3. Modeling of MOSFET for analog design. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

Size: px
Start display at page:

Download "3. Modeling of MOSFET for analog design. Kanazawa University Microelectronics Research Lab. Akio Kitagawa"

Transcription

1 3. Modelig of MOSFET for aalog desig Kaazawa Uiversity Microelectroics Research Lab. Akio Kitagawa

2 SPCE model of MOSFET Model Feature Level 1 Basic physical model(l > 10um Level 3 Basic semi-empirical fittig model (L > 1um, Short-chael effect BSM3v3 Berkeley Short-chael GFET Model, L > 130m BSM4 L < 90m, High frequecy EKV Ez-Krummeacher-Vittoz, High precisio, Sub-threshold regio HiSM Hiroshima-Uiv. STARC GFET Model, L < 90m, High frequecy BSM4: model_ame NMOS/PMOS Level=54 + vto=0.5 + kp=33e-6 model # (The assigmet of model depeds o the + circuit simulator.

3 Model umber Model HSPCE, SmartSpice Berkeley SPCE Level BSM3 49/ BSM BSMSO EPFL-EKV 55 1 HiSMHV1. 73 LTspice NOTE1: terchage betwee Spectre ad SPCE is possible by usig a format idicator for Spectre ad SPCE simulator lag = spice // after here, SPCE format simulator lag = spectre // after here, Spectre format 3

4 (1 DC characteristics of log chael MOSFET 4

5 Dimesioal parameter of MOSFET poly (G cotact S p-active -active B S Field Oxide FOX p+ p-well -sub x j + G L eff D D D + L cotact FOX Cotact W p-well G t m t ox poly FOX FOX p-well -sub W eff The desig parameter of MOSFET is L ad W. L: Gate legth t W: Gate width oxf L eff : Effective chael legth W eff : Effective chael width x j : Juctio depth t ox : Gate oxide thickess t oxf : Field oxide thickess t m : poly-si thickess 5

6 L ad W of MOSFET Aalog circuit: Several times larger L tha miimum L The productio tolerace ad mismatch are improved by usig larger L. The chael oise i MOSFET is suppressed by usig larger L*W. The operatig frequecy rage is decreased by usig larger L. (Disadvatage Very large W/L is required for curret drive stregth of MOSFET. (Disadvatage Logic circuits: Miimum L The DC trasfer characteristic of the logic gate desiged oly i W/L. The small L achieves a small circuit area. The small L achieves a shot delay time. 6

7 Carrier trasport mechaism i MOSFET Weak iversio (Sub-threshold regio Strog iversio (Liear ad Saturatio regio Electro Eergy electro Expoetial -V Diffusio electro S(+ Chael (p D(+ S(+ Parabolic or liear -V Drift Chael (p D(+ Distace from source electrode Distace from source electrode 7

8 V - Characteristic Weak iversio Strog iversio Liear (Triode (1st order VVgs G D S ds Vds V -ch MOSFET Sub-threshold (expoetial Saturatio (d order V V 8

9 V - Characteristic V V V Liear (d order V V V Saturatio (costat VVgs G D S ds Vds V -ch MOSFET V V V Δ OV =V -V V V Sub-threshold V 9

10 Model equatio i liear regio Gradual Chael Approximatio W L {( V C OX {( V V V V V 1 V } 1 V } 1st order for V d order for V : C V OX : : Electro mobility [m /Vs] GOX capacitace per area [F/m ] Threshold V SB = 0 [V] 10

11 Boudary betwee liear ad saturatio regio d dv {( V V V } 0 V V V V V V Liear V V V Saturatio V V V 11

12 Model equatio i saturatio regio Gradual Chael Approximatio + Boudary equatio V V {( V V ( V V V // Boudary betwee liear ad saturatio regio ( V V 1 ( V V } d order for V No depedece o V 1

13 p-ch ad -ch MOSFET The -ch MOSFET ad p-ch MOSFET have a complemetary characteristics. -ch V = V V -ch V Tp V V p-ch V p-ch V = V V Tp : We assume directio flowig ito a drai plus. 13

14 Chael legth modulatio parameter V V V (Saturatig Chael legth = L eff ΔL (ΔL is proportioal to V 0.5 The drai curret icreases gradually after saturatio, because the chael legth is decreasig. ( V V Above-metioed {1 ( V 0V V V Source OV V } Gate p V Drai ΔL V Chael legth parameter (Lambda Pich-off Short L Log L V 14

15 Substrate bias effect Vds VVgs VbsV BS V V FB 1 B Si 0 q N A(B VBS C OX mpurity cocetratio i chael Substrate bias The V shifts upwards for V BS < 0. Some desiger is applyig this effect to cotrol the threshold voltage of MOSFET, but the MOSFET caot operate for V BS > 0. 15

16 Example of simulatio result o V shift V (V V BS (V V 16

17 Substrate bias i the circuit operatio The short-circuit with S ad B of each trasistor prevets substrate bias effect. However, the p-well has to be divided, because the well potetial of M1 ad M is differet. M V BS = 0 V BS < 0 M1 V BS = 0 V BS = 0 No substrate bias Normal coectio 17

