A Small-Signal Analysis of a BJT

Size: px
Start display at page:

Download "A Small-Signal Analysis of a BJT"

Transcription

1 3/28/2011 A mall ignal Analysis of a BJ lecture 1/12 A mall-ignal Analysis of a BJ he collector current i of a BJ is related to its base-emitter oltage as: i i e Jim tiles he Uni. of Kansas Dept. of EE

2 3/28/2011 A mall ignal Analysis of a BJ lecture 2/12 One messy result ay the current and oltage hae both D.. (, ) and small-signal ( i, ) components: c and i ( t) + i ( t) c ( t) + ( t) herefore, the total collector current is: i ( t) e + i ( t) e c ( t) + ( t) Jim tiles he Uni. of Kansas Dept. of EE

3 3/28/2011 A mall ignal Analysis of a BJ lecture 3/12 Apply the mall-ignal Approximation Q: Yikes! he exponential term is ery messy. s there some way to approximate it? A: Yes! he collector current i c is a function of base emitter oltage. Let s perform a small-signal analysis to determine an approximate relationship tween i c and. Note that the alue of ( t) + ( t) is always ery close to the D.. oltage for all time t (since ( t ) is ery small). We therefore will use this D.. oltage as the ealuation point (i.e., bias point) for our small-signal analysis. Jim tiles he Uni. of Kansas Dept. of EE

4 3/28/2011 A mall ignal Analysis of a BJ lecture 4/12 How fast it grows! We first determine the alue of the collector current i when the base emitter oltage is equal to the D alue : i s e e s Of course, the result is the D.. collector current. We now determine the change in collector current due to a change in baseemitter oltage (i.e., a first deriatie), ealuated at the D.. oltage : di d ( exp ) d d e e A Jim tiles he Uni. of Kansas Dept. of EE

5 3/28/2011 A mall ignal Analysis of a BJ lecture 5/12 A simple approximation hus, when the base-emitter oltage is equal to the D.. bias oltage, the collector current i will equal the D.. bias current. Likewise, this collector current will increase (decrease) by an amount of ( ) e ma for eery 1m increase (decrease) in. hus, we can easily approximate the collector current when the base-emitter oltage is equal to alues such as: Respectiely, the answers are: + 1m + 3m 2m 05m. i + ( ) e (1) ma i + ( ) e (3) ma i + ( ) e (-2) ma i + ( ) e (-0.5) ma where we hae assumed that scale current is expressed in ma, and thermal oltage is expressed in m. Jim tiles he Uni. of Kansas Dept. of EE

6 3/28/2011 A mall ignal Analysis of a BJ lecture 6/12 he small signal approximation Recall that the small-signal oltage ( t ) represents a small change in ( t ) from its nominal (i.e., bias) oltage. For example, we might find that the alue of ( t ) at four different times t are: ( t ) 1 m 1 ( t ) 3m ( t ) 2 m ( t ) 0. 5 m hus, we can approximate the collector current using the small-signal approximation as: ( ) i ( t) + e ( t) where of course e. his is a ery useful result, as we can now explicitly determine an expression for the small-signal current ic( t )! Jim tiles he Uni. of Kansas Dept. of EE

7 3/28/2011 A mall ignal Analysis of a BJ lecture 7/12 he small-signal collector current Recall i ( t) + i ( t), therefore: c ( ) i ( t) + i ( t) + e ( t) c ubtracting the D.. current from each side, we are left with an expression for the small-signal current ic( t ), in terms of the small-signal oltage ( t ) : ( ) i ( t) e ( t) c We can simplify this expression by noting that e, resulting in: and thus: ( ) e e ic( t) ( t) Jim tiles he Uni. of Kansas Dept. of EE

8 3/28/2011 A mall ignal Analysis of a BJ lecture 8/12 ransconductance: A small signal parameter We define the alue as the transconductance g m : g m A and thus the small-signal equation simply comes: i ( t) g ( t) c m Jim tiles he Uni. of Kansas Dept. of EE

