Microelectronics Main CMOS design rules & basic circuits

Size: px
Start display at page:

Download "Microelectronics Main CMOS design rules & basic circuits"

Transcription

1 GBM8320 Dispositifs médicaux intelligents Microelectronics Main CMOS design rules & basic circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim M & 7 September 2018

2 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small signal model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Opamps. Low-Power Circuit Techniques Themes, mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 2

3 CMOS technology for medical implants integration Low power consumption is crucial for medical implant devices A single-chip must allow very-low-power operation while containing amplifiers, filters, ADCs, battery management system, voltage multipliers, high voltage pulse generators, programmable logic and timing control Recent CMOS processes are suitable for pure analog integration with high operating speed CMOS is suitable to VLSI of both high-density digital circuits (e.g. DSP, memory, etc.) and analog circuits (amplifiers, ADC, DAC, etc.) CMOS digital circuits feature 0 static power consumption. High performance MOS switches à CMOS technology suitable for high accuracy sample-data circuits. GBM Dispositifs Médicaux Intelligents 3

4 Mixed signal design overview Newer CMOS technologies with smaller feature sizes can operate at increasingly high speed, comparable to some bipolar technologies. CMOS technologies become mainstream technologies for mixed-signal integration due to the advantages of low-cost and high-integration density. Digital circuitries cost decreases by 29% each year in CMOS technology thanks to device downscaling; To benefit from this, analog ICs have to be integrated on the same chip with the digital circuits in mixed-signal integration; e are in SoC (System on a Chip) era, which favors CMOS technology; System on Chip: mixed-signal integrated circuits that contains analog, memory, logic, and embedded processor. GBM Dispositifs Médicaux Intelligents 4

5 Mixed-signal circuit design overview MOSFET f t frequency is continuously increasing over time. The minimum channel length of MOS transistors dropped from 25 mm in 1960s to less than 15 nm in the year Benefit of much higher complexity, smaller volume, less power consumption and higher frequency performance. GBM Dispositifs Médicaux Intelligents 5

6 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small signal model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Opamps. Low-Power Circuit Techniques Themes, mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 6

7 CMOS technology processing CMOS technologies have penetrated application areas, which is used to be the exclusive domain of bipolar or BiCMOS technology. Out of seven integrated RF transceivers introduced in 2003, four are realized in a CMOS process technology. GBM Dispositifs Médicaux Intelligents 7

8 CMOS technology processing Four terminals: gate, source, drain, body Source Gate Drain Polysilicon Gate oxide body stack looks like a capacitor Gate and body are conductors SiO 2 (oxide) is a very good insulator. Called Metal-oxide-semiconductor (MOS) Even though gate is no longer made of metal. Silicon Run Video n+ n+ S D p Bulk Si SiO 2 GBM Dispositifs Médicaux Intelligents 8 G B

9 CMOS technology processing Lithography process similar to printing press On each step, different materials are deposited or etched. In Typically use p-type substrate for nmos transistors Requires n-well for body of pmos transistors. Vss In Out V SS V DD Out V DD SiO 2 n+ n+ p+ p substrate n well p+ n+ diffusion p+ diffusion polysilicon metal1 nmos transistor pmos transistor GBM Dispositifs Médicaux Intelligents 9

10 CMOS technology processing Substrate are tied to V SS and n-well to V DD Metal to lightly-doped semiconductor forms poor connection. Use heavily doped well and substrate contacts / taps. In V SS In Out V DD V SS Out V DD p+ n+ n+ p+ p+ n+ p substrate n well substrate tap well tap GBM Dispositifs Médicaux Intelligents 10

11 CMOS technology processing Transistors and wires are defined by masks. p+ V SS In Out n+ n+ p+ p+ V DD n+ Cross-section taken along dashed line. substrate tap p substrate n well well tap In AIn V SS V DD Out Out V SS V DD substrate tap nmos transistor pmos transistor well tap GBM Dispositifs Médicaux Intelligents 11

