Circuit Analysis and Defect Characteristics Estimation Method Using Bimodal Defect-Centric Random Telegraph Noise Model

Size: px
Start display at page:

Download "Circuit Analysis and Defect Characteristics Estimation Method Using Bimodal Defect-Centric Random Telegraph Noise Model"

Transcription

1 Circuit Analysis and Defect Characteristics Estimation Method Using Bimodal Defect-Centric Random Telegraph Noise Model March 17, 2016 TAU 2017 Michitarou Yabuuchi (Renesas System Design Co., Ltd.), Azusa Oshima, Takuya Komawaki, Ryo Kishida, Jun Furuta, Kazutoshi Kobayashi (Kyoto Inst. of Tech.), Pieter Weckx (KU Leuven, IMEC), Ben Kaczer (IMEC), Takashi Matsumoto (University of Tokyo), and Hidetoshi Onodera (Kyoto University) 1

2 σ σ Kyoto Inst. of Tech. Summary What is proposed? Defect parameter extraction method and RTN (random telegraph noise) prediction nm SiON Τ F F max Τ F F max Measurement result of frequency fluctuation distribution by RTN RTN Prediction by proposed method 2

3 Contents Introduction Measurement of RTN Parameter extraction method Result Conclusion 3

4 Variation on scaled process -65 nm process voltage temperature process voltage temperature RTN 40 nmscaling More significant in small area RTN affects the yields CMOS image sensor Flash, SRAM 4

5 V th Kyoto Inst. of Tech. RTN: Random Telegraph Noise Capture Emit t # of defect Gate area LW V th /defect + + Carier Si 5

6 Threshold voltage shift ΔV th by RTN Defect-centric distribution Avg. μ Vth = N η Std. dev. σ ΔVth = 2Nη 2 Τ 1 LW # of Defect N LW Poisson dist. ΔV th /defect η 1 LW Exponential dist. 6

7 RTN in high-k process ~65nm 40nm 28nm Unimodal model Bimodal model Each oxide layer has its parameters High-k layer (HK) :N HK, η HK Interface layer (IL) :N IL, η IL 7

8 CCDF N CCDF N Kyoto Inst. of Tech. Comparison : Unimodal vs Bimodal Unimodal model (N, η) Bimodal model (N HK, η HK, N IL, η IL ) ΔVth [ mv] ΔVth [ mv] SiO 2 or SiON thin HK/IL HKMG 8

9 Circuit-level RTN prediction N HK, η HK, N IL, η IL? Calculation by bimodal model of Defect-centric distribution Defect parameter Threshold voltage shift Circuit Netlist RTN w/ V th prediction Monte-Carlo circuit simulation 9

10 Purpose of this study Parameter extraction method for RTN characteristics of bimodal model of Defect-centric distribution RO measurement data Proposed method N HK, η HK, N IL, η IL! Defect parameter Threshold voltage shift Confirm w/ measured data Circuit Netlist RTN w/ V th prediction 10

11 Measurement circuit 40 nm HK/Poly-Si Process TEG x840 7-stage ring oscillator (RO) Count # of oscillation by using on-chip counter 11

12 Measurement method Conditions 9,024 times/ro V dd = 0.65 V Δt = 2.2 ms t total = 20 s Fmin Calculate ΔF F max = F max F min F max for each RO 12

13 Result of frequency fluctuation distribution by RTN Standard normal quantile Follow bimodal defect-centric distribution 840 ROs 8.61% Τ F F max 13

14 σ σ Kyoto Inst. of Tech. How to extract parameters Prior to the loop Sensitivity Analysis KS test (calculate object function) Optimize defect vector N HK3, η HK3, N IL3, η IL3 N HK2, η HK2, N IL2, η IL2 N HK1, η HK1, N IL1, η IL1 N HK0, η HK0, N IL0, η IL0 Measured data Τ F F max Prediction Τ F F max 14

15 Obtain threshold voltage shift Calculate ΔV th w/ defect characteristics By using defect-centric distribution N HK,i, η HK,i, N IL,i, η IL,i ΔV thp1 ΔV thp2 ΔV thp7 ΔV thn1 ΔV thn2 ΔV thn7 14 Tr. X 840 RO 15