18 Sub-threshold Characteristic Very small curret is observed for V V ( 対数 expoetial 1/ Slope S factor V log ( 10 S V 18

19 Model equatio i sub-threshold regio V V W L 0 q ( V V exp{ m k T B } m 1 C C D OX Expoetial for V depeds o the chael width ad temperature. C OX : GOX capacitace per area C D : Capacitace of MOS depletio layer per area 19

20 Model equatio of -ch MOSFET V V V < V -V V > V -V V > V 1 {( V V V} V (Liear ( V ( V V V {1 ( V OV } (Saturatio V < V (V > 0.1V W L 0 q ( V V exp{ mk T B } (Sub-threshold W L C OX 0 C SiO OX 1 t OX m C OX : GOX capacitace per area (F/m 1 C C D OX :Field effect mobility of electro (m /Vsec V > 0 (Ehacemet mode VVgs G D S ds Vds V 0

21 Model equatio of p-ch MOSFET V V V > V -VTp V < V -VTp V < VTp 1 p{( V VTp V} V (Liear p p ( V ( V V V Tp Tp {1 ( V OV } (Saturatio V > VTp (V < 0.1V C p OX W L p p 0 C SiO p 1 t OX OX m C OX : GOX capacitace per area (F/m 1 C C D OX W L p p 0 q ( V V exp{ mk T :Field effect mobility of hole (m /Vsec B Tp } (Sub-threshold V Tp < 0 (Ehacemet mode VVgs G S D Vds V ds 1

22 Gate overdrive voltage Δ OV Saturatio coditio: V > V V T = ΔOV OV V V T C OX W ( L (W/L = cost. = cost. Δ OV V (W/L (W/L Dsat Δ OV V V Δ OV V

23 ( DC characteristics of short chael MOSFET 3

24 fluece of scalig dow to L < 0.3μm Short chael effect The threshold voltage V T is decreased with decreasig L. The three-dimesioal distributio of the electric field i the MOSFET depeds o a aspect ratio of cross sectio. The -V curve shows the liear characteristic i the saturatio regio ad the boudary of liear ad saturatio regio is obscured. The stregth of electric field i the chael is very high ad the electro veracity i the chael is saturated. The leak curret of the sub-threshold regio is icreased. The V cotributes the geeratio of the chael, ad the tuelig curret is icreased with icreasig the electric field of drai edge. The simulatio model cosiderig to the short chael effect have to be used. 4

25 L-depedece of V T fluctuatio of L The fluctuatio of V T is sesitive to the fluctuatio of L of the short chael MOSFET. ΔV T V T Depletio layer + p + L The amout of the charge cotrolled by V is decreased with decreasig L. The impurity cocetratio i chael is equivaletly decreased ad V T is lowered. 5

26 Saturatio of the drift velocity Low electric field: Proportioal to the stregth of the electric field High electric field: Saturated for the stregth of the electric field Drift Velocity (cm/s 10 7 Electro v E Hole Electric Field (V/cm v sat ( V W C L V OX v E v v sat (low E (high E 6

27 Degradatio of S factor 0.35 m 0.5 m Drai Curret (A Decreasig Threshold Voltage creasig Sub-threshold (Cut-off Curret Gate Voltage V (V 7

28 Characteristics of Short chael MOSFET Pich-off voltage Log Chael MOSFET ( V V {1 ( V OV } V d order characteristic for V Short Chael MOSFET W v sat C OX ( V V {1 ( V OV } v sat : Saturatio velocity of the carrier velocity-saturatio voltage V V 1st order characteristic for V V 8

29 (3 Capacitace-Voltage (C-V characteristics 9

30 Parasitic capacitace i MOSFET Overlap Capacitace betwee G-D ad G-S (costat B C OV C GB S G D L Capacitace betwee G-B (depedig o the bias voltage Cross sectio p+ + + p C PN L OV L D p juctio capacitace of D ad S layer (depedig o the bias voltage 30

31 Bias depedece of p juctio capacitace (C PN -1 p-type Potetial V Depletio layer type The ioized door ad acceptor works as a electric double layer capacitor. Forward bias Zero bias Reverse bias V B -V PN V B V B +V PN Positio x The width of depletio layer depeds o the bias voltage. 31

32 Bias depedece of p juctio capacitace (C PN - Model equatio Measured curve C PN Model equatio of C-V characteristic C PN S 0 Si d CPN (0V VPN 1 V B Juctio area Depletio layer width V B : Built-i Potetial ~0.6~0.9V Reverse bias V PN 0 ~0.6V Forward bias NOTE: This equatio is obtaied accordig to depletio layer capacitace, ad caot be applicable to estimate the forward bias capacitace, because the ijected miority carrier play a roll of a electric double layer capacitor (usually large value i the high-level ijectio coditio. 3

33 Bias depedece of MOS (C MOS -1 Electro eergy lieup of the strog iversio for p-substrate MOS for V GB > V Electro eergy qv OX d OX Depletio layer q φ S V GB = V OX +φ S C OX C S V GB qv GB Gate electrode SiO p-type Si Chael Depletio layer C OX : GOX capacitace per area C S : Depletio layer capacitace per area V GB V OX ox COX S si CS Equivalet circuit V GB V OX OX COX S C C S S V GB 33