12 CMOS technology processing Six masks n-well Polysilicon n+ diffusion p+ diffusion Contact Metal n well Polysilicon n+ Diffusion p+ Diffusion AIn Contact Out V SS substrate tap nmos transistor pmos transistor well tap V DD Metal GBM Dispositifs Médicaux Intelligents 12

13 CMOS technology processing 0.35_m µm 200nm p+ n+ n+ p+ p substrate _m µm n well p+ n+ 600_m µm Cross section of 0.35um CMOS technology 6.5nm GBM Dispositifs Médicaux Intelligents 13

14 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 14

15 MOSFET Structure The NMOS transistor is on p- substrate (bulk or body). L Two n+ regions form S (source) and D (drain) terminals. MOS transistor is symmetric. S has lower potential than D for NMOS. p- substrate is connected to the most negative voltage. L drawn is the channel length drawn in the layout L is the effective channel length. t ox is the gate oxide thickness (40Å in 0.18 µm and 22Å in 0.13 µm) GBM Dispositifs Médicaux Intelligents 15

16 MOS Characteristics If V GS > 0, the electrical field will repel holes and attracts electrons. S V G >> D hen V GS reaches n+ a value called the threshold voltage (V th ), channel Depletion region under the gate becomes inverted. It changes from p-type to n-type semiconductor p - substrate B n+ Channel n-type channel exists between the source and drain that allows carriers to flow. GBM Dispositifs Médicaux Intelligents 16

17 I D MOS Characteristics ID I = µ C V V 2L ( ) 2 D n ox GS th I-V characteristics If V GS > V th the channel is inverted. Conductivity is controlled by V GS - V th. hen V DS > 0 current I D flows from drain to source. The drain current : I D = dq dt dq is the channel charge in dy at a distance y from the source, and dt is the time required for this charge to cross the length dy. V S = 0 n+ Triode region I = µ C ( V V ) V L D n ox GS th DS - + V(y) V DS =V dsat y V G S >V th y+dy Active region B y V DS > 0 n+ I D V DS GBM Dispositifs Médicaux Intelligents 17

18 MOS Characteristics I-V characteristics (Cont d) dq = Q I dy Q I is the induced electron charge in unit area of the channel. The gate-to-channel voltage at a distance y from the source is V GS -V(y). Assume this voltage exceeds V th we can write: Q I = C ox dt = dy v d ( y) V GS V ( y) V th v d (y) is the electron velocity at y. v d (y) = µ n E (y), E (y) = - C ox = ε ox t ox = K ox ε 0 t ox E(y) is horizontal electrical field and µ n is the average electron mobility. dv dy I D = dq dt I D = C ox V GS V ( y) V th µ n dv dy GBM Dispositifs Médicaux Intelligents 18

19 MOS Characteristics I-V characteristics (Cont d) L V I D dy = C 0 DS ox V GS V ( y) V 0 th µ n dv I D = µ n C ox 2L 2 ( V V 2 GS th )V DS V DS If V DS << 2(V GS - V th ), I D is proportional to V DS. I D = µ n C ( ox L V V GS th )V DS I D Triode region I = µ C V V 2L Active region ( ) 2 D n ox GS th I = µ C ( V V ) V L D n ox GS th DS V DS =V dsat V DS GBM Dispositifs Médicaux Intelligents 19

20 MOS Characteristics I-V characteristics (Cont d) I D I < µ C ( V V ) V L D n ox GS th DS VS = 0 V G S >>V th V D > 0 I D n+ n+ I = µ C ( V V ) V L D n ox GS th DS B V DS As V DS increases, I D increases until the drain end of the channel becomes pinch off. Pinch off occurs when V GD <= V th the channel is not inverted near the drain (Q I =0). V GD V th V DS V GS V th GBM Dispositifs Médicaux Intelligents 20