16 Τ Kyoto Inst. of Tech. Convert ΔV th to frequency shift (1) Prior to the loop Analyze sensitivity ΔV th to FΤF max of MOSFET Simulation condition : same as measurement Shift ΔV th of single NMOS and PMOS k p F F max PMOS k n NMOS ΔV th [V] 16

17 Convert ΔV th to frequency shift (2) Calculate FΤF max with sensitivities k n, k p INV F INV,i ΤF max RO Τ F F max = F INV,i ΤF max = ΔV thp,i k p + ΔV thn,i k n X840 RO = prediction of FΤF max distribution 17

18 σ σ Kyoto Inst. of Tech. Calculation of object function Kolmogorov-Smirnov test for null hypothesis populations of two samples are the same. Sample #1:measured data Sample #2:prediction Τ F F max Τ F F max Object function p becomes larger when difference b/w two CDF plots becomes smaller. 18

19 Manipulation of defect vector Downhill simplex method Solution for optimization problem Maximize object function p p i N HK3, η HK3, N IL3, η IL3 N HK2, η HK2, N IL2, η IL2 N HK1, η HK1, N IL1, η IL1 N HK0, η HK0, N IL0, η IL0 p 0 p 1 p 2 Convergence condition p i > 0.99 or i MAX =

20 Standard Normal Quantile Kyoto Inst. of Tech. Prediction vs measurement data Prediction Measured Τ F F max 20

21 Conclusion RTN prediction method by using circuit simulation with bimodal defect-centric distribution Parameter extraction method for defect characteristics of bimodal model by measurement data Replicate circuit-level RTN effect by Monte- Carlo simulation 21

Time-Zero and Time-Dependent Variability in Advanced CMOS

Time-Zero and Time-Dependent Variability in Advanced CMOS Time-Zero and Time-Dependent Variability in Advanced CMOS Jeff Watt October 11 th, 016 Disclaimer Jeff Watt IEEE SCV EDS Evening Seminar 10-11-016 All results presented here are based on R&D at Altera

More information

Experimental characterization of BTI defects

Experimental characterization of BTI defects Experimental characterization of BTI defects B. Kaczer 1, V. V. Afanas ev, K. Rott 3,, F. Cerbu, J. Franco 1, W. Goes, T. Grasser, O. Madia, A. P. D. Nguyen, A. Stesmans, H. Reisinger 3, M. Toledano-Luque

More information

Reliability of MOS Devices and Circuits

Reliability of MOS Devices and Circuits Reliability of MOS Devices and Circuits Gilson Wirth UFRGS - Porto Alegre, Brazil MOS-AK Workshop Berkeley, CA, December 2014 Variability in Nano-Scale Technologies Electrical Behavior / Parameter Variation

More information

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems

More information

Statistical Analysis of Random Telegraph Noise in Digital Circuits

Statistical Analysis of Random Telegraph Noise in Digital Circuits Nano-scale Integrated Circuit and System (NICS) Laboratory Statistical Analysis of Random Telegraph Noise in Digital Circuits Xiaoming Chen 1, Yu Wang 1, Yu Cao 2, Huazhong Yang 1 1 EE, Tsinghua University,

More information

Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability

Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability Design/Technology Co-Optimisation (DTCO) in the Presence of Acute Variability A. Asenov 1,2, E. A. Towie 1!! 1 Gold Standard Simulations Ltd 2 Glasgow University! Summary!! Introduction!! FinFET complexity

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Open-loop Gain: g m r o

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations

Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations Farshad Firouzi, Saman Kiamehr, Mehdi. B. Tahoori INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC

More information

F14 Memory Circuits. Lars Ohlsson

F14 Memory Circuits. Lars Ohlsson Lars Ohlsson 2018-10-18 F14 Memory Circuits Outline Combinatorial vs. sequential logic circuits Analogue multivibrator circuits Noise in digital circuits CMOS latch CMOS SR flip flop 6T SRAM cell 1T DRAM

More information

Future trends in radiation hard electronics

Future trends in radiation hard electronics Future trends in radiation hard electronics F. Faccio CERN, Geneva, Switzerland Outline Radiation effects in CMOS technologies Deep submicron CMOS for radiation environments What is the future going to