9 3/28/2011 A mall ignal Analysis of a BJ lecture 9/12 How transistors got their name Let s now consider for a moment the transconductance g m. he term is short for transfer conductance: conductance cause its units are amps/olt, and transfer cause it relates the collector current to the oltage from base to emitter the collector oltage is not releant (if in actie mode)! Note we can rewrite the small-signal equation as: ( t) 1 i ( t) g c m he alue (1 g m ) can thus considered as transfer resistance, the alue describing a transfer resistor. ransfer Resistor we can shorten this term to ransistor (this is how these deices were named)! Jim tiles he Uni. of Kansas Dept. of EE

10 3/28/2011 A mall ignal Analysis of a BJ lecture 10/12 We can summarize our results as: ummarizing e D.. Equation i ( t) g ( t) mall-ignal Equation c m i ( t) + g ( t) mall-ignal Approximation m Note that we know hae two expressions for the total (D.. plus small-signal) collector current. he exact expression: i ( t) e + ( t) and the small-signal approximation: i ( t) + g ( t) m Jim tiles he Uni. of Kansas Dept. of EE

11 3/28/2011 A mall ignal Analysis of a BJ lecture 11/12 Accurate oer a small region Let s plot these two expressions and see how they compare: i Exact mall-signal alidity Regions g m t is eident that the small-signal approximation is accurate (it proides nearly the exact alues) only for alues of i near the D. bias alue, and only for alues of near the D. bias alue. he point (, ) is alternately known as the D.. bias point, the transistor operating point, or the Q-point. Jim tiles he Uni. of Kansas Dept. of EE

12 3/28/2011 A mall ignal Analysis of a BJ lecture 12/12 hange the D bias, change the transconductance Note if we change the D.. bias of a transistor circuit, the transistor operating point will change. he small-signal model will likewise change, so that it proides accurate results in the region of this new operating point: i Exact mall-signal alidity Regions g m Jim tiles he Uni. of Kansas Dept. of EE

CHAPTER 13. Solutions for Exercises

CHAPTER 13. Solutions for Exercises HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln

More information

Phase Detectors. Recall that one of the three fundamental elements of a PLL is the phase detector: ref

Phase Detectors. Recall that one of the three fundamental elements of a PLL is the phase detector: ref 10/22/2010 Phase Detectors.doc 1/7 Phase Detectors Recall that one of the three fundamental elements of a PLL is the phase detector: ( t ) + phase detector ( t) = f ( t ) ( t ) ( ) ( t ) The phase detector

More information

Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

Parameters Identification of Equivalent Circuit Diagrams for Li-Ion Batteries

Parameters Identification of Equivalent Circuit Diagrams for Li-Ion Batteries Parameters Identification of Equialent Circuit Diagrams for Li-Ion eries Ahmad ahmoun, Helmuth Biechl Uniersity of Applied ciences Kempten Ahmad.ahmoun@stud.fh-empten.de, biechl@fh-empten.de Abstract-eries

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

Section 5.4 BJT Circuits at DC

Section 5.4 BJT Circuits at DC 12/3/2004 section 5_4 JT Circuits at DC 1/1 Section 5.4 JT Circuits at DC Reading Assignment: pp. 421-436 To analyze a JT circuit, we follow the same boring procedure as always: ASSUME, ENFORCE, ANALYZE

More information

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors V. Transistors 3.1 III. Bipolar-Junction (BJT) Transistors A bipolar junction transistor is formed by joining three sections of semiconductors with alternatiely different dopings. The middle section (base)

More information

Key Questions. ECE 340 Lecture 27 : Junction Capacitance 4/6/14. Class Outline: Breakdown Review Junction Capacitance

Key Questions. ECE 340 Lecture 27 : Junction Capacitance 4/6/14. Class Outline: Breakdown Review Junction Capacitance ECE 340 Lecture 27 : Junction Capacitance Breakdown Reiew Class Outline: Things you should know when you leae Key Questions What types of capacitance are prealent in p-n junctions? Which is important in

More information

Matched, Lossless, Reciprocal Devices

Matched, Lossless, Reciprocal Devices /6/009 Matched reciprocal lossless present / Matched, Lossless, Reciprocal Devices As we discussed earlier, a device can be lossless or reciprocal. In addition, we can likewise classify it as being matched.

More information

Matched, Lossless, Reciprocal Devices

Matched, Lossless, Reciprocal Devices /3/7 Matched reciprocal lossless 73 /9 Matched, Lossless, Reciprocal Devices As we discussed earlier, a device can be lossless or reciprocal. In addition, we can likewise classify it as being matched.