34 Bias depedece of MOS (C MOS - the weak iversio for p-substrate MOS for V GB < V Depletio layer ad GOX capacitace per area C S OX 0 Si xd 0 t OX SiO C Total capacitace 1 CMOS 1 1 C C OX S Width of depletio layer xd S C 0 SiS qn OX A COX C S V GB 34

35 Bias depedece of MOS (C MOS -3 C-V characteristic of MOS capacitor C C MOS CMOS C OX 1 C OX 1 C S 1 ( V GB C C OX The depletio layer width caot grow aymore with icreasig V GB i the strog iversio coditio, ad Cs is fixed at Cs(V. C MOS 1 C OX 1 C S 1 ( V 0 V V GB 35

36 terelectrode capacitace of MOSFET B C OX S G D C ov C gs = C ov + (V C OX C gd = C ov The variable α(v depeds o the bias coditio. α(v ~ /3 i the strog iversio coditio (liear regio ad saturatio regio. p+ C j ( V + + p ~3 C j 1 (0 V B C ds = C j 36

37 Model of iterelectrode C GD D C DB capacitace G C S C GB C SB B Capacitace idepedet o bias CGDO: G-D overlap capacitace CO: G-S overlap capacitace CGBO: G-B overlap capacitace Label Sub-threshold regio Liear regio Saturatio regio C GD CGDO*W 0.5*C OX *W*L CGDO*W C DB C j *W*L D C j *W*L D C j *W*L D C GB C OX *W*L eff CGBO*L CGBO*L C CO*W 0.5*C OX *W*L /3*C OX *W*L C SB C j *W*L S C j *W*L S C j *W*L S 37

38 (4 AC characteristics 38

39 Biasig for MOSFET operatio Aalog circuit operates with biasig The DC bias is applied to perform The MOSFETs are operated i the saturatio regio ad sometimes i the liear regio ad sub-threshold regio if eeded. The small-sigal parameters are depeds o the bias curret i the saturatio regio. The bias curret is desiged with the circuit parameter V ad W/L. Digital circuit does ot requires the idea of biasig Logic value '1' Liear(p-ch, Sub-threshold(-ch Logic value '0' Liear(-ch, Sub-threshold(p-ch '1' '0' trasitio = Saturatio regio(p-ch ad -ch 39

40 Trascoductace g m -1 The trascoductace g m expresses ability for amplificatio of the MOSFET. Slope = g m V V y 1 g m V NOTE: Small-sigal parameters of p-ch ad -ch MOSFET are give by the same expressio, because the small-sigal parameters coected to the slope of the DC characteristics. Bias V V Bias V = V T + Δ OV 40

41 Trascoductace g m - Bias curret depedece of g m V < V (Sub-threshold regio g m W L W L 0 0 q ( V V exp{ mk T q m k B B } q ( V V exp{ T m k T V > V (Saturatio regio B } liear regio V ds =V gs -V t0 saturatio regio V gs q mkbt V Velocity saturatio MOSFET Log Chael (E sat L >> V -V Short Chael (E sat L < V -V ( V V v WC ( V V g m ( V V V V g m v sat sat WC OX OX 41

42 Trascoductace g m -3 Circuit performace depedig o OV Gai/power ratio g OV g m m ( V V OV V OV OV Small Δ OV is better. Sesitivity for V T fluctuatio V OV OV V V OV Large Δ OV is better. 4

43 Bias curret depedece of g m The previous equatios are simplified assumig m =1. The parameter m is derived from the depedece of C d o V. gm ds q mkt m 1 Cd Cox W Cox L gm/ds gm ds Vgs V T m ds gm gm sat ( 一定 log (gm/ds q ds gm m kt gm gm ds m gm ds gm ds sat log gm termediate 遷移領域 iversio Weak 弱反転領域 iversio Strog 強反転領域 iversio Velocity 速度飽和領域 saturatio log ds 43

44 Optimizatio of Δ OV Δ OV depeds o W/L, ad. g m ad the productio tolerace depeds o Δ OV. Therefore, there is a reasoable rage i a value of Δ OV. The value of V is usually chose amog the rage of OV = 0.15V~0.30V Typically OV = 0.V VT V The rage of OV ~0.V V = V T + Δ OV 44

45 Output coductace g ds g ds i saturatio regio y g ds ( V V V {1 ( V ( V V (V > V -V OV } V =V -V liear regio saturatio regio Slope(liear = g ds Slope(saturatio = g ds V g ds i liear regio y {( V g ds V V V {( V 1 V V } V } (V < V -V 45

46 G y parameters of MOSFET D G S Small-sigal equivalet circuit Cgd Cgs gm vgs gds Cds D i i gs ds y y 11 1 y y y1 y 11 1 y y 1 v v j C g m gs ds gs g 0 ds G Cgs gm vgs gds D S Small-sigal equivalet circuit (C gs icludes C gb g g m ds Simplified equivalet circuit (C gs >> C gd i a saturatio regio S 46

47 h parameters of MOSFET v 1 i 1 gm v1 i D Cgs gds v Cgd G gds Small-sigal equivalet circuit v i 1 h h 11 1 h h h h h h 1 i v 1 1 j C gm j C gs gs g 0 ds whe f T Cgs Trasitio Frequecy f gm C gs S f T, h1 1 ( 0dB where g m depeds o W/L ad (log chael h 1 i i1 v 0 gm j C gs i i 1 j C g m v 1 gs v 1 ( v 0 47

