Concepts Introduced. Digital Electronics. Logic Blocks. Truth Tables

Size: px
Start display at page:

Download "Concepts Introduced. Digital Electronics. Logic Blocks. Truth Tables"

Transcription

1 Concepts Introdced Digital Electronics trth tables, logic eqations, and gates combinational logic seqential logic Digital electronics operate at either high or low voltage. Compters se a binary representation since it matches the nderlying electronic states. Rather than referring to voltage levels, designers refer to signals as being asserted (logically tre) or deasserted (logically false). Logic locks Trth Tables logic block is a grop of logic elements that are connected in some way. Logic blocks are categorized into two types. combinational logic - logic system whose blocks do not contain memory and compte the same otpts given the same inpts. seqential logic - logic system that contains memory (state) whose vale depends on the inpts as well as the crrent contents of the memory. trth table is a table sed in logic to specify the otpts for each possible set of inpts, which is sefl for specifying combinational logic since combinational logic otpt only depends on its inpts. For a logic block with n inpts, there are 2 n entries in the trth table.

2 Trth Table Eample ssme D is tre if at least one inpt is tre, E is tre if eactly two inpts are tre, and F is tre only if all three inpts are tre. C D E F Logic Eqations Logic eqations provide a more concise way to specify logic. Logical OR operator for operands and is written as +. The reslt of the operation is called a logical sm. Logical ND operator for operands and is written as. The reslt of the operation is called a logical prodct. Logical not operator for operand is written as or. logic eqation performs logical operations on one or more inpts and prodces a single otpt. Logic Eqations Eample Gates What are the logic eqations for D, E, and F in the previos trth table, where D is tre if at least one inpt is tre, E is tre if eactly two inpts are tre, and F is tre only if all three inpts are tre? D = + + C E = ( C) + ( C) + ( C) F = C gate is a electronic device that implements basic logic fnctions. and or or not ^

3 NOR and NND Gates Logic locks ny logical fnction can be constrcted sing ND gates, OR gates, and inversion (NOT gates). ll logical fnctions can be constrcted with a single niversal gate type, if that gate is inverting. Two common inverting gates are the NOR and NND gates. nor nand Logic blocks are bilt from gates that implement basic logic fnctions. The eample below shows the logic gate implementation of + sing eplicit inverts on the left and bbbled inpts and otpts on the right. + Common Logic locks Decoders Gates connected together with no state elements are called combinational logic as its otpts depend only on its inpts. There are several combinational logic blocks that are commonly sed. decoders mltipleors programmable logic arrays (PLs) 3 decoder is a logic block that has an n-bit inpt and 2 n otpts, where only the ith otpt signal is asserted when the inpt combination represents the binary vale i. The following eample depicts 3-bit decoder and a trth table. This decoder is also called a 3-to-8 decoder since there are 3 inpts and 8 (2 3 ) otpts. Decoder Ot0 Ot1 Ot2 Ot3 Ot4 Ot5 Ot6 Ot Ot7 Ot6 Ot5 Ot4 Ot3 Ot2 Ot1 Ot a. 3-bit decoder b. The trth table for a 3-bit decoder

4 Implementing a 2-to-4 Decoder ltipleors elow is the trth table and logic block for a 2-to-4 decoder. The logic eqations for the trth table are: D0 = D1 = D2 = D3 = mltipleor is a device that selects from dierent inpt vales based on the setting of control lines. The gre below shows the symbol for a two-inpt mltipleor and its implementation with gates on the right. D3 D2 D1 D D0 D1 D2 0 1 C C D3 S S ltipleors in General rray of Logic Elements In general, if there are n data inpts, then there has to be log 2 n selector inpts. mltipleor consists of three parts. decoder that generates n signals, each indicating a dierent inpt vale. n array of n ND gates, each combining one of the inpts with a signal from the decoder. single OR gate that takes as inpt the otpts of the ND gates. any combinational operations are performed on data that is 32 bits wide. We can bild an array of similar logic elements and show that a given operation will occr on a collection of inpts. bs is a collection of data lines treated as one logical signal.