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

Lecture 28 Field-Effect Transistors

Lecture 28 Field-Effect Transistors Lecture 8 Field-Effect Transistors Field-Effect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use small-signal equialent

More information

Magnetic Fields Part 3: Electromagnetic Induction

Magnetic Fields Part 3: Electromagnetic Induction Magnetic Fields Part 3: Electromagnetic Induction Last modified: 15/12/2017 Contents Links Electromagnetic Induction Induced EMF Induced Current Induction & Magnetic Flux Magnetic Flux Change in Flux Faraday

More information

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET Lecture #23 arning for H Assignments and Exams: Make sure your writing is legible!! OUTLINE MOFET I s. V characteristic Circuit models for the MOFET resistie switch model small-signal model Reference Reading

More information

ECEN 4827/5827 Supplementary Notes. 1. Review: Active Devices in Microelectronic Circuits

ECEN 4827/5827 Supplementary Notes. 1. Review: Active Devices in Microelectronic Circuits ECEN 4827/5827 Supplementary Notes 1. eiew: Actie Deices in Microelectronic Circuits c 2005 Dragan Maksimoić Department of Electrical and Computer Engineering Uniersity of Colorado, Boulder The purpose

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D)

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) Most of the content is from the textbook: Electronic devices and circuit theory, Robert

More information

Midterm 1 Announcements

Midterm 1 Announcements Midterm Announcements eiew session: 5-8pm TONIGHT 77 Cory Midterm : :30-pm on Tuesday, July Dwelle 45. Material coered HW-3 Attend only your second lab slot this wee EE40 Summer 005: Lecture 9 Instructor:

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C1 Introduction. Fundamentals.

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C1 Introduction. Fundamentals. ELETRONI DEVIES Assist. prof. Laura-Nicoleta IVANIU, Ph.D. Introduction.. Introduction.. ontents ourse presentation Desired outcome. Ealuation. Laura-Nicoleta IVANIU, Electronic deices 2 Introduction..

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

More information

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP) emp. Indep. Biasing (7/14/00) Page 1 4.5 (A4.3) - EMPERAURE INDEPENDEN BIASING (BANDGAP) INRODUCION Objective he objective of this presentation is: 1.) Introduce the concept of a bandgap reference 2.)

More information

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS EE 2201 PRELAB 5B BIPOLAR JUNTION TRANSISTOR (BJT) FUNDAMENTALS P1. β Meter The circuit of Figure P51 can be used to measure the current gain β of the BJT. Determine values for resistors R1 and R2 to meet

More information

Textbook title: Circuits, Devices, Networks and Microelectronics

Textbook title: Circuits, Devices, Networks and Microelectronics Circuits, Deices, Networks and Microelectronics Textbook title: Circuits, Deices, Networks and Microelectronics CHAPTE 5. THE IDEAL OPAMP 5. THE OPEATIONAL AMPLIFIE, CONTEXT and QUALIFICATION The operational

More information

Lecture 15: Resonant Tunneling Diode. Operation Bi-stable switch Oscillator Fundamental Physics Application Example

Lecture 15: Resonant Tunneling Diode. Operation Bi-stable switch Oscillator Fundamental Physics Application Example Lecture 5: Resonant Tunneling Diode Oeration Bi-stable switch Oscillator Fundamental Physics Alication Examle --8 Lecture 5, High Seed Deices Resonant Tunneling Diode An RTD consists of two large bandga

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 19 BJT Base Resistance and Small Signal Modelling Lecture Outline Lecture 17 derived static (dc) injection model to predict dc currents from terminal voltages This

More information

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208   Department of EECE lectronic ircuits Transistor Bias ircuits Manar Mohaisen Office: F208 mail: manar.subhi@kut.ac.kr Department of Review of the Precedent Lecture Bipolar Junction Transistor (BJT) BJT haracteristics and

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

The Operational Amplifier

The Operational Amplifier The Operational Amplifier The operational amplifier i a building block of modern electronic intrumentation. Therefore, matery of operational amplifier fundamental i paramount to any practical application

More information

Transmission lines using a distributed equivalent circuit

Transmission lines using a distributed equivalent circuit Cambridge Uniersity Press 978-1-107-02600-1 - Transmission Lines Equialent Circuits, Electromagnetic Theory, and Photons Part 1 Transmission lines using a distributed equialent circuit in this web serice

