Semiconductors a brief introduction

Size: px
Start display at page:

Download "Semiconductors a brief introduction"

Transcription

1 Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) Trasport (drift-diffusio) Hyperphysics (lik o course homepage) basic itroductio to semicoductors (almost o equatios) Moder lectroics: F1 semicoductors 1

2 Atomic eergy levels M Quatum mechaics: Wavefuctio gives describes probablility to fid electro M L K L K x 0.1 m 0.1 m Moder lectroics: F1 semicoductors 2

3 2-atomic molecule Pauli priciple Atoms share valece electros 0.2 m Overlappig Valece electros x x x Moder lectroics: F1 semicoductors 0.1 m 0.2 m 0.1 m 3

4 16-atomic molecule 0.4 m 0.4 m x x x,y,z Moder lectroics: F1 semicoductors 0.1 m 0.4 m 4

5 atomic molecule eergy bads ~ levels 1 cm x,y,z x 1 cm Moder lectroics: F1 semicoductors 0.1 m 5

6 Valece ad coductio bads Coductio bad Valece bad Valece Bad: The highest bad that has electros Coductio Bad: The ext bad with higher eergy Metal: The valece bad is partially filled with electros Semicoductor / Isulator: The valece bad is filled x,y,z Moder lectroics: F1 semicoductors 6

7 ergy (ev) metals semicoductors - isulators Metal Coductio bad semicoductors 0 < g < 4 ev Si: g =1.12 ev Ge: g =0.67 ev Ga: g =3.42 ev Coductio bad Coductio bad isulators g > 4eV SiO 2 : g =9 ev Diamod (C): g =5.5 ev Coductio bad g g Valece bad Valece bad Valece bad Valece bad Moder lectroics: F1 semicoductors 7 x

8 What materials are semicoductors? Two atom basis (4 eighbours) 4 ow valece electros III B IV C V total 8 shared electros i valece shell -> filled! Al Ga Si Ge P As 4+14=8 3+5=8 I S Sb C GaP Si Ge IAs S g 5.5 ev 2.24 ev 1.12 ev 0.67 ev 0.34 ev 0 Type isulator Semi cod uc tors metal Moder lectroics: F1 semicoductors 8

9 ergy (ev) Thermal excitatio ach electros gets (average) kietic eergy ki =3/2 kt A electro ca be excited to the coductio bad g Higher T or smaller g -> more electros electro desity i coductio bad = (cm -3 ) electro desity i valece bad = (cm -3 ) p (cm -3 ): hole desity i valece bad =p without dopig Moder lectroics: F1 semicoductors 9

10 ergy (ev) Thermal excitatio Fermi level Fermi-Dirac distributio: The probability of a electro at a eergy level. C f ( ) exp(( 1 F ) / kt ) 1 g F Higher T higher probability that a level i the coductio bad has a electro. V Symmetrical about F (Fermi eergy). 50% chace to have electro at F xcited electro leave a positive hole i valece bad 0 1 probability Moder lectroics: F1 semicoductors 10

11 Holes vs electros Istead of describig all electros remaiig i valece bad, positive holes (missig electros) are itroduced ad treated as particles. T > 0 K C V e electro (egative) hole (positive) Moder lectroics: F1 semicoductors 11

12 lectro trasport - Apply voltage -> electric field moves charged electros - Filled bad: ½ of electros move i oe directio, ½ of electros i the other. - eed to chage velocity of some electros to get curret but all states are filled i.e. eed electros i coductio bad. T 0 K e T >> 0 K e metal semicoductor semicoductor C C V V Partially filled bad o available eergy states to move to leads to zero curret Moder lectroics: F1 semicoductors 12

13 eergy Carrier cocetratio probability of occupyig a state x umber of = available states populatio of coductio bad c Fermi-Dirac distributio x desity of states = carrier cocetratio Moder lectroics: F1 semicoductors 13

14 ergy (ev) Carrier cocetratio - simplified exp v F C p v exp kt g F c F kt c V Igore real desity of states, itroduce C, V effective desity of states at bad edges (describes how dese levels are) (Si: c =3.2*10 19 cm -3 / v =1.8*10 19 cm -3 ) Moder lectroics: F1 semicoductors 14

15 Itrisic carrier cocetratio ach electro excited from the valece bad to the coductio bad become a free carrier available for coductio Itrisic semicoductor: - =p= i (itrisic carrier cocetratio) - F is i the middle of the bad gap i p c v exp 2kT g T=300K Si g =1.11eV i = cm -3 Ge g =0.67 ev i = cm -3 Moder lectroics: F1 semicoductors 15

16 Dopig with door atoms: -type c +1 v III IV V x P atom 5 valece electros B Al C Si P Doates electro to the coductio bad (mobile) Ioized atom positive (immobile) Ga I Ge S As Sb Moder lectroics: F1 semicoductors 16

17 Dopig with acceptor atoms: p-type c -1 v III IV V x Al atom 3 valece electros B Al C Si P Captures electro -> extra hole to the valece bad (mobile) Ioized atom egative (immobile) Ga I Ge S As Sb Moder lectroics: F1 semicoductors 17

18 Dopig extrisic semicoductor p c v F exp( kt v exp( kt c F ) ) p c v exp kt g 2 i Mass actio law p 2 i Idepedet of dopig - D : door atom desity (cm -3 ) / A : acceptor atom desity (cm -3 ) - For D >> i ( A =0) the dopig domiates majority carrier cocetratio = D ad p= i2 / D Moder lectroics: F1 semicoductors 18