5 rray of Logic Elements Eample Two Level Logic Select Select C C31 C30 ny logic fnction can be written in a canonical form, where every inpt is a tre or complemented variable and there are only two levels of gates, consisting of one level being ND gates and the other level being OR gates. sm of prodcts is a canonical form that employs a logical sm (OR) of prodcts (terms joined sing the ND operator) C0 prodct of sms is a canonical form that employs a logical prodct (ND) of sms (terms joined sing the OR operator). a. 32-bit wide 2-to-1 mltipleor b. The 32-bit wide mltipleor is actally an array of 32 1-bit mltipleors Prodcing Sm of Prodcts from a Trth Table sm of prodcts representation can be prodced from a trth table. logical prodct is all the inpts or their complements when an entry is a 1 or 0, respectively. The sm of prodcts is the logical sm of the prodcts where the otpt is tre. Sm of prodcts for the otpts in the trth table are: D = C + C + C+ C + C + C+ C E = C + C + C F = C C D E F Programmable Logic rray (PL) Programmable logic arrays (PLs) are logic implementations that bild on the sm of prodcts representation. Has two stages of logic: First stage is an array of ND gates to form a set of prodct terms. Second stage is an array of OR gates to form a logical sm of the prodct terms. Prodct terms ND gates OR gates

6 PL Eample Read-Only emory (RO) elow is an eample PL implementing the logic fnction represented by the trth table. When drawing a logic block, dots are sed to indicate the connection between signal, inpt, and otpt lines. C D E F C D E F Read-only memory (RO) is ed at the time the RO is manfactred. RO has a set of inpt address lines and a set of otpts. RO with 2 m addressable entries (height) has m inpt lines. The nmber of bits in each addressable entry is eqal to the nmber of otpt bits (width). RO can encode the logic fnctions associated with a trth table. The entries in the inpt portion of the trth table represents the addresses of the entries of the RO. The contents of the otpt portion of the trth table comprise the contents of the RO. RO is similar to PL, ecept that the RO prodces a fll otpt word for every possible inpt combination (flly decoded). Universal LU Symbol elow is the niversal symbol that is sed to represent a complete LU. a LU operation LU Zero Reslt Overflow Clocks clock is a signal that ocsillates between low and high voltages in a ed period of time. The clock cycle time or clock period is the time between two transitions from a low voltage to high voltage (rising edges) or the time between two transitions from a high voltage to a low voltage (falling edges). Edge-triggered clocking means all state changes occr on the active (rising or falling) clock edge. Falling edge b CarryOt Clock period Rising edge

7 State Elements state element has some type of internal storage and at least two inpts and one otpt. The reqired inpts to a state element are the data vale to be written and the clock signal, which indicates when the data vale is to be written. The otpt from a state element is the vale that was written on a previos cycle. Some state elements are only written when there is an eplicit write signal is active. Synchronos System signal is valid when it is stable (not changing) and the vale will not change again ntil the inpts change. synchronos system is a logic system that employs clocks and data signals are read only when the clock indicates that the signal vales are stable (not changing). In a synchonos system, state elements provide inpts to a combinational logic block and the otpts of the combinational logic are stored in state elements, which occrs only on the active clock edge. State element 1 Combinational logic State element 2 Clock cycle Latches and Flip-Flops Latches and ip-ops are the simplest state elements. The dierence is the point at which the clock cases the state to change. In a clocked latch, the state can change when the clock signal is asserted and in a ip-op, the state is changed only on an active clock edge. Register Files register le of 32-bit vales can be implemented as an array of registers bilt from ip-ops, where each register reqires 32 ip-ops. Typically a register le has at least two read ports and one write port. Read register nmber 1 Read register nmber 2 Register file Write register Write data Write Read data 1 Read data 2