More information

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline Lecture 17 The Bipolar Junction Transistor (II) Regimes of Operation Outline Regimes of operation Large-signal equivalent circuit model Output characteristics Reading Assignment: Howe and Sodini; Chapter

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS CHAPTE 4 SIGNA GENEATS AN WAEFM-SHAPING CICUITS Chapter utline 4. Baic Principle o Sinuoidal cillator 4. p Amp-C cillator 4. C and Crytal cillator 4.4 Bitable Multiibrator 4.5 Generation o Square and Triangular

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

Chapter 8 Problems Page 1 of 6 11/1/2007

Chapter 8 Problems Page 1 of 6 11/1/2007 Chapter 8 Problems Page of 6 //2007 8. he decarboxylation of a beta-eto acid alyzed by an enzyme can be measured by the rate of formation of CO 2. From the initial rates in the table determine the ichaelis-

More information

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and Self-Heating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor

More information

Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis Chapter 4: Methods of Analysis When SCT are not applicable, it s because the circuit is neither in series or parallel. There exist extremely powerful mathematical methods that use KVL & KCL as its basis

More information

Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

More information

Chapter 6: Operational Amplifiers

Chapter 6: Operational Amplifiers Chapter 6: Operational Amplifiers Circuit symbol and nomenclature: An op amp is a circuit element that behaes as a VCVS: The controlling oltage is in = and the controlled oltage is such that 5 5 A where

More information

Op Amp Packaging. Op Amps. JFET Application Current Source

Op Amp Packaging. Op Amps. JFET Application Current Source JET pplication Current Source Op mps, 5 Imperfections Op amp applications Household application: battery charger (car, laptop, mp players) Differential amplifier current source amp waeform generator High

More information

Hiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section

Hiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section Hiro Shimoyama 1 harge of an Electron Name ID Signature Partners Date Section Exercise caution when you turn on the power supply. If the circuit is implemented wrongly, some of elements will be burned.

More information

The Common-Emitter Amplifier

The Common-Emitter Amplifier c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The Common-Emitter Amplifier Basic Circuit Fig. shows the circuit diagram

More information

Effect of stray capacitances on single electron tunneling in a turnstile

Effect of stray capacitances on single electron tunneling in a turnstile Effect of stray capacitances on single electron tunneling in a turnstile Young Bong Kang Department of Physics, Cheju National Uniersity, Cheju 690-756, Korea G. Y. Hu and R. F. O Connell a) Department

More information

SUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2)

SUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2) SUPPLEMENTARY MATERIAL Authors: Alan A. Stocker () and Eero P. Simoncelli () Affiliations: () Dept. of Psychology, Uniersity of Pennsylania 34 Walnut Street 33C Philadelphia, PA 94-68 U.S.A. () Howard

More information

LECTURE 2: CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS

LECTURE 2: CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS LECTURE : CROSS PRODUCTS, MULTILINEARITY, AND AREAS OF PARALLELOGRAMS MA1111: LINEAR ALGEBRA I, MICHAELMAS 016 1. Finishing up dot products Last time we stated the following theorem, for which I owe you

More information

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS , A, B, C Designed for Complementary Use with the BD26 Series W at 25 C Case Temperature 0 A Continuous Collector Current 5 A Peak Collector Current Customer-Specified Selections Available B C E SOT-9

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

Chapter 4: Techniques of Circuit Analysis

Chapter 4: Techniques of Circuit Analysis Chapter 4: Techniques of Circuit Analysis This chapter gies us many useful tools for soling and simplifying circuits. We saw a few simple tools in the last chapter (reduction of circuits ia series and

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

LESSON 4: INTEGRATION BY PARTS (I) MATH FALL 2018

LESSON 4: INTEGRATION BY PARTS (I) MATH FALL 2018 LESSON 4: INTEGRATION BY PARTS (I) MATH 6 FALL 8 ELLEN WELD. Integration by Parts We introduce another method for ealuating integrals called integration by parts. The key is the following : () u d = u

More information

Example: Amplifier Distortion

Example: Amplifier Distortion 4/6/2011 Example Amplifier Ditortion 1/9 Example: Amplifier Ditortion Recall thi circuit from a previou handout: 15.0 R C =5 K v ( t) = v ( t) o R B =5 K β = 100 _ vi( t ) 58. R E =5 K CUS We found that

