Equivalent Circuit Model Extraction for Interconnects in 3D ICs

Size: px
Start display at page:

Download "Equivalent Circuit Model Extraction for Interconnects in 3D ICs"

Transcription

1 Equivalent Circuit Model Extraction for Interconnects in 3D ICs A. Ege Engin Assistant Professor, Department of ECE, San Diego State University ASP-DAC, Jan. 23, 213

2 Outline 3D IC technologies Power consumption & bandwidth Parasitic RC model extraction for throughsilicon vias (TSVs) Analytical modeling (circular TSVs) Model fitting (arbitrary cross section) RC curve fitting (including microbumps, RDLs, etc.) Engin 2

3 3D IC Integration Microstrip line Chip 1 Package Chip 2 Vias Stripline Vdd Vss 3D Integration Using TSV Technology PCB Vdd Vss TSV Package PCB Vdd Vss Reduced form factor Heterogeneous integration On-chip signaling consumes less power than I/Os Reduced signal delay Increased bus width Engin 3

4 Electrical Design of TSVs TSVs are the major new components in 3D ICs. The parasitic capacitance, inductance, and resistance of a TSV will dictate its performance to improve power consumption and bandwidth. Crosstalk among multiple TSVs Engin 4

5 Size Comparison of TSVs Ref: Intel. T. Karnik D. Somasekhar S. Borkar, Microprocessor system applications and challenges for through-silicon-via-based three-dimensional integration, IET 211. Ref: Chang Liu and Sung Kyu Lim, A Design Tradeoff Study with Monolithic 3D Integration, ISQED 212 Engin 5

6 RC Model of a TSV Pair t dep t ox r via TSV 1 C 1 G 1 C TSV ref C 1 SiO 2 Si G 1 and C 1 can be obtained from two-wire capacitance formulas. Depletion region Cu d Depletion width (due to MOS capacitance): Engin 6

7 Slow-Wave to Dielectric Quasi-TEM Mode Transition G 1 = C 1 σ Si ε Si G 1 C 1 C C 1 At low frequencies, the wave propagation will be in slow-wave mode: Magnetic field is not affected by the presence of the lossy silicon, hence the loop inductance is same as if the two vias were in free space. Capacitance, however, is a side wall capacitance defined by the gate-oxide thickness and depletion widths, since silicon behaves more as a lossy conductor than a dielectric. Slow-wave mode: TSV capacitance is a sidewall capacitance Transition frequency: Quasi-TEM mode: TSV capacitance is a via-tovia capacitance Engin 7

8 Capacitance and Conductance of Coupled TSVs Consider that there are other TSVs in the vicinity of the original TSV pair. The presence of other TSVs do not affect the side-wall capacitances Ci, however the capacitances through the Silicon layer Cij change in the presence of other TSVs. Hence, the formulas for a single TSV pair cannot be applied for this configuration. The full coupled TSVs need to be simultaneously considered. TSV 1 C n1 d n1 C 1 G n1 TSV n C n C n G 1 C 1 G n C d n TSV ref d 1 Engin 8

9 Multi-Conductor Transmission Line Model This is a general coupled TSV model similar to the representation of a multiconductor transmission line in terms of its per unit length parameters. Capacitance and conductance matrix: L nn Z n L n1 Z 1 L 11 Cn1 C n C 1 G n1 C n G n C 1 G 1 Inductance matrix: Z ref C r via Internal impedance: Δz +r via +t ox +t dep Engin 9

10 TSV Crosstalk Port 1 Port 2 TSV 1 TSV ref TSV 2 D G N Port 3 Port 4 Engin 1

11 TSV Crosstalk Engin 11

12 Via Array with 1um Pitch Engin 12

13 Y 34 Y 35 Y 44 Y 14 Y 15 Y 33 Y 11 Y 12 Y 13 Results Re(Analytical) Re(Simulation) Im(Analytical) Im(Simulation) Engin 13

14 Via Array with 5um Pitch Engin 14

15 Y 34 Y 35 Y 44 Y 14 Y 15 Y 33 Y 11 Y 12 Y Results Re(Analytical) Re(Simulation) Im(Analytical) Im(Simulation) Engin 15

16 G C [F] Model Fitting for a Single Pair Cu 2.4 x Simulation Extracted C ox C dep G Si C dep C ox 1.4 C Si 1.2 SiO 2 Depletion region Si 5 x Simulation Extracted G Si G 1 2 C ox C dep C Si C dep C ox C 1 C C Engin 16