19 dopig carrier desity Fermi-Dirac Carrier coc. electros c Itrisic g Fi holes v 0 1 p -type (doors) F V Fi kt l D i p-type (acceptors) Fp V Fi kt l i A Moder lectroics: F1 semicoductors 19

20 dopig carrier desity Fermi-Dirac Carrier coc. electros c Itrisic g Fi holes v 0 1 p -type (doors) F F Fi kt l D i p-type (acceptors) Fp Fi kt l i A Moder lectroics: F1 semicoductors 20

21 dopig carrier desity Fermi-Dirac Carrier coc. electros c Itrisic g Fi holes v 0 1 p -type (doors) F F Fi kt l D i p-type (acceptors) Fp Fi kt l i A Moder lectroics: F1 semicoductors 21

22 Trasport - drift J J p J qp ε Hole curret desity (A/cm 2 ) J v d p q ε J p lectro curret desity (A/cm 2 ) e J q q p 1 p p p +V µ / µ p electro / hole mobility (cm 2 /Vs) / p electro / hole cocetratio (cm -3 ) =1/=coductivity (S/m) = resistivity (Ωm) C V Moder lectroics: F1 semicoductors 22

23 Trasport effect of dopig J qv d qµ e : cotrolled by dopig µ : determied by itrisic semicoductor properties + scatterig phoo scatterig -type p-type Ioized impurity scatterig Moder lectroics: F1 semicoductors 23

24 Moder lectroics: F1 semicoductors Velocity saturatio 24 - At high electric fields (ε c 1.5x10 6 V/m) electros ca emit optical phoos (lattice vibratios) -> velocity saturates sat c d c d c c d d v µ v µ v µ v qµ qv J e e e e e e e e e e e / 1 ) (

25 Trasport - diffusio - Radom thermal motio gives movemet of particles from high to low cocetratio - o exteral forces - o particle iteractio - Rate depeds o cocetratio gradiet Moder lectroics: F1 semicoductors 25

26 (m -3 ) Trasport - diffusio Diffusio curret give by gradiet of electro (or hole) cocetratio J qd d( x) dx q kt q µ d( x) dx qv T µ d( x) dx o additio/removal of carriers betwee 0 < x < L -> costat curret -> liear cocetratio decrease J (0)= 0 (x) (L)= L x Moder lectroics: F1 semicoductors 26

27 2 mi exercise drift/diffusio Later... positio positio Sketch carrier distributio later with 1. o electric field 2. -field i pos. directio (->) Moder lectroics: F1 semicoductors 27

28 Summary - Discrete atomic eergy levels become bads whe atoms are joied i a crystal. - Semicoductors = filled valece bad, o electros i coductio bad (at T=0). Bad gap with o allowed states. - Carrier cocetratio () = Fermi-dirac distributio * desity of states - Dopig: c kt Doors (group V): adds mobile egative electros ad positive static ios. Moves Fermi level towards coductio bad. Acceptors (group III): adds mobile positive holes ad egative static ios. Moves Fermi level towards valece bad. 2 p = D ad p= i2 / D for D >> i - Carrier trasport: Drift: electric field moves charged particles. Depeds o field stregth. Diffusio: radom motio moves particles from high to low cocetratio. Depeds o cocetratio gradiet. J J, drift J, diff q ε qd Moder lectroics: F1 semicoductors i d dx exp( F 28 c )

29 p- juctios Charge distributio -> electric field -> potetial Curret trasport Breakdow mechaisms Small-sigal model Depletio / diffusio capacitaces Readig: (Sedra/Smith 7 th editio) , Moder lectroics: F1 semicoductors 29

30 Why p-juctios? -type diode LD Solar cell P-type mitter BJT Base -type P -type Collector MOSFT Source -type Gate P-type Drai -type Substrate Moder lectroics: F1 semicoductors 30

31 - type P - type electros electros c c g g holes v v holes D door cocetratio 0 electro (majority) cocetratio p 0 hole (miority) cocetratio lectros: mobile, egative Ioized doors: ot mobile, positive A acceptor cocetratio p p0 hole (majority) cocetratio p0 electro (miority) cocetratio holes: mobile, positive Ioized acceptors: ot mobile, egative Moder lectroics: F1 semicoductors 31

32 Recombiatio p i I equilibrium Importat for base curret i BJTs If there is a excess umber free carrriers p > i2 electros ca recombie with holes to reach equilibrium 0 = D + 0 < D + C Three electros recombie leavig three positive ioized door atoms v p > p 0 Moder lectroics: F1 semicoductors 32

33 P-juctio bad structure d J dx + Positive door - egative Acceptor -type Free electros Free holes P-type c v Large coc. differece -> large diffusio curret o e-field o drift curret c v I qa ε V T d( x) dx Moder lectroics: F1 semicoductors 33

34 P-juctio bad structure + Positive door - egative Acceptor Free electros Free holes -type P-type c v e c v I qa ε V T d( x) dx Moder lectroics: F1 semicoductors 34

35 P-juctio bad structure + Positive door - egative Acceptor Free electros Free holes -type P-type c v e c v e W Moder lectroics: F1 semicoductors o free carriers i depletio regio, charge eutral outside 35