More information

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9

Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 Chapter 5 Solution P5.2-2, 3, 6 P5.3-3, 5, 8, 15 P5.4-3, 6, 8, 16 P5.5-2, 4, 6, 11 P5.6-2, 4, 9 P 5.2-2 Consider the circuit of Figure P 5.2-2. Find i a by simplifying the circuit (using source transformations)

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structural Analysis esson 5 Virtual Work Instructional Objecties After studying this lesson, the student will be able to: 1. Define Virtual Work.. Differentiate between external

More information

Electronics II. Midterm #2

Electronics II. Midterm #2 The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm - StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything

More information

Lecture 11: J-FET and MOSFET

Lecture 11: J-FET and MOSFET ENE 311 Lecture 11: J-FET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

To determine the biasing conditions needed to obtain a specific gain each stage must be considered. PHYSIS 56 Experiment 9: ommon Emitter Amplifier A. Introdution A ommon-emitter oltage amplifier will be tudied in thi experiment. You will inetigate the fator that ontrol the midfrequeny gain and the low-and

More information

absolute maximum ratings at 25 C case temperature (unless otherwise noted)

absolute maximum ratings at 25 C case temperature (unless otherwise noted) ,, B, C, D Designed for Complementary Use with BDW84, BDW84A, BDW84B, BDW84C and BDW84D W at C Case Temperature A Continuous Collector Current Minimum h FE of 70 at 3, 6 A B C E SOT-93 PACKAGE (TOP IEW)

More information

EE 330 Lecture 25. Small Signal Modeling

EE 330 Lecture 25. Small Signal Modeling EE 330 Lecture 25 Small Signal Modeling Review from Last Lecture Amplification with Transistors From Wikipedia: Generall, an amplifier or simpl amp, is an device that changes, usuall increases, the amplitude

More information

1 S = G R R = G. Enzo Paterno

1 S = G R R = G. Enzo Paterno ECET esistie Circuits esistie Circuits: - Ohm s Law - Kirchhoff s Laws - Single-Loop Circuits - Single-Node Pair Circuits - Series Circuits - Parallel Circuits - Series-Parallel Circuits Enzo Paterno ECET

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( ) DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

More information

SIMULATIONS OF CHARACTERISTICS OF TUNED LIQUID COLUMN DAMPER USING AN ELLIPTICAL FLOW PATH ESTIMATION METHOD

SIMULATIONS OF CHARACTERISTICS OF TUNED LIQUID COLUMN DAMPER USING AN ELLIPTICAL FLOW PATH ESTIMATION METHOD October -7, 008, Beijing, China SIMULATIONS OF CHARACTERISTICS OF TUNED LIQUID COLUMN DAMPER USING AN ELLIPTICAL FLOW PATH ESTIMATION METHOD P. Chaiiriyawong, S. Limkatanyu and T. Pinkaew 3 Lecturer, Dept.

More information

Charge-Storage Elements: Base-Charging Capacitance C b

Charge-Storage Elements: Base-Charging Capacitance C b Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Transistors - a primer

Transistors - a primer ransistors - a primer What is a transistor? Solid-state triode - three-terminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

A.M. WEDNESDAY, 13 May minutes

A.M. WEDNESDAY, 13 May minutes Candidate Name Centre Number Candidate Number 0 GCSE 293/02 ELECTRONICS MODULE TEST E1 HIGHER TIER AM WEDNESDAY, 13 May 2009 45 minutes For Examiner s use Total Mark ADDITIONAL MATERIALS In addition to

More information

ME224 Lab 5 - Thermal Diffusion

ME224 Lab 5 - Thermal Diffusion ME4 Lab 5 ME4 Lab 5 - hermal Diffusion (his lab is adapted from IBM-PC in the laboratory by B G homson & A F Kuckes, Chapter 5) 1. Introduction he experiments which you will be called upon to do in this

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E 05//0 5:26:04 09/6/0 (259) 6 7 8 9 20 2 22 2 09/7 0 02 0 000/00 0 02 0 04 05 06 07 08 09 0 2 ay 000 ^ 0 X Y / / / / ( %/ ) 2 /0 2 ( ) ^ 4 / Y/ 2 4 5 6 7 8 9 2 X ^ X % 2 // 09/7/0 (260) ay 000 02 05//0