17 Model Fitting for N TSVs Problem: Extract C i, C i,j, G i,j from simulation or measurement N TSV n N C n1 G n1 C n G n C n C n C n1 G n1 C n G n d n1 d n 1 C 1 C 1 G 1 TSV 1 C 1 G 1 C 1 d 1 C TSV ref Oxide capacitances extracted at lowest frequency C 1 Substrate capacitances and conductances extracted at high frequency Engin 17

18 Model Fitting Steps N C n 1 C 1 C N C n1 G n1 C n G n 1 G 1 C 1 Engin 18

19 Y 34 Y 35 Y 44 Y 14 Y 15 Y 33 Y 11 Y 12 Y 13 Model Fitting for 5um Pitch TSVs Re(Model) Re(Simulation) Im(Model) Im(Simulation) Engin 19

20 Square-Shaped TSVs Engin 2

21 Y 24 Y 33 Y 34 Y 14 Y 22 Y 23 Y 11 Y 12 Y 13 Results Re(Model) Re(Simulation) Im(Model) Im(Simulation) -6-6 Engin 21

22 3D Structures Substrate Contact Redistribution Layers Engin 22

23 C [F] G Analytical Method Does not work for general 3D structures! 4.5 x Analytical With RDL With substrate contact Without substrate contact 6 x Analytical With RDL With substrate contact Without substrate contact Engin 23

24 C [F] C [F] Model Fitting Does not work for general 3D structures! 4.5 x Simulation Extracted 4.5 x Simulation Extracted Substrate Contact 1 RDL Engin 24

25 RC Vector Fitting A general approach is curve fitting a rational function: All residues and constant terms are non-negative for RC network: c, k i All poles are non-positive real: p i We modify the standard vector fitting algorithm to enforce an RC model using non-negative least squares c H( j 1 ) k H ( j k ) j k p1 j k p M km M Z RC = Y RC s = c + k i i=1 s p i Engin 25

26 RC Vector Fitting for RDL Excellent match using 3 poles RC model can easily be generated from pole-residue description Engin 26

27 Summary Pre-layout: Analytical method and model fitting can be used to have rough estimate of self and mutual capacitance and conductance. Post-layout: 3D EM simulation needed in the presence of substrate contacts, active devices, and RDLs. Model extraction can be done using RC vector fitting. Engin 27

Engineering Electromagnetics- 1 Lecture 1: Introduction and Class outline

Engineering Electromagnetics- 1 Lecture 1: Introduction and Class outline Engineering Electromagnetics- 1 Lecture 1: Introduction and outline ksyoung@skku.edu School of Information and Communication Engineering Sungkyunkwan University Course Information meets at 3:00 pm or 4:30

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Thermal-reliable 3D Clock-tree Synthesis Considering Nonlinear Electrical-thermal-coupled TSV Model

Thermal-reliable 3D Clock-tree Synthesis Considering Nonlinear Electrical-thermal-coupled TSV Model Thermal-reliable 3D Clock-tree Synthesis Considering Nonlinear Electrical-thermal-coupled TSV Model Yang Shang 1, Chun Zhang 1, Hao Yu 1, Chuan Seng Tan 1, Xin Zhao 2, Sung Kyu Lim 2 1 School of Electrical

More information

ELECTROMAGNETIC MODELING OF THREE DIMENSIONAL INTEGRATED CIRCUITS MENTOR GRAPHICS

ELECTROMAGNETIC MODELING OF THREE DIMENSIONAL INTEGRATED CIRCUITS MENTOR GRAPHICS ELECTROMAGNETIC MODELING OF THREE DIMENSIONAL INTEGRATED CIRCUITS MENTOR GRAPHICS H I G H S P E E D D E S I G N W H I T E P A P E R w w w. m e n t o r. c o m / p c b INTRODUCTION Three Dimensional Integrated

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

The Wire EE141. Microelettronica

The Wire EE141. Microelettronica The Wire 1 Interconnect Impact on Chip 2 Example: a Bus Network transmitters receivers schematics physical 3 Wire Models All-inclusive model Capacitance-only 4 Impact of Interconnect Parasitics Interconnect

More information

Analysis of TSV-to-TSV Coupling with High-Impedance Termination in 3D ICs

Analysis of TSV-to-TSV Coupling with High-Impedance Termination in 3D ICs Analysis of -to- Coupling with -Impedance Termination in 3D ICs Taigon Song, Chang Liu, Dae Hyun Kim, and Sung Kyu Lim School of Electrical and Computer Engineering, Georgia Institute of Technology, U.S.A.