36 charge desity -> electric field -> potetial Poisso equatio Depletio width ρ(x) ε s W = = dε(x) dx 2ε s q = d2 V(x) dx 2 - ρ charge desity [C/m -3 ] - ε s permitivity [F/m] - e electric field [V/m] - V potetial [V] 1 A + 1 D V 0 - V 0 built-i potetial [V] Q + =Aq D W 1 ρ [C/m -3 ] න dx e [V/m] න dx V(x) [V] X=W 2 x=w 2 V 0 x=-w x=-w 1 x=0 W=W 1 +W 2 Moder lectroics: F1 semicoductors x=0 36

37 Built-i potetial P W=W 1 +W 2 c c qv 0 F qv 0 Fp v v depletio regio qv 0 = F Fp (built-i) Potetial barrier for electros ad holes! F Fp Fi Fi kt l kt l i i A D D A qv 0 0 kt l l kt l i i D 2 i A homework: calculate depletio width for Si p-juctio with D = A =10 17 cm -3 at bias voltages V=0 V ad V= -1 V. Moder lectroics: F1 semicoductors 37

38 2 mi exercise assymetric p-juctio Cosider a p-juctio with D =5* A (doors > acceptors) Sketch the 1) charge distributio 2) electric field 3) potetial -type D P-type A ρ ε V Moder lectroics: F1 semicoductors 38

39 Diode forward bias - Oly top of the electro distributio ca pass over the barrier - Icrease bias -> expoetially icreasig amout of electros ca pass - Reduce electric field but couteractig built-i potetial - Depletio width is reduced e P e P ev D ev D - V D + D pot =-qv D - V D + Moder lectroics: F1 semicoductors 39

40 cotact depletio regio cotact Miority carrier desity at depletio edges at forward bias forward bias p / p hole cocetratio i -side electro cocetratio i p-side p (x) p (x) p (x) p (x) p 0 p0 At equilibrium: p0 = i2 / A p 0 = i2 / D p -W 1 0 W 2 qvd W ) p exp qvd 1 p ( W2 ) p0 exp kt kt ( 0 Moder lectroics: F1 semicoductors 40

41 V D Diode forward bias e P J qε V T d dx I D pot =-ev D ev D V D J = J S (exp(v/v T )-1) - V D + Moder lectroics: F1 semicoductors J s = q D p p L 0 + D p L p0 = q 1 2 kt L p q μ i p + 1 kt D L q μ 41 i 2 A

42 Diode reverse bias e P J qε V T d dx I D pot =-ev D ev D V D -V D J 0 + V D - Moder lectroics: F1 semicoductors 42

43 Diode total curret J = J s e qv kt 1 Τ J s = saturatio curret desity = ideality factor (1-2) J s = q D p p L 0 + D p L p0 = q 1 2 kt L p q μ i p + 1 kt D L q μ i 2 A zero bias P forward bias reverse bias e diffusio curret drift curret diffusio curret drift curret diffusio curret drift curret Moder lectroics: F1 semicoductors 43

44 1 mi excercise Si vs Ge diode Si ( g =1.11 ev) p-juctio Ge ( g =0.67 ev) p-juctio P P I I V D??? V D Moder lectroics: F1 semicoductors 44

45 Zeer tuelig / Avalache Breakdow - High reverse bias gives eough e-field to eable tuelig - High eergy of electro/hole ca be lost by creatig ew e-h pairs through impact ioizatio tuelig e avalache multiplicatio e BV I V Moder lectroics: F1 semicoductors 45

46 small-sigal model - Wat to replace o-liear compoets with liear oes to simplify circuit calculatios - Costat V D + small varyig v d (t) = total voltage v D (t). v D (t) V D = + v d (t) t Liearize by Taylor expasio Moder lectroics: F1 semicoductors 46

47 Small-sigal model of diode (3.3.7) - Diode IV is o-liear so difficult to do calculatios - Apply costat V D ad small varyig v d (t) - Diode IV almost liear i a small regio Τ J = J s eqv kt D Τ 1 J s eqv D kt Small sigal resistace r d =V T /I D (V T =kt/q) Moder lectroics: F1 semicoductors 47

48 depletio-regio / juctio capacitace xample: paralell plate capacitor Defiitio: C Q V C e re0 W W 1 2 A -Q e r +Q W 1 +W 2 Q J = A q D (W 1 + W 2 ) W V 0 + V R o-liear relatioship betwee V R ad Q -> C(V R ) W 1 W 2 W 1 W 2 Moder lectroics: F1 semicoductors 48

49 depletio regio / juctio capacitace Defiitio C j = dq J dv R Applied bias (V R ) chages depletio width Depletio width W = 2ε s q 1 A + 1 D (V 0 + V R ) Charge o either side Q J = Aq D W 1 = Aq D A A + D W C j C J = A 2ε s q D A A + D 1 V 0 +V R V Icreasig V R Moder lectroics: F1 semicoductors 49

50 1 mi exercise p-juctio with forward bias I forward bias there is a diffusio curret flowig through the juctio. How does the CV curve behave? dq Oly C j C dv A B C C C C V V V o chage i capacitace Larger capacitace for forward bias Moder lectroics: F1 semicoductors Lower capacitace for forward bias 50

51 diffusio capacitace Forward bias -> iject miority carriers i eutral regios (electros i p-regio ad holes i -regio)-> extra charge dq. p p ( W ( W 2 p ) ) p0 p0 exp qv kt D C dq dv V+Dv V DQ -W 1 W 2 p0 W 2 (=0) x W p (legth of p-regio) Moder lectroics: F1 semicoductors 51