8 SR DR SR - Static Random ccess emory Used in caches. Usally has a single access port that can provide either a read or write access. Reqires 6 transistors per bit to prevent data from being corrpted when read and reqires 4 times the amont of space as compared to DR for each stored bit. Each bit vale is stored in a cell by sing a pair of inverting gates and the vale can be kept indenitely as long as power is applied, which is why SR is called static. SR assess time is abot 5 to 10 times faster than DR. SR is perhaps 20 times more epensive than DR. Synchronos SR (SSR) has a synchronos interface to allow brst transfers, where a clock is sed to transfer sccessive words given only a starting address and length. DR - Dynamic Random ccess emory Used for main memory. Reqires a single transistor per bit, which is lost after being read, so each read reqires that the data be written back. The vale representing a bit is kept in a cell that is stored as a charge in a capacitor that is accessed by the single transistor. DR reqires that the data be refreshed periodically, abot 1% to 2% of the cycles, which is why DR is called dynamic and is accomplished by reading the data and writing it back. Finite State achines The behavior of seqential systems depends on both the inpts and the contents of internal memory and nite state machines (FSs) are sed to describe their behavior. nite state machine consists of: set of states net-state fnction that given the crrent state and crrent inpts determines the net state. n otpt fnction that prodces a set of otpts from: the crrent state only (oore machine) the crrent state and the crrent inpts (ealy machine) The nite state machines we will eamine are synchronos meaning that a new state is compted once per clock cycle. Implementing a Finite State achine FS is implemented with a state register that holds the crrent state and a combinational logic block to compte the net state and the otpts. Combinational logic State register Net state

Instruction register. Data. Registers. Register # Memory data register

Instruction register. Data. Registers. Register # Memory data register Where we are headed Single Cycle Problems: what if we had a more complicated instrction like floating point? wastefl of area One Soltion: se a smaller cycle time have different instrctions take different

More information

Designing MIPS Processor

Designing MIPS Processor CSE 675.: Introdction to Compter Architectre Designing IPS Processor (lti-cycle) Presentation H Reading Assignment: 5.5,5.6 lti-cycle Design Principles Break p eection of each instrction into steps. The

More information

Review. Combined Datapath

Review. Combined Datapath Review Topics:. A single cycle implementation 2. State Diagrams. A mltiple cycle implementation COSC 22: Compter Organization Instrctor: Dr. Amir Asif Department of Compter Science York University Handot

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Topics: A multiple cycle implementation. Distributed Notes

Topics: A multiple cycle implementation. Distributed Notes COSC 22: Compter Organization Instrctor: Dr. Amir Asif Department of Compter Science York University Handot # lticycle Implementation of a IPS Processor Topics: A mltiple cycle implementation Distribted

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

Shift Register Counters

Shift Register Counters Shift Register Counters Shift register counter: a shift register with the serial output connected back to the serial input. They are classified as counters because they give a specified sequence of states.

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017 UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 2-2016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs Appendix B Review of Digital Logic Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Elect. & Comp. Eng. 2 DeMorgan Symbols NAND (A.B) = A +B NOR (A+B) = A.B AND A.B = A.B = (A +B ) OR

More information

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form S.E. Sem. III [EXTC] Digital System Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form [5] (i) (42) 10 (ii) (17)

More information

Lecture 3 Review on Digital Logic (Part 2)

Lecture 3 Review on Digital Logic (Part 2) Lecture 3 Review on Digital Logic (Part 2) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ircuit Optimization Simplest implementation ost criterion literal

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

04. What is the Mod number of the counter circuit shown below? Assume initially reset.

04. What is the Mod number of the counter circuit shown below? Assume initially reset. . Which of the following is the state diagram for the Meale machine shown below. 4. What is the Mod number of the counter circuit shown below? Assume initiall reset. input CLK D output D D a. b. / / /

More information

Problem Class 4. More State Machines (Problem Sheet 3 con t)

Problem Class 4. More State Machines (Problem Sheet 3 con t) Problem Class 4 More State Machines (Problem Sheet 3 con t) Peter Cheng Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.imperial.ac.k/pcheng/ee2_digital/ E-mail: p.cheng@imperial.ac.k