48 Trasitio Frequecy f T The frequecy for the curret gai h 1 = 1 Log chael MOS C g f m T ( V d dv OX C V gs T W L depedig o the bias curret d B dv BE g B m f Short chael MOS g m T _ peak BE v SAT d dv C OX W ( V v gs SAT C OX V W vsatcoxw vsatcoxw vsat C C WL L qv kt BE S ( e 1 q B kt dc d B dv dv BE d d C B q kt T OX idepedet o the bias [Ref.] g m of bipolar juctio trasistor (BJT B h fe q kt C 48

49 RF ad mixed sigal techology tred 1000 Peak Trasitio Frequecy (GHz Bipolar (priority=speed CMOS (priority=low Stadby Power Bipolar (Normal CMOS (priority=precisio Bipoar (priority=high voltage, for RF power amp

50 (5 heret oise 50

51 Quatificatio of the oise PSD: Power Spectrum Desity of oise PSD v oise ( f (V /Hz RMS oise voltage i the bad from f L to f H f f L H v ( f df oise RMS oise power i the bad from f L to f H (V 1 f H R f L v oise ( f df (W 51

52 Source of iheret oise 1. Thermal oise (Johso oise Radom movemet of carrier i all coductive material White oise idepedet o the bias. Flicker oise Radom ioizatio of deep level trap i semicoductors 1/f oise(1/f, where =0.8~1.3 depedet o the bias iversely proportioal to L*W of MOSFET 3. Shot oise (modeled after BSM4 The oise model is implemeted i the device model of the circuit simulators, but a measured parameter may ot be provided by semicoductor maufacture. Statistical fluctuatio of thermal emissio ad tuelig through the potetial barrier i semicoductors White oise proportioal to voltage observed i the short chael MOSFET (t ox < 0m 5

53 Thermal oise of resistor = i oise = 4 4 (A /Hz (V /Hz 53

54 Thermal oise of RC circuit = / 1 1/ 1 NOTE: The RMS of thermal oise v out is limited by the size of the capacitor, ad idepedet of the size of the resistor., Large C suppresses the thermal oise geerated by the resistor, but the time costat of the circuit is icreased. 54

55 Thermal oise of MOSFET PSD of the thermal oise depeds o the coductace. D G i oise iput-referred oise Chael resistace derived with GCA i oise S 4k T 3 B g m PSD of thermal oise i MOSFET (Saturatio regio = 1 (Log Chael > 0.5m (Short Chael < 0.5m v i oise 8kBT oise gm 3gm Normally this equatio is used. 55

56 Limitatio of the gate width PSD of the gate resistace oise v oise 4k T R 4k B G B T R W L PSD of the chael resistace oise v 8k T B oise 3gm W/L is limited accordig to the thermal oise coditio: Gate resistace oise < Chael resistace R W L 3 1 g m g m 56

57 Flicker oise of MOSFET PSD of the Flicker oise depeds o the L*W. Desiged depedig o the process v oise K F C OX 4 5 K F W L ( V 0.8 ~1.3 ( V 1 f F F (-ch (p-ch e Neutral e - oized chael regio Gate poly Gate oxide Semicoductor ds G S D time Quatized Flicker oise of Ultra-arrow-W MOSFET Substrate 57

58 PSD of domiat oise i MOSFET The 1/f oise is a itrisic oise i semicoductors. The thermal oise occurs aywhere i coductor. log( voise Effective oise voltage = v oise f The badwidth of the circuit f should be limited to a sigal bad. PSD 1/f oise Δf ~1MHz Thermal oise log(f 58

59 SNR ad NF Noise stregth mixed i the sigal SNR: Sigal to Noise Ratio Noise voltage SNR( db 0log10 Noise power SNR( db 10log10 V V P P NOTE: The absolute oise stregth is ofte give by the iput-referred oise power (dbm. sigal oise sigal oise Noise stregth geerated i the circuit i s Noise Figure (NF NF( db SNR ( db SNR SNR1(dB gs 1 10log 10 1 G G P oise( output P oise( iput SNR(dB ( db NF depeds o the output coductace g s of sigal source. NF is ormally measured for 1/g s = 50(. 59

60 (6 Productio tolerace 60

61 Fluctuatio of circuit characteristics The circuit characteristics is sesitive to β ad V T of MOSFET Fluctuatio of VT (0.~10mV i a chip because of the fluctuatio of impurity cocetratio Fluctuatio of β (0.1~5% i a chip because of the fluctuatio of field effect mobility ( V VT Stadard deviatio of V T (mv 5 1 V T tox LW 0.0( m LW L*W (m V To suppress the fluctuatio of V T V T 1 crease OV = 0.15~0.3 crease L = ~5 x L mi 61

62 Circuit desig for the productio tolerace Δ / (% V V T V T TOLERANCE 1 V T V Δ OV OV is critical for the productio tolerace. 6

63 Corer Aalysis p-ch MOSFET sf ss typ ff fs Process corers arise from 3- sigma process variatio f: fast s: slow -ch MOSFET NOTE: The term of corer aalysis ofte meas PVT(process, supply voltage ad temperature variatio aalysis too. 63