21 MOS Characteristics I-V characteristics (Cont d) I D V S = 0 V G S >>V th V GD <V th, V DS >V GS -V th I = µ C V V 2L ( ) 2 D n ox GS th I D Active region n+ n+ Triode region Pinch -off I D = µ n C ox 2L 2 V V GS th = µ n C ox ( 2L V V GS th ) 2 2 ( )V DS V DS V DS =V GS V th =V Dsat I = µ C ( V V ) V L D n ox GS th DS V DS =V dsat For V DS > V GS -V th I D stays constant by ignoring the second order effects. V DS GBM Dispositifs Médicaux Intelligents 21

22 MOS Characteristics Channel length modulation I D increases slightly with increasing V DS due to the increasing of the depletion region width X d with V DS VS = 0 n+ L eff VB = 0 V G S >>V th X d V DS >V GS -V th n+ I D I D = µ n C ox 2L eff ( V GS V th ) 2, L eff = L X d di D = µ dv n C ox V 2 DS 2L GS V th eff ( ) 2 dl eff dv DS = I D L eff dx d dv DS = λi D GBM Dispositifs Médicaux Intelligents 22

23 MOS Characteristics Channel length modulation (cont d) I D = µ n C ox ( 2L V V GS th ) 2 ( 1+ λv DS ) Therefore, a good approximation to the influence of V DS on I D is I D Triode region Active or pinch -off region V DS = V GS -V th Actual I D I ( D λ = 0) + di D V dv DS DS Ideal V GS Increases = I ( D λ = 0) ( 1+ λv ) DS V GS <=V th I D = µ n C ox ( 2L V V GS th ) 2 ( 1+ λv DS ) I D = µ n C ox ( L V V GS th )V DS V DS GBM Dispositifs Médicaux Intelligents 23

24 MOS Characteristics Body effect V S > 0 V G S V DS If V SB increases, the effective threshold voltage increases. ID V SB increases, the depletion region between the channel and the substrate becomes wider à Q B k. n+ V B = 0 n+ Q B qn A x d = 2qε Si N A 2Φ F 2qε Si N A (2Φ F +V SB ) V th = V th0 + ΔV th, V th0 = V th (V SB = 0) V th = V th0 + γ ( V SB + 2Φ F 2Φ F ), γ = 2qN K ε A Si 0 C ox γ is the body effect constant GBM Dispositifs Médicaux Intelligents 24

25 PMOS equations µ p C ox I D = 2L 2 ( V V 2 SG thp )V SD V SD, V > V andv > V SG thp DG thp µ p C ( ox 2L V V ) 2 1+ λv SG thp ( SD ), V SG > V thp andv DG < V thp I D Triode region Active or pinch -off region V SD = V SG - V thp Actual Ideal V SG Increases V SG <= V thp VSD GBM Dispositifs Médicaux Intelligents 25

26 MOS symbols D B G S NMOS PMOS The B symbol is used for substrate to avoid confusion with source. Drain in NMOS is positioned on top while the source is positioned on top for PMOS. Symbol with B connection is used when the source and the substrate have different voltages Symbols w/o arrow are used for digital circuit. GBM Dispositifs Médicaux Intelligents 26

27 Device model summary Linear / triode region V DS < V GS - Vth Saturation region V DS >= V GS - Vth eak inversion V GS < Vth V GS nv T I = I e 1 e D S 0 L V GS V DS V T I e, V >> V L nv T S 0 DS T kt 0 V = 26 mv at T = 300 K T q Strong inversion V GS > Vth 2 V DS I = µ C ( ) D ox V V V GS th DS L 2 µ C ( V V ) V, V << V L ox GS th DS DS dsat 1 I = µ C V V + λv 2 L 2 ( ) ( 1 ) D ox GS th DS GBM Dispositifs Médicaux Intelligents 27

