DIGITAL LOGIC CIRCUITS

Size: px
Start display at page:

Download "DIGITAL LOGIC CIRCUITS"

Transcription

1 DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits

2 Digital Computers 2 LOGIC GATES Logic Gates - Imply that the computer deals with digital information, i.e., it deals with the information that is represented by binary digits - Why BINARY? instead of Decimal or other number system? * Consider electronic signal binary octal signal range * Consider the calculation cost - Add

3 3 BASIC LOGIC BLOCK - GATE - Logic Gates Binary Digital Input Signal... Gate Binary Digital Output Signal Types of Basic Logic Blocks - Combinational Logic Block Logic Blocks whose output logic value depends only on the input logic values - Sequential Logic Block Logic Blocks whose output logic value depends on the input values and the state (stored information) of the blocks Functions of Gates can be described by - Truth Table - Boolean Function - Karnaugh Map

4 A B 4 COMBINATIONAL GATES Name Symbol Function Truth Table AND OR A B A B X X X X = A B or X = AB X = A + B I A X X = A Buffer A X X = A NAND A X X = (AB) B NOR XOR Eclusive OR XNOR Eclusive NOR or Equivalence A B A B X X X = (A + B) X = A B or X = A B + AB X = (A B) or X = A B + AB A B X A B X A X 0 0 A X 0 0 A B X A B X A B X A B X Logic Gates

5 Boolean Algebra 5 BOOLEAN ALGEBRA Boolean Algebra * Algebra with Binary(Boolean) Variable and Logic Operations * Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits Truth Table - Input and Output signals can be represented by Boolean Variables, and - Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s) - From a Boolean function, a logic diagram can be constructed using AND, OR, and I * The most elementary specification of the function of a Digital Logic Circuit is the Truth Table - Table that describes the Output Values for all the combinations of the Input Values, called MINTERMS - n input variables 2 n minterms

6 Truth Table 6 LOGIC CIRCUIT DESIGN y z F Boolean Algebra Boolean Function F = + y z Logic Diagram y z F

7 7 BASIC IDENTITIES OF BOOLEAN ALGEBRA [] + 0 = [3] + = [5] + = [7] + = [9] + y = y + [] + (y + z) = ( + y) + z [3] (y + z) = y +z [5] ( + y) = y [7] ( ) = [2] 0 = 0 [4] = [6] = [8] X = 0 [0] y = y [2] (yz) = (y)z [4] + yz = ( + y)( + z) [6] (y) = + y [5] and [6] : De Morgan s Theorem Usefulness of this Table - Simplification of the Boolean function - Derivation of equivalent Boolean functions to obtain logic diagrams utilizing different logic gates -- Ordinarily ANDs, ORs, and Inverters -- But a certain different form of Boolean function may be convenient to obtain circuits with NANDs or NORs Applications of De Morgans Theorem y = ( + y) + y = (y) I, AND NOR I, OR NAND Boolean Algebra

8 8 EUIVALENT CIRCUITS Boolean Algebra Many different logic diagrams are possible for a given Function F = ABC + ABC + A C... () = AB(C + C ) + A C [3]... (2) = AB + A C [7] = AB + A C [4].... (3) () A B C F (2) A B C F (3) A B C F

9 9 COMPLEMENT OF FUNCTIONS Boolean Algebra A Boolean function of a digital logic circuit is represented by only using logical variables and AND, OR, and Invert operators. Complement of a Boolean function - Replace all the variables and subepressions in the parentheses appearing in the function epression with their respective complements A,B,...,Z,a,b,...,z A,B,...,Z,a,b,...,z (p + q) (p + q) - Replace all the operators with their respective complementary operators AND OR OR AND - Basically, etensive applications of the De Morgan s theorem ( n ) 2... n ( 2... n )' ' + 2 ' n '

10 0 SIMPLIFICATION Map Simplification Truth Table Unique Boolean Function Many different epressions eist Simplification from Boolean function - Finding an equivalent epression that is least epensive to implement - For a simple function, it is possible to obtain a simple epression for low cost implementation - But, with comple functions, it is a very difficult task Karnaugh Map (K-map) is a simple procedure for simplifying Boolean epressions. Truth Table Boolean function Karnaugh Map Simplified Boolean Function