64 (7 Desig parameters 64

65 Parameters of log chael MOSFET for circuit desig Measuremet of V T ad C OX Measuremet of Δ OV = 0.15 ~ 0.3V 1 ( V T OV d dv gds ( V T OV ( V T OV C OX W L V T V T + Δ OV V ( V T OV OV (Δ OV V = Δ OV +V T Saturatio coditio : V = V T + Δ OV, V = Δ OV NOTE: C OX is equivalet to Kp of the SPCE parameter. Δ OV V 65

66 (8 Scalig of aalog circuits 66

67 Effects of scalig o amplifiers Peak trasitio frequecy: Voltage gai: Gai, if ov = cost. GBP (Gai badwidth product: SNR (Sigal to oise ratio: Power cosumptio: GBP, if g m = cost. SNR(Power 1, if C = cost., if g m = cost. Δ Δ NOTE: The aalytical approach of the amplifier is discussed i later chapters., if GBP ad SNR = cost. 67

68 OV Summary of MOSFET V V T characteristic Gate overdrive voltage for bias desig C OX W ( L Trascoductace ad output coductace for small-sigal desig Calculate the suitable value of D /(W/L g g m ds Note: The device parameters i aalog circuit are specified by the drai curret. 68

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE Diode aalysis ad applicatios cotiued The MOFET The MOFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOFET Readig Howe

More information

2.CMOS Transistor Theory

2.CMOS Transistor Theory CMOS LSI esig.cmos rasistor heory Fu yuzhuo School of microelectroics,sju Itroductio omar fadhil,baghdad outlie PN juctio priciple CMOS trasistor itroductio Ideal I- characteristics uder static coditios

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

Compact Modeling of Noise in the MOS Transistor

Compact Modeling of Noise in the MOS Transistor Compact Modelig of Noise i the MOS Trasistor Aada Roy, Christia Ez, ) Swiss Federal Istitute of Techology, ausae (EPF), Switzerlad ) Swiss Ceter for Electroics ad Microtechology (CSEM) Neuchâtel, Swtzerlad

More information

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain Parasitic Resistace G Polysilico gate rai cotact V GS,eff S R S R S, R S, R + R C rai Short Chael Effects Chael-egth Modulatio Equatio k ( V V ) GS T suggests that the trasistor i the saturatio mode acts

More information

Semiconductors a brief introduction

Semiconductors a brief introduction Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) 1.7-1.9 Trasport (drift-diffusio) Hyperphysics (lik o course homepage)

More information

Metal Gate. Insulator Semiconductor

Metal Gate. Insulator Semiconductor MO Capacitor MO Metal- Oxide- emicoductor MO actually refers to Metal ilico Diide ilico Other material systems have similar MI structures formed by Metal Isulator emicoductor The capacitor itself forms

More information

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is: Semicoductor evices Prof. Rb Robert tat A. Taylor The aim of the course is to give a itroductio to semicoductor device physics. The syllabus for the course is: Simple treatmet of p- juctio, p- ad p-i-

More information

Lecture 10: P-N Diodes. Announcements

Lecture 10: P-N Diodes. Announcements EECS 15 Sprig 4, Lecture 1 Lecture 1: P-N Diodes EECS 15 Sprig 4, Lecture 1 Aoucemets The Thursday lab sectio will be moved a hour later startig this week, so that the TA s ca atted lecture i aother class

More information

1. pn junction under bias 2. I-Vcharacteristics

1. pn junction under bias 2. I-Vcharacteristics Lecture 10 The p Juctio (II) 1 Cotets 1. p juctio uder bias 2. I-Vcharacteristics 2 Key questios Why does the p juctio diode exhibit curret rectificatio? Why does the juctio curret i forward bias icrease

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 ME C8 Itroductio to MEMS Desig Fall 003 Roger Howe ad Thara Sriiasa Lecture 3 Capacitie Positio Sesig: Electroic ad Mechaical Noise EE C45 ME C8 Fall 003 Lecture 3 Today s Lecture Basic CMOS buffer

More information

FYS Vår 2016 (Kondenserte fasers fysikk)

FYS Vår 2016 (Kondenserte fasers fysikk) FYS3410 - Vår 2016 (Kodeserte fasers fysikk) http://www.uio.o/studier/emer/matat/fys/fys3410/v16/idex.html Pesum: Itroductio to Solid State Physics by Charles Kittel (Chapters 1-9 ad 17, 18, 20) Adrej

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design 606: Solid State Devices Lecture 9 ipolar Trasistors Desig Gerhard Klimeck gekco@purdue.edu Outlie ) urret gai i JTs ) osideratios for base dopig 3) osideratios for collector dopig 4) termediate Summary

More information

Monolithic semiconductor technology

Monolithic semiconductor technology Moolithic semicoductor techology 1 Ageda Semicoductor techology: Backgroud o Silico ad Gallium Arseide (GaAs) roerties. Diode, BJT ad FET devices. Secod order effect ad High frequecy roerties. Modelig

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information

Minimum Source/Drain Area AS,AD = (0.48µm)(0.60µm) - (0.12µm)(0.12µm) = µm 2

Minimum Source/Drain Area AS,AD = (0.48µm)(0.60µm) - (0.12µm)(0.12µm) = µm 2 UNIERSITY OF CALIFORNIA College of Egieerig Departmet of Electrical Egieerig ad Computer Scieces Last modified o February 1 st, 005 by Chris Baer (crbaer@eecs Adrei ladimirescu Homewor #3 EECS141 Due Friday,

More information

Schottky diodes: I-V characteristics

Schottky diodes: I-V characteristics chottky diodes: - characteristics The geeral shape of the - curve i the M (-type) diode are very similar to that i the p + diode. However the domiat curret compoets are decidedly differet i the two diodes.