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Logic and Computer Design Fundamentals. Chapter 8 Sequencing and Control

Logic and Computer Design Fundamentals. Chapter 8 Sequencing and Control Logic and Computer Design Fundamentals Chapter 8 Sequencing and Control Datapath and Control Datapath - performs data transfer and processing operations Control Unit - Determines enabling and sequencing

More information

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics CMO Design Multi-input delay analysis pring 25 Transmission Gate OUT Z OUT Z pring 25 Transmission Gate OUT When is low, the output is at high impedance When is high, the output follows However,

More information

Chapter 4 Supervised learning:

Chapter 4 Supervised learning: Chapter 4 Spervised learning: Mltilayer Networks II Madaline Other Feedforward Networks Mltiple adalines of a sort as hidden nodes Weight change follows minimm distrbance principle Adaptive mlti-layer

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

1. Tractable and Intractable Computational Problems So far in the course we have seen many problems that have polynomial-time solutions; that is, on

1. Tractable and Intractable Computational Problems So far in the course we have seen many problems that have polynomial-time solutions; that is, on . Tractable and Intractable Comptational Problems So far in the corse we have seen many problems that have polynomial-time soltions; that is, on a problem instance of size n, the rnning time T (n) = O(n

More information

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation Outline Logic ircuits Introduction Logic Systems TTL MOS Logic Gates NOT, OR, N NOR, NN, XOR Implementation oolean lgebra ombinatorial ircuits Multipleer emultipleer rithmetic ircuits Simplifying Logic

More information

Designing Single-Cycle MIPS Processor

Designing Single-Cycle MIPS Processor CSE 32: Introdction to Compter Architectre Designing Single-Cycle IPS Processor Presentation G Stdy:.-. Gojko Babić 2/9/28 Introdction We're now ready to look at an implementation of the system that incldes

More information

On the circuit complexity of the standard and the Karatsuba methods of multiplying integers

On the circuit complexity of the standard and the Karatsuba methods of multiplying integers On the circit complexity of the standard and the Karatsba methods of mltiplying integers arxiv:1602.02362v1 [cs.ds] 7 Feb 2016 Igor S. Sergeev The goal of the present paper is to obtain accrate estimates

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

UNIVERSITY OF WISCONSIN MADISON

UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Minsub Shin, Lisa Ossian, Sujith Surendran Midterm Examination 2 In Class (50 minutes) Friday,

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 OMP2611: omputer Organization ombinational Logic OMP2611 Fall 2015 asics of Logic ircuits 2 its are the basis for binary number representation in digital computers ombining bits into patterns following

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control C and U Chart presented by Dr. Eng. Abed

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Topic 8: Sequential Circuits

Topic 8: Sequential Circuits Topic 8: Sequential Circuits Readings : Patterson & Hennesy, Appendix B.4 - B.6 Goals Basic Principles behind Memory Elements Clocks Applications of sequential circuits Introduction to the concept of the

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop EE210: Switching Systems Lecture 14: State Tables, Diagrams, Latches, and Flip Flop Prof. YingLi Tian Nov. 6, 2017 Department of Electrical Engineering The City College of New York The City University

More information

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm.

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm. Fall 2006 S333: omputer rchitecture University of Virginia omputer Science Michele o SR Language onventions lass 6: Intro to SR Simulator Register Transfers and Logic ircuits hapter 2, ppendix.5 2 SR Simulator

More information

VNVe 2017/ Final project

VNVe 2017/ Final project VNVe 2017/2018 - Final project Athor s name Febrary 21, 2018 Solve all examples and send yor final soltion (pdf file) and all sorce codes (LaTex, MATLAB,, ++, etc.) to e-mail address satek@fit.vtbr.cz

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Lecture 24. CMOS Logic Gates and Digital VLSI II