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

Improved Write Margin for 90nm SOI-7T-SRAM by Look-Ahead Dynamic Threshold Voltage Control

Improved Write Margin for 90nm SOI-7T-SRAM by Look-Ahead Dynamic Threshold Voltage Control [MWSCAS2007] Aug. 7, 2007 Improved Write Margin for 90nm SOI-7T-SRAM by Look-Ahead Dynamic Threshold Voltage Control Masaaki Iijima, Kayoko Seto, Masahiro Numa, *Akira Tada, *Takashi Ipposhi Kobe University,

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

Statistical modeling and simulation of variability and reliability of CMOS technology

Statistical modeling and simulation of variability and reliability of CMOS technology Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations 12-2016 Statistical modeling and simulation of variability and reliability of CMOS technology Khaled Hassan MD Purdue

More information

E40M Capacitors. M. Horowitz, J. Plummer, R. Howe

E40M Capacitors. M. Horowitz, J. Plummer, R. Howe E40M Capacitors 1 Reading Reader: Chapter 6 Capacitance A & L: 9.1.1, 9.2.1 2 Why Are Capacitors Useful/Important? How do we design circuits that respond to certain frequencies? What determines how fast

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Recent Developments in Device Reliability Modeling: The Bias Temperature Instability. Tibor Grasser

Recent Developments in Device Reliability Modeling: The Bias Temperature Instability. Tibor Grasser Recent Developments in Device Reliability Modeling: The Bias Temperature Instability Tibor Grasser Institute for Microelectronics, TU Vienna Gußhausstraße 27 29, A-14 Wien, Austria TU Wien, Vienna, Austria

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

Future Trends in Microelectronics Impact on Detector Readout. Paul O Connor

Future Trends in Microelectronics Impact on Detector Readout. Paul O Connor Future Trends in Microelectronics Impact on Detector Readout Paul O Connor Outline CMOS Technology Scaling Analog Circuits Radiation Effects Cost Detector Development Symposium Paul O'Connor BNL April

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping

Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping Yangang Wang Mark Zwolinski Michael A Merrett E-mail: yw2@ecs.soton.ac.uk University of Southampton, UK 26 th Sep.

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 20, 2018 Energy and Power Optimization, Design Space Exploration Lecture Outline! Energy and Power Optimization " Tradeoffs! Design

More information

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values

More information

Modeling and Simulation of Variations in Nano-CMOS Design. Yun Ye

Modeling and Simulation of Variations in Nano-CMOS Design. Yun Ye Modeling and Simulation of Variations in Nano-CMOS Design by Yun Ye A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2011 by the Graduate

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

An Analytical Approach to Efficient Circuit Variability Analysis. in Scaled CMOS Design. Samatha Gummalla

An Analytical Approach to Efficient Circuit Variability Analysis. in Scaled CMOS Design. Samatha Gummalla An Analytical Approach to Efficient Circuit Variability Analysis in Scaled CMOS Design by Samatha Gummalla A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Title Variability in BTI-Induced Device D Measurement to SRAM Yield Predictio Author(s) Awano, Hiromitsu Citation Kyoto University ( 京都大学 ) Issue Date 2016-03-23 URL https://doi.org/10.14989/doctor.k19

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i- EECS40 Spring 010 Lecture 1: Matching Elad Alon Dept. of EECS Offset V i+ V i- To achieve zero offset, comparator devices must be perfectly matched to each other How well-matched can the devices be made?