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

ECE 497 JS Lecture - 18 Impact of Scaling

ECE 497 JS Lecture - 18 Impact of Scaling ECE 497 JS Lecture - 18 Impact of Scaling Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 8 th Speaker: Prof.

More information

Svetlana Carsof Sejas García

Svetlana Carsof Sejas García Characterization and modeling of passive components and interconnects using microwave techniques By Svetlana Carsof Sejas García A thesis Submitted to the Program in Electronics Science, Electronic Department,

More information

A Precise Model of TSV Parasitic Capacitance Considering Temperature for 3D IC DENG Quan ZHANG Min-Xuan ZHAO Zhen-Yu LI Peng

A Precise Model of TSV Parasitic Capacitance Considering Temperature for 3D IC DENG Quan ZHANG Min-Xuan ZHAO Zhen-Yu LI Peng International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015) A Precise Model of TSV Parasitic Capacitance Considering Temperature for 3D IC DENG Quan ZHANG Min-Xuan

More information

Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits

Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits E = B; H = J + D D = ρ ; B = 0 D = ρ ; B = 0 Yehia Massoud ECE Department Rice University Grasping The Deep Sub-Micron Challenge in POWERFUL Integrated Circuits ECE Affiliates 10/8/2003 Background: Integrated

More information

Modeling and optimization of noise coupling in TSV-based 3D ICs

Modeling and optimization of noise coupling in TSV-based 3D ICs LETTER IEICE Electronics Express, Vol.11, No.20, 1 7 Modeling and optimization of noise coupling in TSV-based 3D ICs Yingbo Zhao, Yintang Yang, and Gang Dong a) School of Microelectronics, Xidian University,

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Wire July 30, 2002 1 The Wire transmitters receivers schematics physical 2 Interconnect Impact on

More information

Chapter 2. Design and Fabrication of VLSI Devices

Chapter 2. Design and Fabrication of VLSI Devices Chapter 2 Design and Fabrication of VLSI Devices Jason Cong 1 Design and Fabrication of VLSI Devices Objectives: To study the materials used in fabrication of VLSI devices. To study the structure of devices

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

ECE520 VLSI Design. Lecture 8: Interconnect Manufacturing and Modeling. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 8: Interconnect Manufacturing and Modeling. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 8: Interconnect Manufacturing and Modeling Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review

More information

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003 Interconnect (2) Buffering Techniques.Transmission Lines Lecture 12 18-322 Fall 2003 A few announcements Partners Lab Due Times Midterm 1 is nearly here Date: 10/14/02, time: 3:00-4:20PM, place: in class

More information

Transmission Lines. Author: Michael Leddige

Transmission Lines. Author: Michael Leddige Transmission Lines Author: Michael Leddige 1 Contents PCB Transmission line structures Equivalent Circuits and Key Parameters Lossless Transmission Line Analysis Driving Reflections Systems Reactive Elements

More information

Modeling of Multiconductor Microstrip Systems on Microwave Integrated Circuits

Modeling of Multiconductor Microstrip Systems on Microwave Integrated Circuits Modeling of Multiconductor Microstrip Systems on Microwave Integrated Circuits S. M. Musa, M. N. O. Sadiku, and K. T. Harris Roy G. Perry College of Engineering, Prairie View A&M University Prairie View,

More information

PDN Tool: Ananalytical Model to Calculate the Input Impedance of Chip and Silicon Interposer Power Distribution

PDN Tool: Ananalytical Model to Calculate the Input Impedance of Chip and Silicon Interposer Power Distribution Journal of Contemporary Electronic Research Education and Research Application Research Article PDN Tool: Ananalytical Model to Calculate the Input Impedance of Chip and Silicon Interposer Power Distribution

More information

Analytical Modeling the Substrate Effect in Symmetric Coupled Interconnects of High-Speed VLSI Circuits

Analytical Modeling the Substrate Effect in Symmetric Coupled Interconnects of High-Speed VLSI Circuits 30 Revista de Física Aplicada e Instrumentação, vol. 17, no. 1, Março, 2003 Analytical Modeling the Substrate Effect in Symmetric Coupled Interconnects of High-Speed VLSI Circuits H. Ymeri a, B. Nauwelaers