More information

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T SOUIONS: ECE 606 Homework Week 7 Mark udstrom Purdue Uiversity (revised 3/27/13) 1) Cosider a - type semicoductor for which the oly states i the badgap are door levels (i.e. ( E = E D ). Begi with the

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg

More information

Semiconductor Electronic Devices

Semiconductor Electronic Devices Semicoductor lectroic evices Course Codes: 3 (UG) 818 (PG) Lecturer: Professor thoy O eill mail: athoy.oeill@cl.ac.uk ddress: 4.31, Merz Court ims: To provide a specialist kowledge of semicoductor devices.

More information

Electrical Resistance

Electrical Resistance Electrical Resistace I + V _ W Material with resistivity ρ t L Resistace R V I = L ρ Wt (Uit: ohms) where ρ is the electrical resistivity Addig parts/billio to parts/thousad of dopats to pure Si ca chage

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 21 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 21 -Sp 2002 Semicoductor Device Modelig ad Characterizatio EE5342 ecture 21 -Sp 2002 Professor Roald. Carter roc@uta.edu http://www.uta.edu/roc/ 21 02Apr02 1 Fully biased -MOS capacitor Chael if G > G S E x > 0 +

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write:

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write: Siusoidal stimulus Si i Si at every ode! We are goig to aalyze circuits for a sigle siusoid at a time which we are goig to write: vi ( t i si( t + φ But we are goig to use expoetial otatio v ( t si( t

More information

Intrinsic Carrier Concentration

Intrinsic Carrier Concentration Itrisic Carrier Cocetratio I. Defiitio Itrisic semicoductor: A semicoductor material with o dopats. It electrical characteristics such as cocetratio of charge carriers, deped oly o pure crystal. II. To

More information

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19 ECEN 3250 Microelectroics Semicoductor Physics ad P/N juctios 2/05/19 Professor J. Gopiath Professor J. Gopiath Uiversity of Colorado at Boulder Microelectroics Sprig 2014 Overview Eergy bads Atomic eergy

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Techologies ecture-17 Prof. C.S. Solaki Eergy Systems Egieerig T Bombay ecture-17 Cotets Brief summary of the revious lecture Total curret i diode: Quatitative aalysis Carrier flow uder

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5. 5.1 troductio 5.2 Equilibrium coditio 5.2.1 Cotact otetial 5.2.2 Equilibrium Fermi level 5.2.3 Sace charge at a juctio 5.3 Forward- ad Reverse-biased juctios; steady state coditios 5.3.1 Qualitative descritio

More information

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET)

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET) ecture 9 MOS Field ffect Trasistor (MOSFT or FT) this lecture you will lear: The oeratio ad workig of the MOS trasistor A MOS aacitor with a hael otact ( Si) metal cotact Si Si GB B versio layer PSi substrate

More information

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors EE3310 Class otes Part 3 Versio: Fall 2002 These class otes were origially based o the hadwritte otes of Larry Overzet. It is expected that they will be modified (improved?) as time goes o. This versio

More information

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design MOS Digital Itegrated ircuits Aalysis ad Desig hapter 9 Dyamic Logic ircuits 1 Itroductio Static logic circuit Output correspodig to the iput voltage after a certai time delay Preservig its output level

More information

Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction

Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction Digital Itegrated Circuits Iverter YuZhuo Fu Itroductio outlie CMOS at a glace CMOS static behavior CMOS dyamic behavior Power, Eergy, ad Eergy Delay Persective tech. /48 outlie CMOS at a glace CMOS static

More information

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices 254 IEEE RANSACIONS ON ELECRON DEVICES, VOL. 46, NO. 1, JANUARY 1999 emperature-depedet Kik Effect Model for Partially-Depleted SOI NMOS Devices S. C. Li ad J. B. Kuo Abstract his paper reports a closed-form

More information

Semiconductors. PN junction. n- type

Semiconductors. PN junction. n- type Semicoductors. PN juctio We have reviously looked at the electroic roerties of itrisic, - tye ad - time semicoductors. Now we will look at what haes to the electroic structure ad macroscoic characteristics

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio Review cotet Tye Cocet 15, Comutig 10 hours Fri. 6

More information

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doped semicoductors: door impurities A silico lattice with a sigle impurity atom (Phosphorus, P) added. As compared to Si, the Phosphorus has oe extra valece electro which, after all bods are made, has

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio outlie CMOS at a glace CMOS static behavior CMOS dyamic

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 006 Microelectroic Devices ad Circuits Prof. Ja M. Rabaey (ja@eecs) Lecture 3: Semicoductor Basics (ctd) Semicoductor Maufacturig Overview Last lecture Carrier velocity ad mobility Drift currets

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Introduction to Microelectronics

Introduction to Microelectronics The iolar Juctio Trasistor Physical Structure of the iolar Trasistor Oeratio of the NPN Trasistor i the Active Mode Trasit Time ad Diffusio aacitace Ijectio fficiecy ad ase Trasort Factor The bers-moll