11 KARNAUGH MAP Map Simplification Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products form of Boolean Function, or Truth Table) is - Rectangle divided into 2 n cells - Each cell is associated with a Minterm - An output(function) value for each input value associated with a mintern is written in the cell representing the minterm -cell, 0-cell Each Minterm is identified by a decimal number whose binary representation is identical to the binary interpretation of the input values of the minterm. F Identification of the cell Karnaugh Map value 0 0 of F F() = (0) y F y cell y F(,y) = (,2)

12 y z F u v w F KARNAUGH MAP yz y z yz uv w w u uv w F(,y,z) = (,2,4) F(u,v,w,) = (,3,6,8,9,,4) v Map Simplification

13 3 Map Simplification MAP SIMPLIFICATION - 2 ADJACENT CELLS - Adjacent cells Rule: y +y = (y+y ) = - binary identifications are different in one bit minterms associated with the adjacent cells have one variable complemented each other Cells (,0) and (,) are adjacent Minterms for (,0) and (,) are y --> =, y=0 y --> =, y= F = y + y can be reduced to F = From the map y adjacent cells y and y merge them to a larger cell F(,y) = (2,3) = y + y =

14 4 Map Simplification MAP SIMPLIFICATION - MORE THAN 2 CELLS - u v w + u v w + u v w + u v w = u v w ( +) + u v w(+ ) = u v w + u v w = u v (w +w) = u v w uv w vw u u v v uw w uv w u v v u u v w +u v w +u vw +u vw +uvw +uvw +uv w +uv w = u v w ( +) + u vw ( +) + uvw ( +) + uv w ( +) = u (v +v)w + u(v +v)w = (u +u)w = w uv w w u w v uv u w v V u

15 5 MAP SIMPLIFICATION Map Simplification uv w (0,), (0,2), (0,4), (0,8) Adjacent Cells of Adjacent Cells of 0 (,0), (,3), (,5), (,9) Adjacent Cells of 5 (5,7), (5,), (5,3), (5,4) w v 0 0 u F(u,v,w,) = (0,,2,9,3,5) Merge (0,) and (0,2) --> u v w + u v Merge (,9) --> v w Merge (9,3) --> uw Merge (3,5) --> uv F = u v w + u v + v w + uw + uv But (9,3) is covered by (,9) and (3,5) F = u v + v w + uv

16 6 IMPLEMENTATION OF K-MAPS - Sum-of-Products Form - Logic function represented by a Karnaugh map can be implemented in the form of I-AND-OR A cell or a collection of the adjacent -cells can be realized by an AND gate, with some inversion of the input variables. y z z y F(,y,z) = (0,2,6) y z y z z Map Simplification y z y z y z y z F z y z F I AND OR

17 7 Map Simplification IMPLEMENTATION OF K-MAPS - Product-of-Sums Form - Logic function represented by a Karnaugh map can be implemented in the form of I-OR-AND If we implement a Karnaugh map using 0-cells, the complement of F, i.e., F, can be obtained. Thus, by complementing F using DeMorgan s theorem F can be obtained F(,y,z) = (0,2,6) y y z z F = y + z F = (y )z = ( + y)z y z F I OR AND

18 8 IMPLEMENTATION OF K-MAPS - Don t-care Conditions - Map Simplification In some logic circuits, the output responses for some input conditions are don t care whether they are or 0. In K-maps, don t-care conditions are represented by d s in the corresponding cells. Don t-care conditions are useful in minimizing the logic functions using K-map. - Can be considered either or 0 - Thus increases the chances of merging cells into the larger cells --> Reduce the number of variables in the product terms y d d d z yz y z F

19 9 COMBINATIONAL LOGIC CIRCUITS Half Adder y c s Full Adder y c n- c n s y c n- y c = y c n y 0 c n- y 0 0 s = y + y = y c n = y + c n- + yc n- = y + ( y)c n- s = y c n- + yc n- +y c n- +yc n- = y c n- = ( y) c n- S c n 0 0 s y 0 0 Combinational Logic Circuits c n- y c s

20 20 Combinational Logic Circuits COMBINATIONAL LOGIC CIRCUITS Other Combinational Circuits Multipleer Encoder Decoder Parity Checker Parity Generator etc

21 2 MULTIPLEXER Combinational Logic Circuits 4-to- Multipleer Select Output S S 0 Y 0 0 I 0 0 I 0 I 2 I 3 I 0 I I 2 Y I 3 S 0 S