More information

EE141-Spring 2008 Digital Integrated Circuits EE141. Announcements EECS141 EE141. Lecture 24: Wires

EE141-Spring 2008 Digital Integrated Circuits EE141. Announcements EECS141 EE141. Lecture 24: Wires EE141-Spring 2008 Digital Integrated Circuits Lecture 24: Wires 1 Announcements Hw 8 posted last graded homework Project phase II feedback to be expected anytime 2 Material Last Lecture: Wire capacitance

More information

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) James E. Morris Dept of Electrical & Computer Engineering Portland State University 1 Lecture topics

More information

Research Challenges and Opportunities. in 3D Integrated Circuits. Jan 30, 2009

Research Challenges and Opportunities. in 3D Integrated Circuits. Jan 30, 2009 Jan 3, 29 Research Challenges and Opportunities in 3D Integrated Circuits Ankur Jain ankur.jain@freescale.com, ankurjain@stanfordalumni.org Freescale Semiconductor, Inc. 28. 1 What is Three-dimensional

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

PRESENT advanced microprocessor designs rely heavily

PRESENT advanced microprocessor designs rely heavily IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 28, NO. 1, FEBRUARY 2005 57 Experimental Validation of Crosstalk Simulations for On-Chip Interconnects Using S-Parameters Mauro J. Kobrinsky, Sourav Chakravarty,

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Coupling Capacitance in Face-to-Face (F2F) Bonded 3D ICs: Trends and Implications

Coupling Capacitance in Face-to-Face (F2F) Bonded 3D ICs: Trends and Implications Coupling Capacitance in Face-to-Face (F2F) Bonded 3D ICs: Trends and Implications Taigon Song *1, Arthur Nieuwoudt *2, Yun Seop Yu *3 and Sung Kyu Lim *1 *1 School of Electrical and Computer Engineering,

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Lecture #39. Transistor Scaling

Lecture #39. Transistor Scaling Lecture #39 ANNOUNCEMENT Pick up graded HW assignments and exams (78 Cory) Lecture #40 will be the last formal lecture. Class on Friday will be dedicated to a course review (with sample problems). Discussion

More information

EE141-Spring 2007 Digital Integrated Circuits. Administrative Stuff. Last Lecture. Wires. Interconnect Impact on Chip. The Wire

EE141-Spring 2007 Digital Integrated Circuits. Administrative Stuff. Last Lecture. Wires. Interconnect Impact on Chip. The Wire EE141-Spring 2007 Digital Integrated Circuits ecture 10 Administrative Stuff No ab this week Midterm 1 on Tu! HW5 to be posted by next Friday Due Fr. March 2 5pm Introduction to wires 1 2 ast ecture ast

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

THROUGH-SILICON-VIA (TSV) and 3-D integrated

THROUGH-SILICON-VIA (TSV) and 3-D integrated 1636 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 5, MAY 2016 Full-Chip Signal Integrity Analysis and Optimization of 3-D ICs Taigon Song, Student Member, IEEE, Chang

More information

Microwave Engineering 3e Author - D. Pozar

Microwave Engineering 3e Author - D. Pozar Microwave Engineering 3e Author - D. Pozar Sections 3.6 3.8 Presented by Alex Higgins 1 Outline Section 3.6 Surface Waves on a Grounded Dielectric Slab Section 3.7 Stripline Section 3.8 Microstrip An Investigation

More information

Interconnect s Role in Deep Submicron. Second class to first class

Interconnect s Role in Deep Submicron. Second class to first class Interconnect s Role in Deep Submicron Dennis Sylvester EE 219 November 3, 1998 Second class to first class Interconnect effects are no longer secondary # of wires # of devices More metal levels RC delay

More information

Digital Integrated Circuits. The Wire * Fuyuzhuo. *Thanks for Dr.Guoyong.SHI for his slides contributed for the talk. Digital IC.