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and -Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N

More information

Circuit Analysis with Dependent Sources A)Node Equations B)Equivalent Sources C)Amplifier Parameters: Gain, R IN, R OUT D)Non-Ideal Op-Amp Model

Circuit Analysis with Dependent Sources A)Node Equations B)Equivalent Sources C)Amplifier Parameters: Gain, R IN, R OUT D)Non-Ideal Op-Amp Model Lecture 13: October 15, 2001 Lecture 14: 10/15/01 A.. Neureuther Circuit Analysis with Dependent Sources A)Node Equations B)Equialent Sources C)Amplifier Parameters: Gain,, OUT D)NonIdeal OpAmp Model The

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

FET Small-Signal Analysis

FET Small-Signal Analysis CHAPTER FET mall-ignal Analysis 9 9.1 INTROUCTION Field-effect transistor amplifiers provide an excellent voltage gain with the added feature of a high input impedance. They are also considered low-power

More information

SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE

SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE MONICA-ANCA CHITA, MIHAI IONESCU Key words: Bias circuits, Current mirrors, Current sources biasing of low voltage, SPICE simulations. In this

More information

THE MULTI INPUT-MULTI OUTPUT STATE SPACE AVERAGE MODEL OF KY BUCK-BOOST CONVERTER INCLUDING ALL

THE MULTI INPUT-MULTI OUTPUT STATE SPACE AVERAGE MODEL OF KY BUCK-BOOST CONVERTER INCLUDING ALL THE MUTI INPUT-MUTI OUTPUT STATE SPACE AVERAGE MODE OF KY BUCK-BOOST CONVERTER INCUDING A OF THE SYSTEM PARAMETERS Mohammad Reza Modabbernia 1, Seyedeh Shia Nejati 2 & Fatemeh Kohani Khoshkbijari 3 1 Electrical

More information

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Metal-Oxide-Semiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n- substrate - SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 5a Bipolar Transistor Dep. Region Neutral Base n(0) b B C n b0 P C0 P e0 P C xn 0 xp 0 x n(w) b W B Adib Abrishamifar EE Department IUST Contents Bipolar Transistor

More information

An Electronic Thermal Transducer

An Electronic Thermal Transducer An Electronic Thermal Transducer PRJ NO: 16 By Okore Daniel F17/969/ Supervisor : Dr. Mwema Examiner: Dr. Abungu INTRODUCTION The aim of this project was to design and implement a temperature sensor in

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

Lecture 14. Ozgur Aktas. March 20, 2006

Lecture 14. Ozgur Aktas. March 20, 2006 Lecture 14 Ozgur Aktas aktas@ee.bilkent.edu.tr March 20, 2006 What we have learnt up to now? Basic semiconductor equations Drawing band diagrams for pn junctions, and npn/pnp transistors RTL/DTL/TTL/ATTL/STTL

More information

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models LC 3908, Physical lectronics, Lecture 17 Bipolar Transistor njection Models Lecture Outline Last lecture looked at qualitative operation of the BJT, now want to develop a quantitative model to predict

More information

Chapter 13 Bipolar Junction Transistors

Chapter 13 Bipolar Junction Transistors Chapter 3 ipolar Junction Transistors Goal. ipolar Junction Transistor Operation in amplifier circuits. 2. Load-line Analysis & Nonlinear Distortion. 3. Large-signal equialent circuits to analyze JT circuits.

More information

DETAIL "A" #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL "A"

DETAIL A #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL A MG6Q2YS6A Powerex, Inc., 2 E. Hillis Street, Youngwood, Pennsylvania 15697-1 (72) 925-7272 Compact IGBT Series Module 6 Amperes/ olts A D H J K DETAIL "A" C2E1 E2 C1 B E F W M F Outline Drawing and Circuit

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001 6.012 - Microelectronic Devices and ircuits - Spring 2001 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) Regimes of Operation April 19, 2001 ontents: 1. Regimes of operation. 2. Large-signal

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42 EE 05 Dr. A. Zidouri Electric Circuits Two-Port Circuits Two-Port Parameters Lecture #4-1 - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o ntroduction to two-port circuits

More information