28 Equations : NMOS I D Triode region Active or pinch -off region In V DS = V GS -V th Actual Ideal V GS Increases V SS V DD Out V GS <=V th I D = µ n C ox ( L V V GS thn )V DS, V GS > V thn andv GD > V thn (V DS < V GS V thn ) µ n C ox ( 2L V V GS thn ) 2 ( 1+ λv DS ), V GS > V thn and V GD < V thn (V DS > V GS V thn ) V DS V thn = V thn0 + γ ( V SB + 2Φ F 2Φ F ), γ = 2qN K ε D Si 0 C ox λ = dx d L eff dv DS GBM Dispositifs Médicaux Intelligents 28

29 Equations : PMOS ID Triode region Active or pinch -off region In V SD = V SG - V thp Actual Ideal V SG Increases V SS V DD Out V SG <= V thp VSD I D = µ p C ox ( L V V SG thp )V SD, V SG > V thp andv DG > V thp (V SD < V SG V thp ) µ p C ox ( 2L V V SG thp ) 2 ( 1+ λv SD ), V SG > V thp andv DG < V thp (V SD > V SG V thp ) V thp = V thp0 + γ ( V BS + 2Φ F 2Φ F ), γ = 2qN K ε A Si 0 C ox λ = dx d L eff dv SD GBM Dispositifs Médicaux Intelligents 29

30 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 30

31 Small-Signal Models of MOS Transistors I d = I D + i d Study the linear model of MOS transistor around an operating point. MOS in saturation: V GS >V th and V GS + v i - V DS V DS >V GS -V th I d = µ n C ( ox 2L V V γ 2Φ +V 2Φ ) 2 ( 1+ λv ) GS th0 F SB F DS I d = f (V GS,V DS,V SB ) = I D + i d = I D + I d V GS ΔV + GS I d V DS ΔV + DS I d V BS ΔV BS GBM Dispositifs Médicaux Intelligents 31

32 Small-Signal Models of MOS Transistors Transconductance g m G D g m I D V GS I D = µ n C ox 2 µ n C ox 2 ( )( V GS V t ) 2 L 1 + λv DS L V V GS t ( ) 2 λv DS << 1 g m µ n C ox L V ( GS V t ) 2µ n C ox L I D = 2I D V Dsat S V gs g m v gs V bs B g mb v bs r ds Output resistance r ds g ds r ds 1 I D V DS g ds = µ n C ox V DS 2 ( )( V GS V t ) 2 = µ nc ox L 1+ λ V DS 2 ( ) 2 λ I D L λ V GS V t GBM Dispositifs Médicaux Intelligents 32

33 Small-Signal Models of MOS Transistors Body Transconducatnce g mb g mb I DS V BS = µ n C ox V BS 2 ( ) 2 = µ n C ox L V GS V th 2 ( ) V th L V GS V th V BS V th = V th0 + γ ( 2Φ F + V BS 2Φ ) F G D g mb = g m γ 2 2Φ F + V SB S V gs g m v gs g mb v bs r ds γ = 2qεN A V bs C Ox B GBM Dispositifs Médicaux Intelligents 33

34 Small-Signal Models of MOS Transistors Example : γ = 0.3, G D λ n Ξ (1/V), 2Φi F = 0.6V, I D = 1 ma, S V gs g m v gs g mb v bs r ds V dsat = 200 mv, V bs V SB = 100 mv. g m = 1 ma/v (ms); S = Siemen B g mb = 0.18 ma/v Ξ 20% g m r ds = 40 k. GBM Dispositifs Médicaux Intelligents 34

35 Small-Signal Models of MOS Transistors The low-frequency small signal model of a MOS transistor in the triode region is a resistance. I D = µ n C ox 2L 2 ( V V 2 GS th )V DS V DS g ds r ds 1 I D V DS = µ n C ox L S ( V GS V th V DS ) r ds D If V DS << V GS - V th, (the common case V DS near to zero) g ds = 1 = µ n C ox r ds L ( V V GS t ) This resistance value is controlled by V GS. GBM Dispositifs Médicaux Intelligents 35