Digital Integrated Circuits. The Wire * Fuyuzhuo. *Thanks for Dr.Guoyong.SHI for his slides contributed for the talk. Digital IC. Digital Integrated Circuits The Wire * Fuyuzhuo *Thanks for Dr.Guoyong.SHI for his slides contributed for the talk Introduction The Wire transmitters receivers schematics physical 2 Interconnect Impact

More information

Electrical Characterization for Intertier Connections and Timing Analysis for 3-D ICs

Electrical Characterization for Intertier Connections and Timing Analysis for 3-D ICs IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1 Electrical Characterization for Intertier Connections and Timing Analysis for 3-D ICs Xiaoxia Wu, Wei Zhao, Mark Nakamoto, Chandra Nimmagadda,

More information

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) SYLLABUS UNIT II VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 m CMOS Design

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

Electromagnetic Parameters Extraction for Integrated-circuit Interconnects for Open Three conductors with Two Levels Systems

Electromagnetic Parameters Extraction for Integrated-circuit Interconnects for Open Three conductors with Two Levels Systems Electromagnetic Parameters Extraction for Integrated-circuit Interconnects for Open Three conductors with Two Levels Systems S. M. Musa, M. N. O. Sadiku, and J. D. Oliver Corresponding author: S.M. Musa

More information

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Frank Y. Yuan Viewlogic Systems Group, Inc. 385 Del Norte Road

More information

Transmission Line Basics

Transmission Line Basics Transmission Line Basics Prof. Tzong-Lin Wu NTUEE 1 Outlines Transmission Lines in Planar structure. Key Parameters for Transmission Lines. Transmission Line Equations. Analysis Approach for Z and T d

More information

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics Lecture 23 Dealing with Interconnect Impact of Interconnect Parasitics Reduce Reliability Affect Performance Classes of Parasitics Capacitive Resistive Inductive 1 INTERCONNECT Dealing with Capacitance

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: PDP, EDP, Intersignal Correlations, Glitching, Top

More information

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters 1 Scaling of MOS Circuits CONTENTS 1. What is scaling?. Why scaling? 3. Figure(s) of Merit (FoM) for scaling 4. International Technology Roadmap for Semiconductors (ITRS) 5. Scaling models 6. Scaling factors

More information

Interconnects. Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. ECE 261 James Morizio 1

Interconnects. Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. ECE 261 James Morizio 1 Interconnects Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters ECE 261 James Morizio 1 Introduction Chips are mostly made of wires called interconnect In stick diagram,

More information

Chapter 2 3D Integration Technology

Chapter 2 3D Integration Technology Chapter 2 3D Integration Technology Yuan Xie and Qiaosha Zou Abstract The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, is one of the

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution - Fall 2002 Lecture 25 Interconnect Effects I/O, Power Distribution Announcements Homework 9 due next Tuesday Hardware lab this week Project phase 2 due in two weeks 1 Today s Lecture Impact of interconnects»

More information

Electrical Package Design TKK 2009 Lecture 2

Electrical Package Design TKK 2009 Lecture 2 Electrical Package Design TKK 2009 Lecture 2 James E. Morris Dept of Electrical & Computer Engineering Portland State University i Electrical Package Design Lecture topics A: Introduction CMOS; R, L, &

More information

Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling

Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling Victor Moroz *, Munkang Choi *, Geert Van der Plas, Paul Marchal, Kristof Croes, and Eric Beyne * Motivation: Build Reliable 3D IC

More information

Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines

Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 115 Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines L. Zhang and J. M. Song Iowa

More information

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix Accounting for High Frequency Transmission Line Loss Effects in HFSS Andrew Byers Tektronix Transmission Line Refresher γ = α + j β = (R + jωl) * (G + jωc) Zo = Zr + j Zi = (R + jωl) / (G + jωc) Transmission

More information

Interconnects. Introduction

Interconnects. Introduction Interconnects Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters ECE 261 Krish Chakrabarty 1 Introduction Chips are mostly made of ires called interconnect In stick diagram,

More information

ECE 451 Transmission Lines & Packaging

ECE 451 Transmission Lines & Packaging Transmission Lines & Packaging Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Radio Spectrum Bands The use of letters to designate bands has long ago

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

More information

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen Lecture 040 Integrated Circuit Technology - II (5/11/03) Page 040-1 LECTURE 040 INTEGRATED CIRCUIT TECHNOLOGY - II (Reference [7,8]) Objective The objective of this presentation is: 1.) Illustrate and

More information

Scaling of Interconnections

Scaling of Interconnections EE 311 Notes/Prof Saraswat of ions of Minimum Feature size and Chip Area 10 10 4 1 pr oduction 10 3 logic 0.1 de velopment 10 2 memor y 0.01 10 1 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 Year