More information

Regenerative Property

Regenerative Property DESIGN OF LOGIC FAMILIES Some desirable characteristics to have: 1. Low ower dissiatio. High oise margi (Equal high ad low margis) 3. High seed 4. Low area 5. Low outut resistace 6. High iut resistace

More information

Overview of Silicon p-n Junctions

Overview of Silicon p-n Junctions Overview of Silico - Juctios r. avid W. Graham West irgiia Uiversity Lae eartmet of omuter Sciece ad Electrical Egieerig 9 avid W. Graham 1 - Juctios (iodes) - Juctios (iodes) Fudametal semicoductor device

More information

Lecture #25. Amplifier Types

Lecture #25. Amplifier Types ecture #5 Midterm # formatio ate: Moday November 3 rd oics to be covered: caacitors ad iductors 1 st -order circuits (trasiet resose) semicoductor material roerties juctios & their alicatios MOSFEs; commo-source

More information

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below. 9. Heterojuctios Semicoductor heterojuctios A heterojuctio cosists of two differet materials i electrical equilibrium separated by a iterface. There are various reasos these are eeded for solar cells:

More information

Why analog microelectronics?

Why analog microelectronics? hy aalo microelectroics? iital is taki over? Yes, but electrical sials are fudametally aalo! Aalo desi has prove fudametal for hihquality desi of complex systems Mixed-mode systems Natural sials are aalo

More information

Accurate Compact MOSFET Modeling Scheme for Harmonic Distortion Analysis

Accurate Compact MOSFET Modeling Scheme for Harmonic Distortion Analysis JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.4, NO.3, SEPTEMBER, 2004 141 Accurate Compact MOSFET Modelig Scheme for Harmoic Distortio Aalysis B. Iñiguez *, R. Picos **, I. Kwo ***, M. S. Shur

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal

More information

LECTURE 5 PART 2 MOS INVERTERS STATIC DESIGN CMOS. CMOS STATIC PARAMETERS The Inverter Circuit and Operating Regions

LECTURE 5 PART 2 MOS INVERTERS STATIC DESIGN CMOS. CMOS STATIC PARAMETERS The Inverter Circuit and Operating Regions LECTURE 5 PART 2 MOS INVERTERS STATIC ESIGN CMOS Objectives for Lecture 5 - Part 2* Uderstad the VTC of a CMOS iverter. Uderstad static aalysis of the CMOS iverter icludig breakpoits, VOL, V OH,, V IH,

More information

The Devices: MOS Transistors

The Devices: MOS Transistors The Devices: MOS Transistors References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Digital Integrated Circuits: A Design Perspective, J. Rabaey et.al. Prentice Hall NMOS Transistor

More information

Analog Integrated Circuit Design (Analog CMOS Circuit Design)

Analog Integrated Circuit Design (Analog CMOS Circuit Design) Aalog tegrate ircuit Desig (Aalog MOS ircuit Desig) Ali Heiary, Electrical Egieerig, g, Guila Uiversity Table of tets - MOs techology - troucti to MOS trasistor 3- urret mirror 4- Amplifier, active loa

More information

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio Digital IC outlie CMOS at a glace CMOS static behavior

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction EE105 Fall 015 Microelectroic Devices ad Circuits Prof. Mig C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH 6-1 Juctio -tye semicoductor i cotact with -tye Basic buildig blocks of semicoductor devices

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Quiz #3 Practice Problem Set

Quiz #3 Practice Problem Set Name: Studet Number: ELEC 3908 Physical Electroics Quiz #3 Practice Problem Set? Miutes March 11, 2016 - No aids excet a o-rogrammable calculator - ll questios must be aswered - ll questios have equal

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Itegrated Circuit Devices Professor Ali Javey 9/04/2007 Semicoductor Fudametals Lecture 3 Readig: fiish chapter 2 ad begi chapter 3 Aoucemets HW 1 is due ext Tuesday, at the begiig of the class.

More information

Introduction to Solid State Physics

Introduction to Solid State Physics Itroductio to Solid State Physics Class: Itegrated Photoic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Mig-Chag Lee) Electros i A Atom Electros i A Atom Electros i Two atoms

More information

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Semiconductor Statistical Mechanics (Read Kittel Ch. 8) EE30 - Solid State Electroics Semicoductor Statistical Mechaics (Read Kittel Ch. 8) Coductio bad occupatio desity: f( E)gE ( ) de f(e) - occupatio probability - Fermi-Dirac fuctio: g(e) - desity of states

More information

doi: info:doi/ /ispsd

doi: info:doi/ /ispsd doi: ifo:doi/1.119/ipd.212.622952 1.5um 3.um 6.um calig Rule for Very hallow Trech IGBT toward CMO Process Comatibility Masahiro Taaka ad Ichiro Omura Kyushu Istitute of Techology 1-1 esui-cho, Tobata-ku,

More information

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities. Diffusio of Carriers Wheever there is a cocetratio gradiet of mobile articles, they will diffuse from the regios of high cocetratio to the regios of low cocetratio, due to the radom motio. The diffusio