36 Parasitic capacitors in MOS Transistors To complete the small-signal model of the MOSFET, the intrinsic and extrinsic capacitors have to be added. These capacitors play an important role in high frequency operation. GBM Dispositifs Médicaux Intelligents 36

37 Transition frequency The frequency capability of a MOS transistor is specified by finding the transition f T. i o f T is the frequency where the magnitude of the short-circuit common-source current gain falls to 1. i i = s(c gs + C gd )v gs Current in C gd is neglected: v i - + i i i o g m v gs i o i i g m s(c gs + C gd ) f T = 1 2π i o i i g m (C gs + C gd ) 1.5 µ n 2π L 2 s= jω 1 ( V V GS th ) + v gs - i i C gs C gd g m v gs f T can be improved by operating at high values of (V GS -V th ), and faster transistor can be made by smaller L. GBM Dispositifs Médicaux Intelligents 37 i o

38 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 38

39 Diode connected MOS DC analysis i D = µ n C ox ( 2L V V GS thn ) 2 ( 1+ λv DS ) AC analysis (small signal) GBM Dispositifs Médicaux Intelligents 39

40 Analog CMOS Inverter l Analyse AC (faibles signaux) v A = = g r R g R ( ) out v m ds m vin GBM Dispositifs Médicaux Intelligents 40

41 Analog CMOS Inverter AC analysis (continued) Vo Transfer function (G) = vo/vi Vi Vgs S gm1 Vgs rds1 rds2 = ( vo rds 1) gm 1vgs1 ( vo r o ds2 ) ( ) Kirchhoff: 0 / / Transconductance and output impedance (g m, r ds ) g m = µ Cox 2µ L r ds λ = 1 λi L ( VGS Vth ) = Cox I D v v = g r r i m1 ds1 ds2 = G 1 1 g r m ds = 2 µ C ox λ L I Voltage Gain (G) D D G lorsque ou L dx d L eff dv DS G lorsque I D GBM Dispositifs Médicaux Intelligents 41

42 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 42

43 Current Mirror Simple current mirror I DC analysis V GS OUT = V = th + 1 µ C 2 ox µ C 2I ox ref ( L) ( L) 1 2 µ C 2I ox ref ( L) I D = µ n C ox ( 2L V V GS th ) 2 ( 1+ λv DS ) 1 = ( L) 2 I ref ( L) 1 M1 iref iout + M2 Vout - Output impedance: r out = r ds2 = 1 λ I out λ = dx d L eff dv DS ΔV = V GS V th = µ C 2I ox ref ( L) 1 VGS-Vth GBM Dispositifs Médicaux Intelligents 43

44 Current Mirror Cascode current mirror DC analysis V =Veff= V GS - V th at I D =I ref Vth+Veff=VGS Vout = 2Vth+ 2Veff - Veff -Vth + Veff V V + 2ΔV OUT th -VGS M3 M4 iref 2(Vth +Veff) Vth +Veff iout M2 VA + + Veff - Vout M1 - M2 M1 + Vx - ix The output impedance is increased by a factor (1 + a v2 ): + Vsb2 - gm2 Vgs2 rds1 gmb2 Vsb2 rds2 Vx v i x x ( 1 ) = R + g r r out m2 ds1 ds2 Vth+2Veff GBM Dispositifs Médicaux Intelligents 44

45 Current Mirror ilson current mirror - DC analysis I OUT = ( L) 2 I REF ( L) 1 Ids1 M1 M3 M2 Io + Vo - Output impedance - Vth+2Veff Vo Io Ids1 Vds1 r o = g m1 r ds1 r ds3 Iref Iout Super-ilson current mirror - DC analysis M3 M4 VA M2 M1 + Vout - GBM Dispositifs Médicaux Intelligents 45