22 22 ENCODER/DECODER Combinational Logic Circuits Octal-to-Binary Encoder D D 2 D 3 D 4 D 5 D 6 D 7 A 0 A A 2 2-to-4 Decoder D 0 E A A 0 D 0 D D 2 D d d A 0 A E D D 2 D 3

23 23 FLIP FLOPS Flip Flops Characteristics - 2 stable states - Memory capability - Operation is specified by a Characteristic Table state -state In order to be used in the computer circuits, state of the flip flop should have input terminals and output terminals so that it can be set to a certain state, and its state can be read eternally. R S S R (t+) 0 0 (t) indeterminate (forbidden)

24 24 CLOCKED FLIP FLOPS Flip Flops In a large digital system with many flip flops, operations of individual flip flops are required to be synchronized to a clock pulse. Otherwise, the operations of the system may be unpredictable. R c (clock) S Clock pulse allows the flip flop to change state only when there is a clock pulse appearing at the c terminal. We call above flip flop a Clocked RS Latch, and symbolically as S c R operates when clock is high S c R operates when clock is low

25 25 Flip Flops RS-LATCH WITH PRESET AND CLEAR INPUTS P(preset) R c (clock) S clr(clear) S P c R clr S P c R clr S P c R clr S P c R clr

26 26 D-LATCH Flip Flops D-Latch Forbidden input values are forced not to occur by using an inverter between the inputs D E (enable) E D(data) D D (t+) 0 0 E

27 27 EDGE-TRIGGERED FLIP FLOPS Flip Flops Characteristics - State transition occurs at the rising edge or falling edge of the clock pulse Latches respond to the input only during these periods Edge-triggered Flip Flops (positive) respond to the input only at this time

28 28 POSITIVE EDGE-TRIGGERED Flip Flops D-Flip Flop D C S SR C R ' S2 2 SR2 C2 R2 2' ' D D-FF C ' JK-Flip Flop SR inactive SR2 active SR2 inactive SR2 inactive SR active SR active J K C S SR C R ' S2 2 SR2 C2 R2 2' ' J C K ' T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make T input. Toggles whenever there is a pulse on T input.

29 29 CLOCK PERIOD Flip Flops Clock period determines how fast the digital circuit operates. How can we determine the clock period? Usually, digital circuits are sequential circuits which has some flip flops FF FF... FF C... Combinational Logic Circuit... FF FF Delay Combinational Logic Circuit Combinational logic Delay t d FF FF Setup Time FF Hold Time t s,t h clock period T = t d + t s + t h

30 30 DESIGN EXAMPLE Design Procedure: Specification State Diagram State Table Ecitation Table Karnaugh Map Circuit Diagram Eample: 2-bit Counter -> 2 FF's =0 =0 = 0 = = = = =0 current net state input state FF inputs A B A B Ja Ka Jb Kb d 0 d d d d d d d d 0 0 d 0 d 0 d 0 d 0 d d d Sequential Circuits A B d d d d Ja A B d d d d Ka A B d d d d Jb A B d d d d Kb Ja = B Ka = B Jb = Kb = clock J C K ' A J C K ' B

31 3 SEUENTIAL CIRCUITS - Registers Sequential Circuits A 0 A A 2 A 3 D C D C D C D C Clock Shift Registers I 0 I I 2 I 3 Serial Input Clock D C Bidirectional Shift Register with Parallel Load D C D C D C A 0 A A 2 A 3 Serial Output D C D C D C D C 4 MUX 4 MUX 4 MUX 4 MUX Clock S 0 S SeriaI Input I 0 I I 2 I 3 Serial Input

32 32 SEUENTIUAL CIRCUITS - Sequential Circuits Counters A 0 A A 2 A 3 Clock J K J K J K J K Counter Enable Output Carry

33 33 MEMORY COMPONENTS 0 Logical Organization Memory Components words (byte, or n bytes) Random Access Memory N - - Each word has a unique address - Access to a word requires the same time independent of the location of the word - Organization n data input lines k address lines Read 2 k Words (n bits/word) Write n data output lines

