstact This is the Online Appendix fo Cheng, Hong and Shue 2013) containing details of the model. Datmouth

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5 ECE 6345 Sping 15 Pof. David R. Jackson ECE Dept. Notes 5 1 Oveview This set of notes discusses impoved models of the pobe inductance of a coaxially-fed patch (accuate fo thicke substates). A paallel-plate

More information

Thomas Whitham Sixth Form Mechanics in Mathematics. Rectilinear Motion Dynamics of a particle Projectiles Vectors Circular motion

Thomas Whitham Sixth Form Mechanics in Mathematics. Rectilinear Motion Dynamics of a particle Projectiles Vectors Circular motion Thomas Whitham Sith om Mechanics in Mathematics Unit M Rectilinea Motion Dynamics of a paticle Pojectiles Vectos Cicula motion . Rectilinea Motion omation and solution of simple diffeential equations in

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

EE 435 Lecture 13. Two-Stage Op Amp Design

EE 435 Lecture 13. Two-Stage Op Amp Design EE 435 Lecture 13 Two-Stae Op Amp Desin Review ascades of three or more amplifier staes are seldom used to build a feedback amplifier because of challenes associated with compensatin the amplifier for

More information

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS Pogess In Electomagnetics Reseach, PIER 73, 93 105, 2007 COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS T.-X. Song, Y.-H. Liu, and J.-M. Xiong School of Mechanical Engineeing

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

EECE488: Analog CMOS Integrated Circuit Design. Set 2: Background

EECE488: Analog CMOS Integrated Circuit Design. Set 2: Background EECE488: Analo CMOS Interated Circuit esin Set : Backround Shahriar Mirabbasi epartent of Electrical and Coputer Enineerin Uniersity of British Colubia shahriar@ece.ubc.ca Technical contributions of Pedra

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

UNIT # 08 CURRENT ELECTRICITY

UNIT # 08 CURRENT ELECTRICITY XS UNT # 8 UNT LTTY. j uent density n hage density j nev d v d j v d n e, n n n v d n n : v n n d. j nev d n j n e 9. Node-6\:\ata\\Kota\J-dvanced\SMP\Phy\Solution\Unit-7 & 8\-uent lecticity.p65 d nev

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks Intenet Appendix fo A Bayesian Appoach to Real Options: The Case of Distinguishing Between Tempoay and Pemanent Shocks Steven R. Genadie Gaduate School of Business, Stanfod Univesity Andey Malenko Gaduate

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information