52 Total capacitace C tot C tot =C j +C d Add capacitaces i parallel Capacitace (pf) C j C d 10 C j : domiates for reverse bias Voltage (V) C diff : domiates for forward bias. C diff 0 for reverse bias. r d (V D ) C j (V) C d (V) Moder lectroics: F1 semicoductors 52

53 Summary p-juctios p-juctios used i LDs, solar cells, BJT, MOSFTs Poissos equatios: charge distributio -> electric field -> potetial Drift is balaced by diffusio i ubiased p-juctio Curret give by ideal diode equatio: Forward bias: curret (diffusio) icreases expoetially Reverse bias: curret saturates qv J = J s e kt 1 Τ Capacitaces: Juctio capacitace due to chage i depletio width (domiates reverse bias) Diffusio capacitace due to chage i charge i p/ regio (domiates forward bias) Small-sigal model (ok for V << V T ): replace diode with resistor + capacitaces Moder lectroics: F1 semicoductors 53

FYS Vår 2016 (Kondenserte fasers fysikk)

FYS Vår 2016 (Kondenserte fasers fysikk) FYS3410 - Vår 2016 (Kodeserte fasers fysikk) http://www.uio.o/studier/emer/matat/fys/fys3410/v16/idex.html Pesum: Itroductio to Solid State Physics by Charles Kittel (Chapters 1-9 ad 17, 18, 20) Adrej

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Intrinsic Carrier Concentration

Intrinsic Carrier Concentration Itrisic Carrier Cocetratio I. Defiitio Itrisic semicoductor: A semicoductor material with o dopats. It electrical characteristics such as cocetratio of charge carriers, deped oly o pure crystal. II. To

More information

Lecture 10: P-N Diodes. Announcements

Lecture 10: P-N Diodes. Announcements EECS 15 Sprig 4, Lecture 1 Lecture 1: P-N Diodes EECS 15 Sprig 4, Lecture 1 Aoucemets The Thursday lab sectio will be moved a hour later startig this week, so that the TA s ca atted lecture i aother class

More information

Electrical Resistance

Electrical Resistance Electrical Resistace I + V _ W Material with resistivity ρ t L Resistace R V I = L ρ Wt (Uit: ohms) where ρ is the electrical resistivity Addig parts/billio to parts/thousad of dopats to pure Si ca chage

More information

1. pn junction under bias 2. I-Vcharacteristics

1. pn junction under bias 2. I-Vcharacteristics Lecture 10 The p Juctio (II) 1 Cotets 1. p juctio uder bias 2. I-Vcharacteristics 2 Key questios Why does the p juctio diode exhibit curret rectificatio? Why does the juctio curret i forward bias icrease

More information

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is: Semicoductor evices Prof. Rb Robert tat A. Taylor The aim of the course is to give a itroductio to semicoductor device physics. The syllabus for the course is: Simple treatmet of p- juctio, p- ad p-i-

More information

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doped semicoductors: door impurities A silico lattice with a sigle impurity atom (Phosphorus, P) added. As compared to Si, the Phosphorus has oe extra valece electro which, after all bods are made, has

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg

More information

Semiconductor Electronic Devices

Semiconductor Electronic Devices Semicoductor lectroic evices Course Codes: 3 (UG) 818 (PG) Lecturer: Professor thoy O eill mail: athoy.oeill@cl.ac.uk ddress: 4.31, Merz Court ims: To provide a specialist kowledge of semicoductor devices.

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5. 5.1 troductio 5.2 Equilibrium coditio 5.2.1 Cotact otetial 5.2.2 Equilibrium Fermi level 5.2.3 Sace charge at a juctio 5.3 Forward- ad Reverse-biased juctios; steady state coditios 5.3.1 Qualitative descritio

More information

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19 ECEN 3250 Microelectroics Semicoductor Physics ad P/N juctios 2/05/19 Professor J. Gopiath Professor J. Gopiath Uiversity of Colorado at Boulder Microelectroics Sprig 2014 Overview Eergy bads Atomic eergy

More information

Introduction to Solid State Physics

Introduction to Solid State Physics Itroductio to Solid State Physics Class: Itegrated Photoic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Mig-Chag Lee) Electros i A Atom Electros i A Atom Electros i Two atoms

More information

Semiconductors. PN junction. n- type

Semiconductors. PN junction. n- type Semicoductors. PN juctio We have reviously looked at the electroic roerties of itrisic, - tye ad - time semicoductors. Now we will look at what haes to the electroic structure ad macroscoic characteristics

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310

More information

Schottky diodes: I-V characteristics

Schottky diodes: I-V characteristics chottky diodes: - characteristics The geeral shape of the - curve i the M (-type) diode are very similar to that i the p + diode. However the domiat curret compoets are decidedly differet i the two diodes.

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

2.CMOS Transistor Theory

2.CMOS Transistor Theory CMOS LSI esig.cmos rasistor heory Fu yuzhuo School of microelectroics,sju Itroductio omar fadhil,baghdad outlie PN juctio priciple CMOS trasistor itroductio Ideal I- characteristics uder static coditios

More information

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below. 9. Heterojuctios Semicoductor heterojuctios A heterojuctio cosists of two differet materials i electrical equilibrium separated by a iterface. There are various reasos these are eeded for solar cells:

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal

More information

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor Lecture 5: HT C Properties asic operatio of a (Heterojuctio) ipolar Trasistor Abrupt ad graded juctios ase curret compoets Quasi-Electric Field Readig Guide: 143-16: 17-177 1 P p ++.53 Ga.47 As.53 Ga.47

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Itegrated Circuit Devices Professor Ali Javey 9/04/2007 Semicoductor Fudametals Lecture 3 Readig: fiish chapter 2 ad begi chapter 3 Aoucemets HW 1 is due ext Tuesday, at the begiig of the class.