Lecture 24. CMOS Logic Gates and Digital VLSI II ecture 24 CMOS ogic Gates and Digital VSI II In this lecture you will learn: Static CMOS ogic Gates FET Scaling CMOS Memory, SRM and DRM CMOS atches, and Registers (Flip-Flops) Clocked CMOS CCDs CMOS ogic:

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction Chapter 5 igital systems digital system is any machine that processes information encoded in the form of digits. Modern digital systems use binary digits, encoded as voltage levels. Two voltage levels,

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1)"

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1) CMPE12 - Notes chapter 2 Digital Logic (Textbook Chapters 3.1-3.5 and 2.1)" Truth table" The most basic representation of a logic function." Brute force representation listing the output for all possible

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering SEQUENTIAL CIRCUITS: LATCHES Overview Circuits require memory to store intermediate

More information

The Digital Logic Level

The Digital Logic Level The Digital Logic Level Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables UNIT 8 Computer Circuitry: Layers of bstraction 1 oolean Logic & Truth Tables Computer circuitry works based on oolean logic: operations on true (1) and false (0) values. ( ND ) (Ruby: && ) 0 0 0 0 0 1

More information

Synchronous Sequential Logic

Synchronous Sequential Logic 1 IT 201 DIGITAL SYSTEMS DESIGN MODULE4 NOTES Synchronous Sequential Logic Sequential Circuits - A sequential circuit consists of a combinational circuit and a feedback through the storage elements in

More information

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

COMBINATIONAL LOGIC FUNCTIONS

COMBINATIONAL LOGIC FUNCTIONS COMBINATIONAL LOGIC FUNCTIONS Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends only on the present

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

4.4 Moment of a Force About a Line

4.4 Moment of a Force About a Line 4.4 Moment of a orce bot a Line 4.4 Moment of a orce bot a Line Eample 1, page 1 of 3 1. orce is applied to the end of gearshift lever DE. Determine the moment of abot shaft. State which wa the lever will

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each) Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Sequential Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design Sequential Logic Combinational circuits with memory

More information

CPU DESIGN The Single-Cycle Implementation

CPU DESIGN The Single-Cycle Implementation 22 ompter Organization Seqential vs. ombinational ircits Digital circits can be classified into two categories: DESIGN The Single-ycle Implementation. ombinational ircits: m, 2. Seqential ircits: flip-flops,

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

Fast Path-Based Neural Branch Prediction

Fast Path-Based Neural Branch Prediction Fast Path-Based Neral Branch Prediction Daniel A. Jiménez http://camino.rtgers.ed Department of Compter Science Rtgers, The State University of New Jersey Overview The context: microarchitectre Branch

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept. WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO

BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO UN IVERSIT Y O F CA LIFO RNI A AT BERKELEY BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO SAN TA BARBA RA S AN TA CRUZ De p a r tm en t of Ele ctr i ca l En gin e e rin g a

More information

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lectre Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 Prepared by, Dr. Sbhend Kmar Rath, BPUT, Odisha. Tring Machine- Miscellany UNIT 2 TURING MACHINE

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 3 Combinational Logic Circuits ELEN0040 3-4 1 Combinational Functional Blocks 1.1 Rudimentary Functions 1.2 Functions

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1 Memory Elements I CS31 Pascal Van Hentenryck CS031 Lecture 6 Page 1 Memory Elements (I) Combinational devices are good for computing Boolean functions pocket calculator Computers also need to remember

More information

Sequential vs. Combinational

Sequential vs. Combinational Sequential Circuits Sequential vs. Combinational Combinational Logic: Output depends only on current input TV channel selector (-9) inputs system outputs Sequential Logic: Output depends not only on current

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques s complement 2 s complement 1 s complement

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques s complement 2 s complement 1 s complement S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : Q.(a) (i) () (2) s COMPLEMENT s COMPLEMENT 2s COMPLEMENT 2s COMPLEMENT + Q.(a) (ii) ()