46 Current Mirror ide-swing cascode current mirror - DC analysis Cascode iref iout M3 2(Vth +Veff) VA M2 + Vout M4 Vth +Veff M1-2Veff Advantage: minimum output voltage is only 2 Veff Downside: increased complexity and power consumption. Vth+2Veff GBM Dispositifs Médicaux Intelligents 46

47 Current Mirror Improved ide-swing cascode current mirror - DC analysis 2Veff Added transistor M5 equalizes the voltages at the drains of M1 and M3 : Channel-length modulation effects are reduced. GBM Dispositifs Médicaux Intelligents 47

48 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 48

49 Voltage Follower The voltage follower, as suggested by its name, replicates voltage V in at the output. DC Analysis Vdd Vdd Vin I Bias Vout Vin I Bias Vout I Assume that the transistor is saturated: D = I = µ C BIAS ox 2L ( V V V ) 2 IN OUT th Vss P-well process Vss N-well process V OUT = 2 L I BIAS µ C ox + V IN V th V th = V ( 2φ + V φ ) th0 + F OUT γ 2 F If the substrate is connected to the source, then V th =V tho. GBM Dispositifs Médicaux Intelligents 49

50 Voltage Follower AC Analysis Av = g m1 g m1 + g s1 + g ds1 + g ds2 GBM Dispositifs Médicaux Intelligents 50

51 Voltage Follower AC Analysis (Cont d) If g m1 Av = g m1 + g s1 + g ds1 + g ds2 g m1 g s1 + g ds1 + g ds2 Av " 1 In practice, this value is degraded by r ds1,2 and g s1, and has a value between 0.9 and The output resistance is found using a test voltage source V x at the output and measuring the current flowing with v in =0 The voltage follower is useful to match impedances : It is often used to lower the output impedance of a voltage amplifier. i x = ( g ds1 + g ds2 + g mb + g m1 )v x R out = 1 g ds1 + g ds2 + g mb + g m1! 1 g m1 GBM Dispositifs Médicaux Intelligents 51

52 Common Gate Amplifier AC analysis V out V s1 = g m1 + g s1 + g ds1 G L + g ds1! g m1 G L + g ds1 Y in = i s = g + g + g m1 s1 ds1! g m1 V s1 1+ g ds1 G L 1+ g ds1 G L r in = 1 g m1 1+ R L r ds1 GBM Dispositifs Médicaux Intelligents 52

53 Common Gate Amplifier AC analysis (Cont d) r in = 1 g m1 1+ R L r ds1 R L = r ds r in = 2 g m1 V s1 V in = r in r in + R s = 2 g m1 2 g m1 + R s = g m1 R s V out V in = V out V s1 V s1 V in V out V s1 = g m1 r ds1 + r ds2 GBM Dispositifs Médicaux Intelligents 53

54 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 54

55 Operational amplifiers Ideal Op-Amp Openloop Vp + ve Vn - + A ve Vo Closedloop Vp + ve Vn - + A ve Vo Basic 2-stage Op-Amp R1 R2 M3 M4 Vdd M5 M6 M7 Vdd M8 Iref V+ M1 M2 V- Vout Cout V+ Iref M1 M2 V- Vout Cout M6 M7 Vss M8 M3 M4 Vss M5 NMOS inputs PMOS inputs Small signal open-loop gain: G oa = gm ro = gm1 (ro2 ro4) gm5 (ro5 ro8) GBM Dispositifs Médicaux Intelligents 55

56 Operational amplifiers : Stability GBM Dispositifs Médicaux Intelligents 56

57 Operational amplifiers : Stability A V2 C C Vi R1 R2 gm1 Vi C 1 gm2 V2 C 2 Vo A = a1a2 CL=C2 a1 a2 C1 C2 IAI (db) P#1 P#2 0 0 f (Hz) Phase GBM Dispositifs Médicaux Intelligents 57