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS Fall-2003 PH-31 A. La Rosa JUNCTIONS I. HARNESSING ELECTRICAL CONDUCTIVITY IN SEMICONDUCTOR MATERIALS Itrisic coductivity (Pure silico) Extrisic coductivity (Silico doed with selected differet atoms) II.

More information

Introduction to Semiconductor Devices and Circuit Model

Introduction to Semiconductor Devices and Circuit Model Itroductio to Semicoductor Devices ad Circuit Model Readig: Chater 2 of Howe ad Sodii Electrical Resistace I + V _ W homogeeous samle t L Resistace R V I L = ρ Wt (Uits: Ω) where ρ is the resistivity (Uits:

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T SOUIONS: ECE 606 Homework Week 7 Mark udstrom Purdue Uiversity (revised 3/27/13) 1) Cosider a - type semicoductor for which the oly states i the badgap are door levels (i.e. ( E = E D ). Begi with the

More information

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE Diode aalysis ad applicatios cotiued The MOFET The MOFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOFET Readig Howe

More information

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Semiconductor Statistical Mechanics (Read Kittel Ch. 8) EE30 - Solid State Electroics Semicoductor Statistical Mechaics (Read Kittel Ch. 8) Coductio bad occupatio desity: f( E)gE ( ) de f(e) - occupatio probability - Fermi-Dirac fuctio: g(e) - desity of states

More information

Nonequilibrium Excess Carriers in Semiconductors

Nonequilibrium Excess Carriers in Semiconductors Lecture 8 Semicoductor Physics VI Noequilibrium Excess Carriers i Semicoductors Noequilibrium coditios. Excess electros i the coductio bad ad excess holes i the valece bad Ambiolar trasort : Excess electros

More information

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D / juctio Isolated, regios: o electric cotact, ot i equilibrium E vac E C E C E E F E i E i E F E E V E V / juctio I equilibrium, the Fermi level must be costat. Shift the eergy levels i ad regios u/dow

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Techologies ecture-17 Prof. C.S. Solaki Eergy Systems Egieerig T Bombay ecture-17 Cotets Brief summary of the revious lecture Total curret i diode: Quatitative aalysis Carrier flow uder

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction EE105 Fall 015 Microelectroic Devices ad Circuits Prof. Mig C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH 6-1 Juctio -tye semicoductor i cotact with -tye Basic buildig blocks of semicoductor devices

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

Quiz #3 Practice Problem Set

Quiz #3 Practice Problem Set Name: Studet Number: ELEC 3908 Physical Electroics Quiz #3 Practice Problem Set? Miutes March 11, 2016 - No aids excet a o-rogrammable calculator - ll questios must be aswered - ll questios have equal

More information

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design 606: Solid State Devices Lecture 9 ipolar Trasistors Desig Gerhard Klimeck gekco@purdue.edu Outlie ) urret gai i JTs ) osideratios for base dopig 3) osideratios for collector dopig 4) termediate Summary

More information

Overview of Silicon p-n Junctions

Overview of Silicon p-n Junctions Overview of Silico - Juctios r. avid W. Graham West irgiia Uiversity Lae eartmet of omuter Sciece ad Electrical Egieerig 9 avid W. Graham 1 - Juctios (iodes) - Juctios (iodes) Fudametal semicoductor device

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

Heterojunctions. Heterojunctions

Heterojunctions. Heterojunctions Heterojuctios Heterojuctios Heterojuctio biolar trasistor SiGe GaAs 4 96, 007-008, Ch. 9 3 Defiitios eφ s eχ s lemet Ge, germaium lectro affiity, χ (ev) 4.13 Si, silico 4.01 GaAs, gallium arseide 4.07

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ES 345 Lecture ourse by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 98 81 4101b ollege of State Islad / UY Dopig semicoductors Doped semicoductors are semicoductors,

More information

Complementi di Fisica Lecture 24

Complementi di Fisica Lecture 24 Comlemeti di Fisica - Lecture 24 18-11-2015 Comlemeti di Fisica Lecture 24 Livio Laceri Uiversità di Trieste Trieste, 18-11-2015 I this lecture Cotets Drift of electros ad holes i ractice (umbers ): coductivity

More information

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation.

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation. Review of Lecture Lecture / Trasistor fuctios: switchig ad modulatio. MOSFT 3 Si I 3 DD How voltage alied to Gate cotrols curret betwee Source ad Drai? 3 Source Gate Drai 3 oltage? urret? -Si Al -Si -Si*

More information

Monolithic semiconductor technology

Monolithic semiconductor technology Moolithic semicoductor techology 1 Ageda Semicoductor techology: Backgroud o Silico ad Gallium Arseide (GaAs) roerties. Diode, BJT ad FET devices. Secod order effect ad High frequecy roerties. Modelig

More information

Lecture 3. Electron and Hole Transport in Semiconductors

Lecture 3. Electron and Hole Transport in Semiconductors Lecture 3 lectro ad Hole Trasort i Semicoductors I this lecture you will lear: How electros ad holes move i semicoductors Thermal motio of electros ad holes lectric curret via lectric curret via usio Semicoductor