More information

Lecture 12: Pipelined Implementations: Control Hazards and Resolutions

Lecture 12: Pipelined Implementations: Control Hazards and Resolutions 18-447 Lectre 12: Pipelined Implementations: Control Hazards and Resoltions S 09 L12-1 James C. Hoe Dept of ECE, CU arch 2, 2009 Annoncements: Spring break net week!! Project 2 de the week after spring

More information

EECS 270 Midterm 2 Exam Answer Key Winter 2017

EECS 270 Midterm 2 Exam Answer Key Winter 2017 EES 270 Midterm 2 Exam nswer Key Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of the exam

More information

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 3. System Modeling Mathematical Modeling In designing control systems we mst be able to model engineered system dynamics. The model of a dynamic system

More information

vidyarthiplus.com vidyarthiplus.com vidyarthiplus.com ANNA UNIVERSITY- COMBATORE B.E./ B.TECH. DEGREE EXAMINATION - JUNE 2009. ELECTRICAL & ELECTONICS ENGG. - FOURTH SEMESTER DIGITAL LOGIC CIRCUITS PART-A

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL. 2017-18 XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL HALF ADDER 1. The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders. 2. A unit that adds two

More information

Synchronous Sequential Circuit

Synchronous Sequential Circuit Synchronous Sequential Circuit The change of internal state occurs in response to the synchronized clock pulses. Data are read during the clock pulse (e.g. rising-edge triggered) It is supposed to wait

More information

Konstruktion av Vippor och Latchar

Konstruktion av Vippor och Latchar Konstruktion av Vippor och Latchar Datorarkitektur 1 (1DT038) Fördjupning November 2009 karl.marklund@it.uu.se Om du läser IT (1DT038) är detta material överkurs du bör dock redan vara bekant med hur det

More information

An Investigation into Estimating Type B Degrees of Freedom

An Investigation into Estimating Type B Degrees of Freedom An Investigation into Estimating Type B Degrees of H. Castrp President, Integrated Sciences Grop Jne, 00 Backgrond The degrees of freedom associated with an ncertainty estimate qantifies the amont of information

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 17 Encoders and Decoders Overview Binary decoders Converts an n-bit code to a single active output Can be developed using AND/OR gates Can

More information

Digital Design. Sequential Logic

Digital Design. Sequential Logic Principles Of igital esign Chapter 6 Sequential Logic Chapter preview Boolean algebra 3 Logic gates and flip-flops 3 Finite-state machine 6 Logic design techniques 4 Sequential design techniques 6 Binary

More information

Sequential Circuits Sequential circuits combinational circuits state gate delay

Sequential Circuits Sequential circuits combinational circuits state gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1 Ch 7. Finite State Machines VII - Finite State Machines Contemporary Logic esign 1 Finite State Machines Sequential circuits primitive sequential elements combinational logic Models for representing sequential

More information

University of Minnesota Department of Electrical and Computer Engineering

University of Minnesota Department of Electrical and Computer Engineering University of Minnesota Department of Electrical and Computer Engineering EE2301 Fall 2008 Introduction to Digital System Design L. L. Kinney Final Eam (Closed Book) Solutions Please enter your name, ID

More information

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS

5. Sequential Logic x Computation Structures Part 1 Digital Circuits. Copyright 2015 MIT EECS 5. Sequential Logic 6.004x Computation Structures Part 1 igital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L5: Sequential Logic, Slide #1 Something We Can t Build (Yet) What if you were

More information

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1 Sequential Logic Handouts: Lecture Slides 6.4 - Spring 2 2/27/ L6 Sequential Logic Roadmap so far Fets & voltages Logic gates Combinational logic circuits Sequential Logic Voltage-based encoding V OL,

More information

Semiconductor memories

Semiconductor memories Semiconductor memories Semiconductor Memories Data in Write Memory cell Read Data out Some design issues : How many cells? Function? Power consuption? Access type? How fast are read/write operations? Semiconductor

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S.

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S. Pipelined Datapath Lectre notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 Reading (2) Pipeline Performance Assme time for stages is v ps for register read or write

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Midterm02 Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Thursday Nov. 16 th In normal lecture (13:00-14:15)

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information