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

Modeling the Effect of V th -Variations on Static Noise Margin

Modeling the Effect of V th -Variations on Static Noise Margin 142 Int'l Conf. Modeling, Sim. and Vis. Methods MSV'16 Modeling the Effect of V th -Variations on Static Noise Margin Azam Beg College of Information Technology, United Arab Emirates University, Al-Ain,

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

Lecture 2: CMOS technology. Energy-aware computing

Lecture 2: CMOS technology. Energy-aware computing Energy-Aware Computing Lecture 2: CMOS technology Basic components Transistors Two types: NMOS, PMOS Wires (interconnect) Transistors as switches Gate Drain Source NMOS: When G is @ logic 1 (actually over

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

Nanoscale CMOS Design Issues

Nanoscale CMOS Design Issues Nanoscale CMOS Design Issues Jaydeep P. Kulkarni Assistant Professor, ECE Department The University of Texas at Austin jaydeep@austin.utexas.edu Fall, 2017, VLSI-1 Class Transistor I-V Review Agenda Non-ideal

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies Hans Tuinhout, The Netherlands motivation: from deep submicron digital ULSI parametric spread

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Simple and accurate modeling of the 3D structural variations in FinFETs

Simple and accurate modeling of the 3D structural variations in FinFETs Simple and accurate modeling of the 3D structural variations in FinFETs Donghu Kim Electrical Engineering Program Graduate school of UNIST 2013 Simple and accurate modeling of the 3D structural variations

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff

More information

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Main CMOS design rules & basic circuits GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim mohamad.sawan@polymtl.ca M5418 6 & 7 September

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information

RTS Noise in Si MOSFETs and GaN/AlGaN HFETs

RTS Noise in Si MOSFETs and GaN/AlGaN HFETs RTS Noise in Si MOSFETs and GaN/AlGaN HFETs JAN PAVELKA *, JOSEF ŠIKULA *, MUNECAZU TACANO ** * FEEC, Brno University of Technology Technicka 8, Brno 66, CZECH REPUBLIC ** AMRC, Meisei University 2-- Hodokubo,

More information

Homework Assignment No. 1 - Solutions

Homework Assignment No. 1 - Solutions Homework Assignment o. 1 - Solutions Problem P1.7 This question is as easy as it looks, no tricks here. a. The delay from a to b is simply the delay of an inverter times the number of inverters which would

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

More information

Introduction to Reliability Simulation with EKV Device Model

Introduction to Reliability Simulation with EKV Device Model Introduction to Reliability Simulation with Device Model Benoît Mongellaz Laboratoire IXL ENSEIRB - Université Bordeaux 1 - UMR CNRS 5818 Workshop november 4-5th, Lausanne 1 Motivation & Goal Introduced

More information

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI Chapter 11 Inverter DC AC, Switching Ring Oscillator Dynamic Power Dissipation Layout LATCHUP Sizing PASS GATES (CHPT 10) Other Inverters Joseph A. Elias, Ph.D. Adjunct Professor, University of Kentucky;

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS151/251A V. Stojanovic, J. Wawrzynek Fall 2015 10/13/15 Midterm Exam Name: ID

More information

Statistical Model of Hot-Carrier Degradation and Lifetime Prediction for P-MOS Transistors

Statistical Model of Hot-Carrier Degradation and Lifetime Prediction for P-MOS Transistors Turk J Elec Engin, VOL.14, NO.3 2006, c TÜBİTAK Statistical Model of Hot-Carrier Degradation and Lifetime Prediction for P-MOS Transistors Fırat KAÇAR 1,AytenKUNTMAN 1, Hakan KUNTMAN 2 1 Electrical and

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16] Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an n-channel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3

More information

Investigation of Dependence between Time-zero and Time-dependent Variability in High-κ NMOS Transistors

Investigation of Dependence between Time-zero and Time-dependent Variability in High-κ NMOS Transistors > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Investigation of Dependence between Time-zero and Time-dependent Variability in High-κ NMOS Transistors Mohammad

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

Lecture 1: Circuits & Layout

Lecture 1: Circuits & Layout Lecture 1: Circuits & Layout Outline q A Brief History q CMOS Gate esign q Pass Transistors q CMOS Latches & Flip-Flops q Standard Cell Layouts q Stick iagrams 2 A Brief History q 1958: First integrated

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.