More information

ECE 442. Spring, Lecture - 4

ECE 442. Spring, Lecture - 4 ECE 44 Power Semicoductor Devices ad Itegrated circuits Srig, 6 Uiversity of Illiois at Chicago Lecture - 4 ecombiatio, geeratio, ad cotiuity equatio 1. Geeratio thermal, electrical, otical. ecombiatio

More information

Solids - types. correlates with bonding energy

Solids - types. correlates with bonding energy Solids - types MOLCULAR. Set of sigle atoms or molecules boud to adjacet due to weak electric force betwee eutral objects (va der Waals). Stregth depeds o electric dipole momet No free electros poor coductors

More information

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities. Diffusio of Carriers Wheever there is a cocetratio gradiet of mobile articles, they will diffuse from the regios of high cocetratio to the regios of low cocetratio, due to the radom motio. The diffusio

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 006 Microelectroic Devices ad Circuits Prof. Ja M. Rabaey (ja@eecs) Lecture 3: Semicoductor Basics (ctd) Semicoductor Maufacturig Overview Last lecture Carrier velocity ad mobility Drift currets

More information

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions. EXAM IN OURSE TFY40 Solid State Physics Moday 0. May 0 Time: 9.00.00 DRAFT OF SOLUTION Problem (0%) Itroductory Questios a) () Primitive uit cell: The miimum volume cell which will fill all space (without

More information

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors EE3310 Class otes Part 3 Versio: Fall 2002 These class otes were origially based o the hadwritte otes of Larry Overzet. It is expected that they will be modified (improved?) as time goes o. This versio

More information

Metal Gate. Insulator Semiconductor

Metal Gate. Insulator Semiconductor MO Capacitor MO Metal- Oxide- emicoductor MO actually refers to Metal ilico Diide ilico Other material systems have similar MI structures formed by Metal Isulator emicoductor The capacitor itself forms

More information

ELECTRICAL PROPEORTIES OF SOLIDS

ELECTRICAL PROPEORTIES OF SOLIDS DO PHYSICS ONLINE ELECTRICAL PROPEORTIES OF SOLIDS ATOMIC STRUCTURE ucleus: rotos () & electros electros (-): electro cloud h h DE BROGLIE wave model of articles mv ELECTRONS IN ATOMS eergy levels i atoms

More information

Bohr s Atomic Model Quantum Mechanical Model

Bohr s Atomic Model Quantum Mechanical Model September 7, 0 - Summary - Itroductio to Atomic Theory Bohr s Atomic Model Quatum Mechaical Model 3- Some Defiitio 3- Projects Temperature Pressure Website Subject Areas Plasma is a Mixture of electros,

More information

MODULE 1.2 CARRIER TRANSPORT PHENOMENA

MODULE 1.2 CARRIER TRANSPORT PHENOMENA MODULE 1.2 CARRIER TRANSPORT PHENOMENA Carrier Trasort Pheoeo Carrier drift: obility, coductivity ad velocity saturatio Carrier Diffusio: diffusio curret desity, total curret desity The Eistei relatio

More information

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells Photodiodes 1. Curret ad Voltae i a llumiated Juctio 2. olar Cells Diode Equatio D (e.) ( e qv / kt 1) V D o ( e qv / kt 1) Particle Flow uder Reversed Bias Particle Flow uder llumiatio W -tye -tye Otical

More information

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

Nanomaterials for Photovoltaics (v11) 6. Homojunctions Naomaterials for Photovoltaics (v11) 1 6. Homojuctios / juctio diode The most imortat device cocet for the coversio of light ito electrical curret is the / juctio diode. We first cosider isolated ad regios

More information

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev.

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev. 9.1 Direct ad idirect semicoductors Valece bad (VB) ad coductio bad (CB) of a semicoductor are searated by a eergy ga E G = 0.1... 4 ev. Direct semicoductor (e.g. GaAs): Miimum of the CB ad maximum of

More information

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion ECE66: Solid State Devices Lecture 1 (from17) High Field, Mobility Hall Effect, Diffusio Gerhard Klimeck gekco@purdue.edu Outlie 1) High Field Mobility effects ) Measuremet of mobility 3) Hall Effect for

More information

Nanostructured solar cell

Nanostructured solar cell aostructured solar cell bulk heterojuctio hybrid/dssc/dsh/et 3D cell e - coductor h + coductor TiO dye or Ps h + coductor TiO orgaic hybrid solar cell: polymer/dye/tio iorgaic polymer/polymer: MDMO-PPV/PCEPV

More information

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds Electrical coductivity i solids Eergy bad structure lico atoms (the most commo semicoductor material) Electroics ad Microelectroics AE4B34EM 3. lecture Semicoductors N juctio Diodes Electros otetial eergy

More information

Lecture #1 Nasser S. Alzayed.