34 34 READ ONLY MEMORY(ROM) Characteristics - Perform read operation only, write operation is not possible - Information stored in a ROM is made permanent during production, and cannot be changed - Organization k address input lines Memory Components m n ROM (m=2 k ) Information on the data output line depends only on the information on the address input lines. --> Combinational Logic Circuit address Canonical minterms n data output lines X 0 =A B + B C X =A B C + A BC X 2 =BC + AB C X 3 =A BC + AB X 4 =AB X 0 =A B C + A B C + AB C X =A B C + A BC X 2 =A BC + AB C + ABC X 3 =A BC + AB C + AB C X 4 =ABC + ABC Output ABC X 0 X X 2 X 3 X

35 35 TYPES OF ROM Memory Components ROM - Store information (function) during production - Mask is used in the production process - Unalterable - Low cost for large quantity production --> used in the final products PROM (Programmable ROM) - Store info electrically using PROM programmer at the user s site - Unalterable - Higher cost than ROM -> used in the system development phase -> Can be used in small quantity system EPROM (Erasable PROM) - Store info electrically using PROM programmer at the user s site - Stored info is erasable (alterable) using UV light (electrically in some devices) and rewriteable - Higher cost than PROM but reusable --> used in the system development phase. Not used in the system production due to erasability

36 36 INTEGRATED CIRCUITS Memory Components Classification by the Circuit Density SSI - MSI - LSI - VLSI - several (less than 0) independent gates 0 to 200 gates; Perform elementary digital functions; Decoder, adder, register, parity checker, etc 200 to few thousand gates; Digital subsystem Processor, memory, etc Thousands of gates; Digital system Microprocessor, memory module Classification by Technology TTL - ECL - MOS - Transistor-Transistor Logic Bipolar transistors NAND Emitter-coupled Logic Bipolar transistor NOR Metal-Oide Semiconductor Unipolar transistor High density CMOS - Complementary MOS Low power consumption

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, First Semester: 2017/2018 Dept. of Computer Engineering Course Title: Logic Circuits Date: 29/01/2018

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

vidyarthiplus.com vidyarthiplus.com vidyarthiplus.com ANNA UNIVERSITY- COMBATORE B.E./ B.TECH. DEGREE EXAMINATION - JUNE 2009. ELECTRICAL & ELECTONICS ENGG. - FOURTH SEMESTER DIGITAL LOGIC CIRCUITS PART-A

More information

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering Sp 6 Reg. No. Question Paper Code : 27156 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Computer Science and Engineering CS 6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

UNIVERSITI TENAGA NASIONAL. College of Information Technology

UNIVERSITI TENAGA NASIONAL. College of Information Technology UNIVERSITI TENAGA NASIONAL College of Information Technology BACHELOR OF COMPUTER SCIENCE (HONS.) FINAL EXAMINATION SEMESTER 2 2012/2013 DIGITAL SYSTEMS DESIGN (CSNB163) January 2013 Time allowed: 3 hours

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I : BOOLEAN ALGEBRA AND LOGIC GATES PART - A (2 MARKS) Number

More information

SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS

SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS Unit : I - V Unit : I Overview Fundamentals of Computers Characteristics of Computers Computer Language Operating Systems Generation of Computers 2 Definition of

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, Second Semester: 2015/2016 Dept. of Computer Engineering Course Title: Logic Circuits Date: 08/06/2016

More information

Digital Logic Appendix A

Digital Logic Appendix A Digital Logic Appendix A Boolean Algebra Gates Combinatorial Circuits Sequential Circuits 1 Boolean Algebra George Boole ideas 1854 Claude Shannon, apply to circuit design, 1938 Describe digital circuitry

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

Chapter 7 Logic Circuits

Chapter 7 Logic Circuits Chapter 7 Logic Circuits Goal. Advantages of digital technology compared to analog technology. 2. Terminology of Digital Circuits. 3. Convert Numbers between Decimal, Binary and Other forms. 5. Binary

More information

Boolean Algebra. Digital Logic Appendix A. Postulates, Identities in Boolean Algebra How can I manipulate expressions?