More information

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L5: Fabrication and Layout -2 (12.8.2013) B. Mazhari Dept. of EE, IIT Kanpur 44 Passive Components: Resistor Besides MOS transistors, sometimes one requires to implement passive

More information

ECE 598 JS Lecture 06 Multiconductors

ECE 598 JS Lecture 06 Multiconductors ECE 598 JS Lecture 06 Multiconductors Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES

More information

Module 2 : Transmission Lines. Lecture 1 : Transmission Lines in Practice. Objectives. In this course you will learn the following

Module 2 : Transmission Lines. Lecture 1 : Transmission Lines in Practice. Objectives. In this course you will learn the following Objectives In this course you will learn the following Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10 Point 11 Point 12 Various Types Of Transmission Line Explanation:

More information

ECE 497 JS Lecture -07 Planar Transmission Lines

ECE 497 JS Lecture -07 Planar Transmission Lines ECE 497 JS Lecture -07 Planar Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Microstrip ε Z o w/h < 3.3 2 119.9 h h =

More information

Homework Assignment #5 EE 477 Spring 2017 Professor Parker

Homework Assignment #5 EE 477 Spring 2017 Professor Parker Homework Assignment #5 EE 477 Spring 2017 Professor Parker Question 1: (15%) Compute the worst-case rising and falling RC time constants at point B of the circuit below using the Elmore delay method. Assume

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 13, 2017 Variation; I/O Circuits, Inductive Noise Lecture Outline! Design Quality " Variation! Packaging! Variation and Testing!

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Omar M. Ramahi University of Waterloo Waterloo, Ontario, Canada

Omar M. Ramahi University of Waterloo Waterloo, Ontario, Canada Omar M. Ramahi University of Waterloo Waterloo, Ontario, Canada Traditional Material!! Electromagnetic Wave ε, μ r r The only properties an electromagnetic wave sees: 1. Electric permittivity, ε 2. Magnetic

More information

A New, Accurate Quasi-Static Model for Conductor Loss in Coplanar Waveguide

A New, Accurate Quasi-Static Model for Conductor Loss in Coplanar Waveguide A New, Accurate Quasi-Static Model for Conductor Loss in Coplanar Waveguide M. S. Islam, E. Tuncer, D. P. Neikirk Dept. of Electrical & Computer Engineering Austin, Texas Conductor loss calculation techniques

More information

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost! Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and

More information

PDN Planning and Capacitor Selection, Part 1

PDN Planning and Capacitor Selection, Part 1 by Barry Olney column BEYOND DESIGN PDN Planning and Capacitor Selection, Part 1 In my first column on power distribution network (PDN) planning, Beyond Design: Power Distribution Network Planning, I described

More information

Website: vlsicad.ucsd.edu/ courses/ ece260bw05. ECE 260B CSE 241A Parasitic Extraction 1

Website:  vlsicad.ucsd.edu/ courses/ ece260bw05. ECE 260B CSE 241A Parasitic Extraction 1 ECE260B CSE241A Winter 2005 Parasitic Extraction Website: / courses/ ece260bw05 ECE 260B CSE 241A Parasitic Extraction 1 Conventional Design Flow Funct. Spec RTL Behav. Simul. Logic Synth. Stat. Wire Model

More information

Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines

Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines International Journal of Computing and Digital Systems ISSN (20-142X) Int. J. Com. Dig. Sys. 3, No.3 (Sep-2014) Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines Sarhan M. Musa and

More information

Characteristics of Passive IC Devices

Characteristics of Passive IC Devices 008/Oct 8 esistors Characteristics of Passive IC Devices Poly esistance Diffusion esistance Well esistance Parasitic esistance Capacitors Poly Capacitors MOS Capacitors MIM Capacitors Parasitic Capacitors

More information

Transmission Line Basics II - Class 6

Transmission Line Basics II - Class 6 Transmission Line Basics II - Class 6 Prerequisite Reading assignment: CH2 Acknowledgements: Intel Bus Boot Camp: Michael Leddige Agenda 2 The Transmission Line Concept Transmission line equivalent circuits

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

Session 8C-5: Inductive Issues in Power Grids and Packages. Controlling Inductive Cross-talk and Power in Off-chip Buses using CODECs