Lecture #1 Nasser S. Alzayed. Lecture #1 Nasser S. Alzayed alzayed@ksu.edu.sa Chapter 6: Free Electro Fermi Gas Itroductio We ca uderstad may physical properties of metals, ad ot oly of the simple metals, i terms of the free electro

More information

Introduction to Microelectronics

Introduction to Microelectronics The iolar Juctio Trasistor Physical Structure of the iolar Trasistor Oeratio of the NPN Trasistor i the Active Mode Trasit Time ad Diffusio aacitace Ijectio fficiecy ad ase Trasort Factor The bers-moll

More information

Modulation Doping HEMT/HFET/MODFET

Modulation Doping HEMT/HFET/MODFET ecture 7: High lectro Mobility raitor Modulatio opig HM/HF/MOF evice tructure hrehold voltage Calculate the curret uig drit ect o velocity aturatio 04-0-30 ecture 7, High Speed evice 04 Fudametal MSF Problem

More information

Chapter 5 Carrier transport phenomena

Chapter 5 Carrier transport phenomena Chater 5 Carrier trasort heomea W.K. Che lectrohysics, NCTU Trasort The et flow of electros a holes i material is calle trasort Two basic trasort mechaisms Drift: movemet of charge ue to electric fiels

More information

Digital Integrated Circuit Design

Digital Integrated Circuit Design Digital Itegrated Circuit Desig Lecture 4 PN Juctio -tye -tye Adib Abrishamifar EE Deartmet IUST Diffusio (Majority Carriers) Cotets PN Juctio Overview PN Juctios i Equilibrium Forward-biased PN Juctios

More information

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write:

Sinusoidal stimulus. Sin in Sin at every node! Phasors. We are going to analyze circuits for a single sinusoid at a time which we are going to write: Siusoidal stimulus Si i Si at every ode! We are goig to aalyze circuits for a sigle siusoid at a time which we are goig to write: vi ( t i si( t + φ But we are goig to use expoetial otatio v ( t si( t

More information

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells Photo-Voltaics ad Solar Cells this lecture you will lear: Photo-Voltaic Cells Carrier Trasort, Curret, ad Efficiecy Solar Cells Practical Photo-Voltaics ad Solar Cells ECE 407 Srig 009 Farha aa Corell

More information

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions ECE606: Solid State evices Lecture 14 Electrostatics of - juctios Gerhard Klimeck gekco@urdue.edu Outlie 1) Itroductio to - juctios ) rawig bad-diagrams 3) ccurate solutio i equilibrium 4) Bad-diagram

More information

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain Parasitic Resistace G Polysilico gate rai cotact V GS,eff S R S R S, R S, R + R C rai Short Chael Effects Chael-egth Modulatio Equatio k ( V V ) GS T suggests that the trasistor i the saturatio mode acts

More information

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates ECE606: Solid State Devices Lecture 9 Recombiatio Processes ad Rates Gerhard Klimeck gekco@urdue.edu Outlie ) No-equilibrium systems ) Recombiatio geeratio evets 3) Steady-state ad trasiet resose ) Motivatio

More information

Monograph On Semi Conductor Diodes

Monograph On Semi Conductor Diodes ISSN (ONLINE) : 395-695X ISSN (PRINT) : 395-695X Available olie at www.ijarbest.com Iteratioal Joural of Advaced Research i Biology, Ecology, Sciece ad Techology (IJARBEST) Vol. 1, Issue 3, Jue 015 Moograh

More information

Applied Electronic I. Lecture Note By Dereje K. Information: Critical. Source: Apple. Ref.: Apple. Ref.

Applied Electronic I. Lecture Note By Dereje K. Information:   Critical. Source: Apple. Ref.: Apple. Ref. Applied Electroic I Lecture Note By Dereje K. Iformatio: http://www.faculty.iubreme.de/dkipp/ Source: Apple Ref.: Apple Ref.: IBM Critical 10-8 10-7 10-6 10-5 10-4 10-3 10-10 -1 1 10 1 dimesio (m) Ref.:

More information

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors Advaces i Applied Physics, Vol., 014, o. 1, 9-13 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/aap.014.3110 Diffusivity ad Mobility Quatizatio i Quatum Electrical Semi-Ballistic Quasi-Oe-Dimesioal

More information

Physics Oct Reading

Physics Oct Reading Physics 301 21-Oct-2002 17-1 Readig Fiish K&K chapter 7 ad start o chapter 8. Also, I m passig out several Physics Today articles. The first is by Graham P. Collis, August, 1995, vol. 48, o. 8, p. 17,

More information

SECTION 2 Electrostatics

SECTION 2 Electrostatics SECTION Electrostatics This sectio, based o Chapter of Griffiths, covers effects of electric fields ad forces i static (timeidepedet) situatios. The topics are: Electric field Gauss s Law Electric potetial

More information

ECE606: Solid State Devices Lecture 8

ECE606: Solid State Devices Lecture 8 ECE66: Solid State evices Lecture 8 Gerhard Klimeck gekco@urdue.edu Remider:»Basic cocets of doors ad accetors»statistics of doors ad accetor levels»itrisic carrier cocetratio Temerature deedece of carrier

More information

Forward and Reverse Biased Junctions

Forward and Reverse Biased Junctions TEMARIO DEL CURSO DE FUNDAMENTOS DE FÍSICA DE SEMICONDUCTORES 1. Itroducció a Física Electróica 1.1 Proiedades de cristales y crecimieto de semicoductores 1. Átomos y electroes 1.3 Badas de eergía y ortadores

More information

The power of analytical spectroscopy

The power of analytical spectroscopy The power of aalytical spectroscopy Daiila et al. J. Rama Spectr. 33, 807 (00) Reflected light Red lake varish UV light Rama spectrum Lead white ciabar Caput mortuum Byzatie Ico (AD Our 534), Lady, Our

More information

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation. Saturatio Cosider the circuit below. We have see this oe already. As before, assume that the BJT is o ad i forward active operatio. VCC 0 V VBB ib RC 0 k! RB 3V 47 k! vbe ic vce βf 00. ( )( µ µ ). (. )(!!