Boolean Algebra. Digital Logic Appendix A. Postulates, Identities in Boolean Algebra How can I manipulate expressions? Digital Logic Appendix A Gates Combinatorial Circuits Sequential Circuits Other operations NAND A NAND B = NOT ( A ANDB) = AB NOR A NOR B = NOT ( A ORB) = A + B Truth tables What is the result of the operation

More information

ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN VALUES

ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN VALUES EC 216(R-15) Total No. of Questions :09] [Total No. of Pages : 02 II/IV B.Tech. DEGREE EXAMINATIONS, DECEMBER- 2016 First Semester ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms Chapter 2 (Lect 2) Canonical and Standard Forms Sum of Minterms Product of Maxterms Standard Form Sum of products Product of sums Other Logic Operators Logic Gates Basic and Multiple Inputs Positive and

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

EC-121 Digital Logic Design

EC-121 Digital Logic Design EC-121 Digital Logic Design Lecture 2 [Updated on 02-04-18] Boolean Algebra and Logic Gates Dr Hashim Ali Spring 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Overview What

More information

Gates and Flip-Flops

Gates and Flip-Flops Gates and Flip-Flops Chris Kervick (11355511) With Evan Sheridan and Tom Power December 2012 On a scale of 1 to 10, how likely is it that this question is using binary?...4? What s a 4? Abstract The operation

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Lecture 22 Chapters 3 Logic Circuits Part 1

Lecture 22 Chapters 3 Logic Circuits Part 1 Lecture 22 Chapters 3 Logic Circuits Part 1 LC-3 Data Path Revisited How are the components Seen here implemented? 5-2 Computing Layers Problems Algorithms Language Instruction Set Architecture Microarchitecture

More information

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE Estd-1984 KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE 641 006 QUESTION BANK UNIT I PART A ISO 9001:2000 Certified 1. Convert (100001110.010) 2 to a decimal number. 2. Find the canonical SOP for the function

More information

Boolean Algebra. Digital Logic Appendix A. Boolean Algebra Other operations. Boolean Algebra. Postulates, Identities in Boolean Algebra

Boolean Algebra. Digital Logic Appendix A. Boolean Algebra Other operations. Boolean Algebra. Postulates, Identities in Boolean Algebra Digital Logic Appendix A Gates Combinatorial Circuits Sequential Circuits George Boole ideas 1854 Claude Shannon, apply to circuit design, 1938 (piirisuunnittelu) Describe digital circuitry function programming

More information

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12] Q.1(a) (i) Derive AND gate and OR gate

More information

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Eperiment and Design of Electronics LOGIC GATES Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Boolean algebra Logic gates Karnaugh maps

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Review for the Final Stephen A. Edwards Columbia University Summer 25 The Final 2 hours 8 problems Closed book Simple calculators are OK, but unnecessary One double-sided

More information

Digital Design. Digital Design

Digital Design. Digital Design Principles Of Digital Design Chapter 3 Boolean Algebra and Logic Design Boolean Algebra Logic Gates Digital Design Implementation Technology ASICs Gate Arrays Basic Algebraic Properties A set is a collection

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Digital logic circuits BINARY NUMBER SYSTEM electronic circuits that handle information encoded in binary form (deal with signals that have only two values, and ) Digital. computers,

More information

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code:

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each) Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Lecture 9: Digital Electronics

Lecture 9: Digital Electronics Introduction: We can classify the building blocks of a circuit or system as being either analog or digital in nature. If we focus on voltage as the circuit parameter of interest: nalog: The voltage can

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates The most common postulates used to formulate various algebraic structures are: 1. Closure. N={1,2,3,4 }, for any a,b N we obtain a unique c N by the operation

More information

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture. AMD Quad Core CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS TYPICAL QUESTIONS & ANSWERS PART - I OJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAN gate output will be low if the two inputs

More information

Fundamentals of Boolean Algebra

Fundamentals of Boolean Algebra UNIT-II 1 Fundamentals of Boolean Algebra Basic Postulates Postulate 1 (Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more elements and the two operators and

More information

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12]

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 4.1.1 Signal... 4 4.1.2 Comparison of Analog and Digital Signal... 7 4.2 Number Systems... 7 4.2.1 Decimal Number System... 7 4.2.2 Binary

More information

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL. 2017-18 XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL HALF ADDER 1. The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders. 2. A unit that adds two

More information

Philadelphia University Faculty of Engineering

Philadelphia University Faculty of Engineering Philadelphia University Faculty of Engineering Marking Scheme Exam Paper BSc CE Logic Circuits (630211) Final Exam First semester ate: 03/02/2019 Section 1 Weighting 40% of the module total Lecturer: Coordinator:

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Review for the Midterm Stephen A. Edwards Columbia University Spring 22 The Midterm 75 minutes 4 5 problems Closed book Simple calculators are OK, but unnecessary One double-sided

More information

Logic. Combinational. inputs. outputs. the result. system can

Logic. Combinational. inputs. outputs. the result. system can Digital Electronics Combinational Logic Functions Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

DE58/DC58 LOGIC DESIGN DEC 2014

DE58/DC58 LOGIC DESIGN DEC 2014 Q.2 a. In a base-5 number system, 3 digit representations is used. Find out (i) Number of distinct quantities that can be represented.(ii) Representation of highest decimal number in base-5. Since, r=5

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 28 Combinational Building Blocks Lecture 5: Announcements Lab 2 prelab due tomorrow HW due Friday HW 2 to be posted on Thursday Lecture 4 to be replayed

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL

More information

3 Logic Function Realization with MSI Circuits

3 Logic Function Realization with MSI Circuits 3 Logic Function Realization with MSI Circuits Half adder A half-adder is a combinational circuit with two binary inputs (augund and addend bits) and two binary outputs (sum and carry bits). It adds the

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals Digital Concepts Slide 2 What?

More information

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function Question Paper Digital Electronics (EE-204-F) MDU Examination May 2015 1. (a) represent (32)10 in (i) BCD 8421 code (ii) Excess-3 code (iii) ASCII code (b) Design half adder using only NAND gates. ( c)

More information

Lecture A: Logic Design and Gates

Lecture A: Logic Design and Gates Lecture A: Logic Design and Gates Syllabus My office hours 9.15-10.35am T,Th or gchoi@ece.tamu.edu 333G WERC Text: Brown and Vranesic Fundamentals of Digital Logic,» Buy it.. Or borrow it» Other book:

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

/ M Morris Mano Digital Design Ahmad_911@hotmailcom / / / / wwwuqucscom Binary Systems Introduction - Digital Systems - The Conversion Between Numbering Systems - From Binary To Decimal - Octet To Decimal

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

PART-A. 2. Expand ASCII and BCD ASCII American Standard Code for Information Interchange BCD Binary Coded Decimal

PART-A. 2. Expand ASCII and BCD ASCII American Standard Code for Information Interchange BCD Binary Coded Decimal PART-A 1. What is radix? Give the radix for binary, octal, decimal and hexadecimal Radix is the total number of digits used in a particular number system Binary - 2 (0,1) Octal - 8 (0 to 7) Decimal - 10

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

COMBINATIONAL LOGIC FUNCTIONS

COMBINATIONAL LOGIC FUNCTIONS COMBINATIONAL LOGIC FUNCTIONS Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends only on the present

More information

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1)"

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1) CMPE12 - Notes chapter 2 Digital Logic (Textbook Chapters 3.1-3.5 and 2.1)" Truth table" The most basic representation of a logic function." Brute force representation listing the output for all possible

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

DIGITAL LOGIC DESIGN

DIGITAL LOGIC DESIGN DIGITAL LOGIC DESIGN NUMBERS SYSTEMS AND CODES Any number in one base system can be converted into another base system Types 1) decimal to any base 2) Any base to decimal 3) Any base to Any base Complements

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept. WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

S.E. Sem. III [ETRX] Digital Circuit Design. t phl. Fig.: Input and output voltage waveforms to define propagation delay times.

S.E. Sem. III [ETRX] Digital Circuit Design. t phl. Fig.: Input and output voltage waveforms to define propagation delay times. S.E. Sem. III [ETRX] Digital ircuit Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80. Solve following : [20].(a) Explain characteristics of logic families. [5] haracteristics of logic families are

More information

University of Minnesota Department of Electrical and Computer Engineering

University of Minnesota Department of Electrical and Computer Engineering University of Minnesota Department of Electrical and Computer Engineering EE2301 Fall 2008 Introduction to Digital System Design L. L. Kinney Final Eam (Closed Book) Solutions Please enter your name, ID

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Sequential circuit: A circuit that includes memory elements. In this case the output depends not only on the current input but also on the past inputs. Memory A synchronous

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

Vidyalankar S.E. Sem. III [EXTC] Digital Electronics Prelim Question Paper Solution ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD = B