More information

EECS 151/251A Homework 5

EECS 151/251A Homework 5 EECS 151/251A Homework 5 Due Monday, March 5 th, 2018 Problem 1: Timing The data-path shown below is used in a simple processor. clk rd1 rd2 0 wr regfile 1 0 ALU REG 1 The elements used in the design have

More information

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

Statistical Performance Modeling and Optimization

Statistical Performance Modeling and Optimization Foundations and Trends R in Electronic Design Automation Vol. 1, No. 4 (2006) 331 480 c 2007 X. Li, J. Le and L. T. Pileggi DOI: 10.1561/1000000008 Statistical Performance Modeling and Optimization Xin

More information

A Single-Trap Study of PBTI in SiON nmos Transistors: Similarities and Differences to the NBTI/pMOS Case

A Single-Trap Study of PBTI in SiON nmos Transistors: Similarities and Differences to the NBTI/pMOS Case A Single-Trap Study of PBTI in SiON nmos Transistors: Similarities and Differences to the NBTI/pMOS Case Michael Waltl, Wolfgang Goes, Karina Rott, Hans Reisinger, and Tibor Grasser Institute for Microelectronics,

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Modeling of PMOS NBTI Effect Considering Temperature Variation

Modeling of PMOS NBTI Effect Considering Temperature Variation Modeling of PMOS NBTI Effect Considering Temperature Variation Hong Luo, Yu Wang, Ku He, Rong Luo, Huazhong Yang Circuits and Systems Division, Dept. of EE, Tsinghua Univ., Beijing, 100084, P.R. China

More information

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018 643 A Sub-Threshold Noise Transient Simulator Based on Integrated Random Telegraph and Thermal

More information

Determining the Existence of DC Operating Points in Circuits

Determining the Existence of DC Operating Points in Circuits Determining the Existence of DC Operating Points in Circuits Mohamed Zaki Department of Computer Science, University of British Columbia Joint work with Ian Mitchell and Mark Greenstreet Nov 23 nd, 2009

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Experimental Verification of a Timing Measurement Circuit With Self-Calibration

Experimental Verification of a Timing Measurement Circuit With Self-Calibration 19 th IEEE IMS3TW, Porto Alegre, Brazil Sept. 17, 2014 Experimental Verification of a Timing Measurement Circuit With Self-Calibration Kateshi Chujyo, Daiki Hirabayashi, Kentaroh Katoh Conbing Li, Yutaroh

More information

Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS

Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349-784X Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS P R Pournima M.Tech

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter First-Order DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p

More information

The Relevance of Deeply-Scaled FET Threshold Voltage Shifts for Operation Lifetimes

The Relevance of Deeply-Scaled FET Threshold Voltage Shifts for Operation Lifetimes The Relevance of Deeply-Scaled FET Threshold Voltage Shifts for Operation Lifetimes B. Kaczer,*, J. Franco,, M. Toledano-Luque, Ph. J. Roussel, M. F. Bukhori 3, A. Asenov,, B. Schwarz, M. Bina, T. Grasser,

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

Variation-Resistant Dynamic Power Optimization for VLSI Circuits

Variation-Resistant Dynamic Power Optimization for VLSI Circuits Process-Variation Variation-Resistant Dynamic Power Optimization for VLSI Circuits Fei Hu Department of ECE Auburn University, AL 36849 Ph.D. Dissertation Committee: Dr. Vishwani D. Agrawal Dr. Foster

More information

Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen

Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen Lecture 150 Basic IC Processes (10/10/01) Page 1501 LECTURE 150 BASIC IC PROCESSES (READING: TextSec. 2.2) INTRODUCTION Objective The objective of this presentation is: 1.) Introduce the fabrication of

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Chapter 2 Degradation Mechanisms

Chapter 2 Degradation Mechanisms Chapter 2 Degradation Mechanisms 2.1 Introduction In this chapter, a general description of the main MOSFET degradation mechanisms considered in this work is given. The proposed dissertation, while not

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

Long-channel MOSFET IV Corrections

Long-channel MOSFET IV Corrections Long-channel MOSFET IV orrections Three MITs of the Day The body ect and its influence on long-channel V th. Long-channel subthreshold conduction and control (subthreshold slope S) Scattering components

More information

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs Technische Universität Graz Institute of Solid State Physics 11. MOSFETs Dec. 12, 2018 Gradual channel approximation accumulation depletion inversion http://lampx.tugraz.at/~hadley/psd/l10/gradualchannelapprox.php

More information

Answers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017

Answers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2017 Midterm 2 Monday, November 6 Point values

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information