More information

Micron School of Materials Science and Engineering. Problem Set 7 Solutions

Micron School of Materials Science and Engineering. Problem Set 7 Solutions Problem Set 7 Solutios 1. I class, we reviewed several dispersio relatios (i.e., E- diagrams or E-vs- diagrams) of electros i various semicoductors ad a metal. Fid a dispersio relatio that differs from

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 21 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 21 -Sp 2002 Semicoductor Device Modelig ad Characterizatio EE5342 ecture 21 -Sp 2002 Professor Roald. Carter roc@uta.edu http://www.uta.edu/roc/ 21 02Apr02 1 Fully biased -MOS capacitor Chael if G > G S E x > 0 +

More information

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices

Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices 254 IEEE RANSACIONS ON ELECRON DEVICES, VOL. 46, NO. 1, JANUARY 1999 emperature-depedet Kik Effect Model for Partially-Depleted SOI NMOS Devices S. C. Li ad J. B. Kuo Abstract his paper reports a closed-form

More information

Electronics and Semiconductors

Electronics and Semiconductors Electroics ad Semicoductors Read Chater 1 Sectio 1.7-1.12 Sedra/Smith s Microelectroic Circuits Chig-Yua Yag atioal Chug Hsig Uiversity eartmet of Electrical Egieerig Electroic Circuits ( 一 ) Prof. Chig-Yua

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaeous Notes The ed is ear do t get behid. All Excuses must be take to 233 Loomis before 4:15, Moday, April 30. The PHYS 213 fial exam times are * 8-10 AM, Moday, May 7 * 8-10 AM, Tuesday, May 8

More information

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I From (1991 018) Office : F-16, (Lower Basemet), Katwaria Sarai, New Delhi-110016 Phoe : 011-65064 Mobile : 81309090, 9711853908

More information

Physics Methods in Art and Archaeology

Physics Methods in Art and Archaeology Physics Methods i Art ad Archaeology Michael Wiescher PHYS 78 Archaeologist i the 90ties Somewhere i South America 80 years later --- i the Valley of the Kigs, gypt Physics Tools & Techology Dager & Adveture

More information

Lecture 3-7 Semiconductor Lasers.

Lecture 3-7 Semiconductor Lasers. Laser LED Stimulated emissio Spotaeous emissio Laser I th I Typical output optical power vs. diode curret (I) characteristics ad the correspodig output spectrum of a laser diode.?1999 S.O. Kasap, Optoelectroics

More information

Physics 7440, Solutions to Problem Set # 8

Physics 7440, Solutions to Problem Set # 8 Physics 7440, Solutios to Problem Set # 8. Ashcroft & Mermi. For both parts of this problem, the costat offset of the eergy, ad also the locatio of the miimum at k 0, have o effect. Therefore we work with

More information

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET)

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET) ecture 9 MOS Field ffect Trasistor (MOSFT or FT) this lecture you will lear: The oeratio ad workig of the MOS trasistor A MOS aacitor with a hael otact ( Si) metal cotact Si Si GB B versio layer PSi substrate

More information

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor

ECE606: Solid State Devices Lecture 20. Heterojunction Bipolar Transistor C606: Solid State Devices Lecture 0 Heterojuctio ipolar Trasistor Gerhard Klimeck gekco@purdue.edu 1 Outlie 1. Itroductio. quilibrium solutio for heterojuctio 3. Types of heterojuctios 4. Itermediate Summary

More information

EE 485 Introduction to Photonics Photon Optics and Photon Statistics

EE 485 Introduction to Photonics Photon Optics and Photon Statistics Itroductio to Photoics Photo Optics ad Photo Statistics Historical Origi Photo-electric Effect (Eistei, 905) Clea metal V stop Differet metals, same slope Light I Slope h/q ν c/λ Curret flows for λ < λ

More information

Chapter If n is odd, the median is the exact middle number If n is even, the median is the average of the two middle numbers

Chapter If n is odd, the median is the exact middle number If n is even, the median is the average of the two middle numbers Chapter 4 4-1 orth Seattle Commuity College BUS10 Busiess Statistics Chapter 4 Descriptive Statistics Summary Defiitios Cetral tedecy: The extet to which the data values group aroud a cetral value. Variatio:

More information

Phys 102 Lecture 25 The quantum mechanical model of light

Phys 102 Lecture 25 The quantum mechanical model of light Phys 102 Lecture 25 The quatum mechaical model of light 1 Recall last time Problems with classical physics Stability of atoms Atomic spectra Photoelectric effect Quatum model of the atom Bohr model oly

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 090 EE4555 Fudaetals of Seicoductor evices Fall 0 ecture : MOSFE hapter 0.3, 0.4 090 J. E. Morris Reider: Here is what the MOSFE looks like 090 N-chael MOSFEs: Ehaceet & epletio odes 090 J. E. Morris 3

More information

Free electron gas. Nearly free electron model. Tight-binding model. Semiconductors

Free electron gas. Nearly free electron model. Tight-binding model. Semiconductors Electroic Structure Drude theory Free electro gas Nearly free electro model Tight-bidig model Semicoductors Readig: A/M 1-3,8-10 G/S 7,11 Hoffma p. 1-0 106 DC ELECTRICAL CONDUCTIVITY A costat electric

More information