Vidyalankar S.E. Sem. III [EXTC] Digital Electronics Prelim Question Paper Solution ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD = B . (a). (b). (c) S.E. Sem. III [EXTC] igital Electronics Prelim Question Paper Solution ABC ABC ABC ABC ABC ABC ABC ABC = B LHS = ABC ABC ABC ABC ABC ABC ABC ABC But ( ) = = ABC( ) ABC( ) ABC( ) ABC( )

More information

CHAPTER 7. Exercises 17/ / /2 2 0

CHAPTER 7. Exercises 17/ / /2 2 0 CHAPTER 7 Exercises E7. (a) For the whole part, we have: Quotient Remainders 23/2 /2 5 5/2 2 2/2 0 /2 0 Reading the remainders in reverse order, we obtain: 23 0 = 0 2 For the fractional part we have 2

More information

Textbook: Digital Design, 3 rd. Edition M. Morris Mano

Textbook: Digital Design, 3 rd. Edition M. Morris Mano : 25/5/ P-/70 Tetbook: Digital Design, 3 rd. Edition M. Morris Mano Prentice-Hall, Inc. : INSTRUCTOR : CHING-LUNG SU E-mail: kevinsu@yuntech.edu.tw Chapter 3 25/5/ P-2/70 Chapter 3 Gate-Level Minimization

More information

Synchronous Sequential Circuit

Synchronous Sequential Circuit Synchronous Sequential Circuit The change of internal state occurs in response to the synchronized clock pulses. Data are read during the clock pulse (e.g. rising-edge triggered) It is supposed to wait

More information

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables UNIT 8 Computer Circuitry: Layers of bstraction 1 oolean Logic & Truth Tables Computer circuitry works based on oolean logic: operations on true (1) and false (0) values. ( ND ) (Ruby: && ) 0 0 0 0 0 1

More information

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Sequential Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design Sequential Logic Combinational circuits with memory

More information

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400)

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400) P57/67 Lec9, P Digital Electronics Introduction: In electronics we can classify the building blocks of a circuit or system as being either analog or digital in nature. If we focus on voltage as the circuit

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Final Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Tuesday Dec 12 th 13:00-15:00 (1-3pm) 2 hour

More information

Logic Gate Level. Part 2

Logic Gate Level. Part 2 Logic Gate Level Part 2 Constructing Boolean expression from First method: write nonparenthesized OR of ANDs Each AND is a 1 in the result column of the truth table Works best for table with relatively

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

COE 202: Digital Logic Design Sequential Circuits Part 4. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 4. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 4 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Registers Counters Registers 0 1 n-1 A register is a group

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI DEPARTMENT: ECE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6 QUESTION BANK SUBJECT NAME: DIGITAL ELECTRONICS UNIT : Design of Sequential Circuits PART A ( Marks). Draw the logic diagram 4: Multiplexer.(AUC

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Sequential vs. Combinational

Sequential vs. Combinational Sequential Circuits Sequential vs. Combinational Combinational Logic: Output depends only on current input TV channel selector (-9) inputs system outputs Sequential Logic: Output depends not only on current

More information

Synchronous Sequential Logic

Synchronous Sequential Logic 1 IT 201 DIGITAL SYSTEMS DESIGN MODULE4 NOTES Synchronous Sequential Logic Sequential Circuits - A sequential circuit consists of a combinational circuit and a feedback through the storage elements in

More information

CPE/EE 422/522. Chapter 1 - Review of Logic Design Fundamentals. Dr. Rhonda Kay Gaede UAH. 1.1 Combinational Logic

CPE/EE 422/522. Chapter 1 - Review of Logic Design Fundamentals. Dr. Rhonda Kay Gaede UAH. 1.1 Combinational Logic CPE/EE 422/522 Chapter - Review of Logic Design Fundamentals Dr. Rhonda Kay Gaede UAH UAH Chapter CPE/EE 422/522. Combinational Logic Combinational Logic has no control inputs. When the inputs to a combinational

More information

A B D 1 Y D 2 D 3. Truth table for 4 to 1 MUX: A B Y 0 0 D D D D 3

A B D 1 Y D 2 D 3. Truth table for 4 to 1 MUX: A B Y 0 0 D D D D 3 . What is a multiplexer? esign a 4 to multiplexer using logic gates. Write the truth table and explain its working principle. Answer: is a circuit with many inputs but only one output. esigning of 4 to

More information