More information

EE 505. Lecture 29. ADC Design. Oversampled

EE 505. Lecture 29. ADC Design. Oversampled EE 505 Lecture 29 ADC Desig Oversampled Review from Last Lecture SAR ADC V IN Sample Hold C LK V REF DAC DAC Cotroller DAC Cotroller stores estimates of iput i Successive Approximatio Register (SAR) At

More information

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model ELEC 3908, Physical Electronics, Lecture 23 The MOSFET Square Law Model Lecture Outline As with the diode and bipolar, have looked at basic structure of the MOSFET and now turn to derivation of a current

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF ALIFORNIA, BERELEY ollege of Egieerig Deartmet of Electrical Egieerig ad omuter Scieces Ja M. Rabaey Homework #5 EES 4 SP0) [PROBLEM Elmore Delay 30ts) Due Friday, March 5, 5m, box i 40 ory

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

577. Estimation of surface roughness using high frequency vibrations

577. Estimation of surface roughness using high frequency vibrations 577. Estimatio of surface roughess usig high frequecy vibratios V. Augutis, M. Sauoris, Kauas Uiversity of Techology Electroics ad Measuremets Systems Departmet Studetu str. 5-443, LT-5368 Kauas, Lithuaia

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

ECE594I Notes set 13: Two-port Noise Parameters

ECE594I Notes set 13: Two-port Noise Parameters C594 otes, M. Rodwell, copyrighted C594 Notes set 13: Two-port Noise Parameters Mark Rodwell Uiversity of Califoria, Sata Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Refereces ad Citatios:

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 090 EE4555 Fudaetals of Seicoductor evices Fall 0 ecture : MOSFE hapter 0.3, 0.4 090 J. E. Morris Reider: Here is what the MOSFE looks like 090 N-chael MOSFEs: Ehaceet & epletio odes 090 J. E. Morris 3

More information

1. The MOS Transistor. Electrical Conduction in Solids

1. The MOS Transistor. Electrical Conduction in Solids Electrical Conduction in Solids!The band diagram describes the energy levels for electron in solids.!the lower filled band is named Valence Band.!The upper vacant band is named conduction band.!the distance

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

EKV MOS Transistor Modelling & RF Application

EKV MOS Transistor Modelling & RF Application HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,

More information

Modeling of spin-polarized transport in semiconductor nanostructures

Modeling of spin-polarized transport in semiconductor nanostructures Modelig of spi-polarized trasport i semicoductor aostructures Semio K. Saiki Uiversity of Califoria, Sa Diego Semicoductor Spitroics Advatages Electric gate cotrol Couplig to photos vs. Complicatios Electrical

More information

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells Photo-Voltaics ad Solar Cells this lecture you will lear: Photo-Voltaic Cells Carrier Trasort, Curret, ad Efficiecy Solar Cells Practical Photo-Voltaics ad Solar Cells ECE 407 Srig 009 Farha aa Corell

More information

Heterojunctions. Heterojunctions

Heterojunctions. Heterojunctions Heterojuctios Heterojuctios Heterojuctio biolar trasistor SiGe GaAs 4 96, 007-008, Ch. 9 3 Defiitios eφ s eχ s lemet Ge, germaium lectro affiity, χ (ev) 4.13 Si, silico 4.01 GaAs, gallium arseide 4.07

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

Digital Integrated Circuit Design

Digital Integrated Circuit Design Digital Itegrated Circuit Desig Lecture 4 PN Juctio -tye -tye Adib Abrishamifar EE Deartmet IUST Diffusio (Majority Carriers) Cotets PN Juctio Overview PN Juctios i Equilibrium Forward-biased PN Juctios

More information

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor C606: Solid State Devices Lecture 0 Heterojuctio ipolar Trasistor Gerhard Klimeck gekco@purdue.edu 1 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary

More information

ECE 145A / 218 C, notes set 13: Very Short Summary of Noise

ECE 145A / 218 C, notes set 13: Very Short Summary of Noise class otes, M. odwell, copyrighted 009 C 45A / 8 C, otes set 3: Very hort ummary o Noise Mark odwell Uiversity o Calioria, ata Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36 ax Backgroud / tet class

More information

Modulation Doping HEMT/HFET/MODFET

Modulation Doping HEMT/HFET/MODFET ecture 7: High lectro Mobility raitor Modulatio opig HM/HF/MOF evice tructure hrehold voltage Calculate the curret uig drit ect o velocity aturatio 04-0-30 ecture 7, High Speed evice 04 Fudametal MSF Problem

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Recent Experimental Results in ADITYA Tokamak

Recent Experimental Results in ADITYA Tokamak Recet Experimetal Results i ADITYA Tokamak R. Jha ad the ADITYA Team Istitute for Plasma Research, Bhat, Gadhiagar-382 428, INDIA e-mail:rjha@ipr.res.i Abstract. Recet studies o measuremets of edge turbulece

More information

Analysis of MOS Capacitor Loaded Annular Ring MICROSTRIP Antenna

Analysis of MOS Capacitor Loaded Annular Ring MICROSTRIP Antenna Iteratioal OPEN AESS Joural Of Moder Egieerig Research (IJMER Aalysis of MOS apacitor Loaded Aular Rig MIROSTRIP Atea Mohit Kumar, Suredra Kumar, Devedra Kumar 3, Ravi Kumar 4,, 3, 4 (Assistat Professor,

More information