58 Vi Operational amplifiers : Stability V o V i = gm1 Vi R1 V2 C 1 C c R2 gm2 V2 C 2 g m1 g m2 R 1 R 2 (1 C c Vo s g m2 ) = -1 R 2 C c R 1 P2 = C 1 +C 2 1+ s[(c 2 + C c )R 2 + (C 1 + C c )R 1 + g m2 R 1 R 2 C c ]+ s 2 R 1 R 2 (C 1 C 2 + C c C 1 + C c C 2 ) P1 g m 2 g m 2 z = g m 2 C C z = C C 1 g 1 m2 R Z Vi gm1 Vi R1 CC C1 RZ gm2 V2 R2 C2 Vo P 2 = g m 2 C 2 GBM Dispositifs Médicaux Intelligents 58

59 Operational amplifiers: Voltage offset Ideal Op-Amp Vp + + M3 M4 Vdd M5 Vn ve - A ve Vo Iref V+ M1 M2 V- Vout Cout Small signal open-loop gain: G oa = gm1 (ro2 ro4) gm5 (ro5 ro8) Mismatch between input transistors V os = ΔV T (1 2) + ΔV T (3 4) g m3 g m1 + M6 ( V GS V T )( 1 2 ) 2 Mismatch between loads after attenuation by Gms M7 Δ L ( 1 2) L ( 1 2) Vss Δ L GBM Dispositifs Médicaux Intelligents 59 L M8 ( 3 4) ( 3 4) Mismatch between /L of input trs and loads when operate at weak biaising voltage.

60 Operational amplifiers : CMRR The common-mode rejection ratio (CMRR) measures how well the amplifier can reject signals common to both inputs. The differential stage determines how well the entire opamp rejects common mode signals. GBM Dispositifs Médicaux Intelligents 60

61 Operational amplifiers : CMRR The common-mode signal appearing on the drains of M3 and M4 will be identical The most efficient manner in which to increase the CMRR of this amplifier is to increase the resistance r o5 GBM Dispositifs Médicaux Intelligents 61

62 Operational amplifiers : Input common-mode range Input common-mode range Differential amplifier with a current mirror load. Slew rate SR SR = = 2I D1 g ω m1 2 ( V ) GS Vth ω 2 1 GBM Dispositifs Médicaux Intelligents 62

63 Operational amplifiers : Noise Dominate noises are thermal and flicker Active region V 2 R ( f ) K = LC ox f 2 R ( ) I f = 4kT γ g m 2 K 1 R = + 4 γ ( ) V f kt LC f g ox m V ( ) n f 10 µ V Hz /f noise dominates -10dB/decade 10 Root spectral density 1/f noise corner hite noise dominates Vn ( Hz) 6 2 ( ) 2 ( ) ( f ) = f 2 6 PMOS has less flicker noise than NMOS (holes mobility is less than electrons) g m = µ Cox 2µ L L ( VGS Vth ) = Cox I D GBM Dispositifs Médicaux Intelligents 63

64 Operational amplifiers : Noise GBM Dispositifs Médicaux Intelligents 64

65 Operational amplifiers : Noise The gain of the input stage in a MOS op amp is usually large enough so that the input-referred noise of the overall amplifier is dominated by the noise contributions from the input-stage transistors i = g ( v + v ) g ( v + v ) O m1-2 eq1 eq2 m3-4 eq3 eq4 i 2 O = g 2 m1 2 v 2 IT GBM Dispositifs Médicaux Intelligents 65

66 Operational amplifiers : 1/f NOISE For a MOS transistor the input-referred 1/f noise can be modeled as: where Kf is the flicker noise coefficient Using this model for each transistor in the input stage, the input-referred 1/f noise for the entire stage is g = µ C V V = 2µ C L Assuming that L2 = L1, 2 = 1, L4 = L3 and 4 = 3; m ox ( GS th ) ox D L I GBM Dispositifs Médicaux Intelligents 66