Session 8C-5: Inductive Issues in Power Grids and Packages. Controlling Inductive Cross-talk and Power in Off-chip Buses using CODECs ASP-DAC 2006 Session 8C-5: Inductive Issues in Power Grids and Packages Controlling Inductive Cross-talk and Power in Off-chip Buses using CODECs Authors: Brock J. LaMeres Agilent Technologies Kanupriya

More information

Stability and Passivity of the Super Node Algorithm for EM Modeling of IC s

Stability and Passivity of the Super Node Algorithm for EM Modeling of IC s Stability and Passivity of the Super Node Algorithm for EM Modeling of IC s M.V. Ugryumova and W.H.A. Schilders Abstract The super node algorithm performs model order reduction based on physical principles.

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Causal Modeling and Extraction of Dielectric Constant and Loss Tangent for Thin Dielectrics

Causal Modeling and Extraction of Dielectric Constant and Loss Tangent for Thin Dielectrics Causal Modeling and Extraction of Dielectric Constant and Loss Tangent for Thin Dielectrics A. Ege Engin 1, Abdemanaf Tambawala 1, Madhavan Swaminathan 1, Swapan Bhattacharya 1, Pranabes Pramanik 2, Kazuhiro

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN70: High-Speed Links Circuits and Systems Spring 07 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Lab Lab begins

More information

COMPUTATION OF WIRE AND JUNCTION CAPACITANCE IN VLSI STRUCTURES

COMPUTATION OF WIRE AND JUNCTION CAPACITANCE IN VLSI STRUCTURES COMPUTATION OF WIRE AND JUNCTION CAPACITANCE IN VLSI STRUCTURES F. Straker, s. Selberherr Abteilung fur Physikalische Elektronik Institut flir allgemeine Elektrotechnik und Elektronik Technische Universitat

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

DesignConEast 2005 Track 4: Power and Packaging (4-WA1)

DesignConEast 2005 Track 4: Power and Packaging (4-WA1) DesignConEast 2005 Track 4: Power and Packaging (4-WA1) Design of a Low-Power Differential Repeater Using Low-Voltage Swing and Charge Recycling Authors: Brock J. LaMeres, University of Colorado / Sunil

More information

SCSI Connector and Cable Modeling from TDR Measurements

SCSI Connector and Cable Modeling from TDR Measurements SCSI Connector and Cable Modeling from TDR Measurements Dima Smolyansky TDA Systems, Inc. http://www.tdasystems.com Presented at SCSI Signal Modeling Study Group Rochester, MN, December 1, 1999 Outline

More information

ECE260B CSE241A Winter Interconnects. Website:

ECE260B CSE241A Winter Interconnects. Website: ECE260B CSE241A Winter 2004 Interconnects Website: http://vlsicad.ucsd.edu/courses/ece260b-w04 ECE 260B CSE 241A Interconnects 1 Outline Interconnects Resistance Capacitance and Inductance Delay ECE 260B

More information

CS/EE N-type Transistor

CS/EE N-type Transistor CS/EE 6710 MOS Transistor Models Electrical Effects Propagation Delay N-type Transistor D + G Vds i electrons +Vgs S - 1 Another Cutaway View Thanks to National Central University for Some images Vgs Forms

More information

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004 Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation Agilent EEsof RFIC Seminar Spring Overview Spiral Inductor Models Availability & Limitations Momentum

More information

Structure-Dependent Dielectric Constant in Thin Laminate Substrates

Structure-Dependent Dielectric Constant in Thin Laminate Substrates Structure-Dependent Dielectric Constant in Thin Laminate Substrates by Hyun-Tai Kim, Kai Liu*, Yong-Taek Lee, Gwang Kim, Billy Ahn and Robert C. Frye STATS ChipPAC, Ltd. San 136-1 Ami-ri Bubal-eup Ichon-si

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

LAYOUT TECHNIQUES. Dr. Ivan Grech

LAYOUT TECHNIQUES. Dr. Ivan Grech LAYOUT TECHNIQUES OUTLINE Transistor Layout Resistor Layout Capacitor Layout Floor planning Mixed A/D Layout Automatic Analog Layout Layout Techniques Main Layers in a typical Double-Poly, Double-Metal

More information

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance 1 Seminar Spacer Lithography for Reduced Variability in MOSFET Performance Prof. Tsu-Jae King Liu Electrical Engineering & Computer Sciences Dept. University of California at Berkeley Graduate Student:

More information