67 Operational amplifiers : Thermal NOISE The input-referred thermal noise for an NMOS transistor is: γ = 2qεN A C Ox GBM Dispositifs Médicaux Intelligents 67

68 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Diode, Inverter Current mirrors Voltage follower Amplifiers and Op-Amps. Low-Power Circuit Techniques Themes, Mixed-signal & future of low-power designs. GBM Dispositifs Médicaux Intelligents 68

69 Mixed-signal Low-power Circuit Techniques - Power consumption in microelectronics systems - Analog-digital SNR crossover curves (Power, Area vs SNR) - Feedback and calibration (Analog & Digital techniques) - Ultra-low-power systems of the future (Analog & Digital techniques) - Five determinants of low-power techniques - Task, Technology, Topology, Speed and Precision - Optimum point for digitization - Traditional vs Energy efficient mixed-signal architecture - Themes in low-power mixed-signal circuit design - Slow and parallel operation - Noise and offset management - Compressive functions (AGC) - Pipelined designs - High-speed Technology (high gm/c) - Symmetric designs (less offset) - Gating circuit techniques. GBM Dispositifs Médicaux Intelligents 69

70 Principles of Mixed-signal Low-power Designs - Themes in low-power mixed-signal circuit design (Cont d) - Passive systems with high Q - Adaptive biasing - Efficient encoding of the needed computation. - Evolution of low-power designs - Subthreshold operation maximizing energy efficiency - Optimize analog preprocessing before digitization - Balance computation and communication cost - Exploit collective analog or hybrid computation - Reduce the amount of information to be processed - Use feedback and feed forward architectures (robustness and efficiency) - Separate speed and precision - Operate slowly and adiabatically. GBM Dispositifs Médicaux Intelligents 70

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model - Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

MOSFET Physics: The Long Channel Approximation

MOSFET Physics: The Long Channel Approximation MOSFET Physics: The ong Channel Approximation A basic n-channel MOSFET (Figure 1) consists of two heavily-doped n-type regions, the Source and Drain, that comprise the main terminals of the device. The

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

Chapter 2 MOS Transistor theory

Chapter 2 MOS Transistor theory Chapter MOS Transistor theory.1 Introduction An MOS transistor is a majority-carrier device, which the current a conductg channel between the source and the dra is modulated by a voltage applied to the

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 29-1 Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007 Contents: 1. Non-ideal and second-order

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies Hans Tuinhout, The Netherlands motivation: from deep submicron digital ULSI parametric spread

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN CMOS PROCESS CHARACTERIZATION VISHAL SAXENA VSAXENA@UIDAHO.EDU Vishal Saxena DESIGN PARAMETERS Analog circuit designers care about: Open-loop Gain: g m r o

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012 1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET D-FET (Depletion MOS) MOSFET (Enhancement E-FET) DC biasing Small signal

More information

EECS 105: FALL 06 FINAL

EECS 105: FALL 06 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

More information

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) SYLLABUS UNIT II VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 m CMOS Design

More information

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI Chapter 20 Current Mirrors Basics Long Channel Matching Biasing Short Channel Temperature Subthreshold Cascoding Simple Low Voltage, Wide Swing Wide Swing, Short Channel Regulated Drain Biasing Circuits

More information

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS 5.1 The MOS capacitor 5.2 The enhancement-type N-MOS transistor 5.3 I-V characteristics of enhancement mode MOSFETS 5.4 The PMOS transistor and CMOS technology 5.5

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues EE105 - Fall 006 Microelectronic evices and Circuits Prof. Jan M. Rabaey (jan@eecs Lecture 8: MOS Small Signal Model Some Administrative Issues REIEW Session Next Week Tu Sept 6 6:00-7:30pm; 060 alley

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. Quantitative MOSFET Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. V DS _ n source polysilicon gate y = y * 0 x metal interconnect to

More information

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

More information