MaxCaps Next Generation Dielectrics for Integrated Capacitors

Size: px
Start display at page:

Download "MaxCaps Next Generation Dielectrics for Integrated Capacitors"

Transcription

1 MaxCaps Next Generation Dielectrics for Integrated Capacitors Guenther Ruhl Infineon Technologies AG Σ! 2365 Semicon Europa 2011 Dresden, October 11, 2011 October 11,

2 Outline Introduction MaxCaps Project Overview Selected results DRAM capacitors RF/decoupling capacitors High voltage capacitors Summary October 11,

3 MaxCaps: Overview MAterials for next generation CAPacitors and memories Project Framework: MEDEA+ Duration: Q1/08 Q3/11 Objective Address complete value chain for targeted applications Precursor modelling, development & delivery Equipment & process development Application process module development October 11,

4 MaxCaps: Goals Develop capacitor modules consisting of ultra high-k materials and metal electrodes in future memory and capacitor applications Targeted deposition methods WP1: ALD / PEALD WP2: MOCVD / AVD Targeted Applications WP3: DRAM storage capacitors WP4: Planar BEOL capacitors (RF, decoupling, high voltage) WP5: Trench capacitors for SiP interposers Develop Phase-change Memory modules based on ALD material WP6: GeSbTe/SbTe based cells including electrodes October 11,

5 MaxCaps: Consortium October 11,

6 Capacitor requirements RF capacitors ITRS Roadmap 2009/2010 C f 7 J leak <10-8 A/cm² DRAM capacitors EOT J leak <10-7 A/cell October 11,

7 Capacity enhancement Capacity determined by several factors C 0 k optimization potential A d limited by trench geometry (etch process) limited by U bd /E bd October 11,

8 C f [ff/µm²] Film thickness [nm] E bd [MV/cm] Boundary conditions Specific capacity C f & film thickness determined by k J. McPherson et al., IEDM `02 Digest (2002) 633. SiO2 Al2O3 Ta2O5 ZrO2 SrTa2O6 SrTiO3 Si3N4 HfO2 La2O3 Pr2O3 TiO U bd = 15 V k Cf film thickness k October 11,

9 Dielectric material screening Target Dielectric thin film material with k >50 Film thickness up to >100 nm Excellent step coverage for trench capacitors Material screening Literature research 14 dielectric materials / material stacks evaluated 5 electrode materials evaluated Planar MIM capacitors Deposition methods AVD (MOCVD) ALD October 11,

10 J 1V [A/cm²] Dielectric material screening Leakage current 1 V J leak < 10-7 k < E E E E E E E E E E E k SrTiO/Au,Pt SrTiO/TiN,TaN PESrTiO/Au,Pt PESrTiO/TiN,TaN SrTiO&Al2O3/Au,Pt SrTiO&Al2O3/TiN,TaN SrTiO&SrTaO/Au,Pt SrTiO&SrTaO/TiN,TaN SrTiO&SrO/Au,Pt SrTiO&SrO/TiN,TaN BaSrTiO/Au,Pt BaSrTiO/TiN,TaN BaSrTiO&Al2O3/Au,Pt BaSrTiO&Al2O3/TiN,TaN BaTiO/Au,Pt BaTiO/TiN,TaN SrTaO/Au,Pt SrTaO/TiN,TaN TiTaO/Au,Pt TiTaO/TiN,TaN NbTaO/Au,Pt NbTaO/TiN,TaN AlTiO2&Al2O3/TiN,TaN CeAlO/Au,Pt CeAlO/TiN,TaN October 11,

11 DRAM capacitors Test device ALD SrTiO 3 /TiO x RuO x, TiN electrodes Planar device on 300 mm wafer M.A. Pawlak et al., IEEE IEDM 2010 (2010) 277. October 11,

12 DRAM capacitors J leak vs EOT M.A. Pawlak et al., IEEE IEDM 2010 (2010) 277. October 11,

13 DRAM capacitors Achievements Record low J leak = 10-6 /10-8 A/cm² at 0.4/0.5 nm EOT Low-roughness Ru oxidation process Small crystallite size of Sr-rich STO maintained by TiO x layer intermixing : high k (~85) at low J leak October 11,

14 J 3V [A/cm²] Dielectric material screening Leakage current >1 V J leak <10-7 k < E E E E E E E E E E E k SrTiO/Au,Pt SrTiO/TiN,TaN PESrTiO/Au,Pt PESrTiO/TiN,TaN SrTiO&Al2O3/Au,Pt SrTiO&Al2O3/TiN,TaN SrTiO&SrTaO/Au,Pt SrTiO&SrTaO/TiN,TaN SrTiO&SrO/Au,Pt SrTiO&SrO/TiN,TaN BaSrTiO/Au,Pt BaSrTiO/TiN,TaN BaSrTiO&Al2O3/Au,Pt BaSrTiO&Al2O3/TiN,TaN BaTiO/Au,Pt BaTiO/TiN,TaN SrTaO/Au,Pt SrTaO/TiN,TaN TiTaO/Au,Pt TiTaO/TiN,TaN NbTaO/Au,Pt NbTaO/TiN,TaN AlTiO2&Al2O3/TiN,TaN CeAlO/Au,Pt CeAlO/TiN,TaN October 11,

15 RF/decoupling capacitors Leakage current reduction multilayer dielectrics Crystalline SrTiO 3 high-k layer Amorphous SrTaO x leakage current blocking layer C. Baristiran Kaynak et al., Thin Solid Films 519 (2011) October 11,

16 RF/decoupling capacitors Leakage current reduction vs k eff reduction C. Baristiran Kaynak et al., Thin Solid Films 519 (2011) October 11,

17 RF/decoupling capacitors Achievements Low leakage current densities (<10-7 A/cm²) achievable only with dielectric multilayer k eff <50 Material choice: AVD BaSrTiO 3 /Al 2 O 3 & ALD SrTiO 3 /Al 2 O 3 J leak = < V k eff Voltage linearity <300 ppm/v² C f = 7.7 U bd = 15 V PDA temperature > 550 C Compatible with non-noble metal electrodes (TiN, TaN) Excellent step coverage for trench capacitors with ALD (shown for SrTiO 3, AlTiO 2 ) October 11,

18 Breakdown voltage >30 V High voltage capacitors Medium-k dielectric: ALD HfErO x (E bd = 3.9 MV/cm) Multilayers with ALD Al 2 O 3 (E bd = 7.0 MV/cm) k = 29 k eff = 19 k eff = 16 HfErO x Al 2 O 3 /HfErO x /Al 2 O 3 Al 2 O 3 /HfErO x nanolaminate t diel = 80 nm Data by: B. Toomey (Analog Devices) T. Blomberg (ASM) K. Cherkaoui, S. Monaghan (Tyndall National Insitute) October 11,

19 High voltage capacitors Achievements Nanolaminate shows lowest J leak at high k E bd Dielectric k E bd [MV/cm] k E bd J [A/cm²] HfErO x Al 2 O 3 /HfErO x /Al 2 O Al 2 O 3 /HfErO x NL Nanolaminate approach with medium-k dielectrics is a potential solution for high-voltage MIM capacitors with high capacitance density Optimization ongoing October 11,

20 Summary Extensive material screening performed Leakage current density limited choice of high-k dielectric depends on operating voltage DRAM capacitors k 100 RF/decoupling capacitors k <50 High voltage capacitors k <20 Deposition processes available Planar & moderate AR trench capacitors AVD & ALD High AR trench capacitors ALD MaxCaps is a joint success of cooperating partners along the whole value chain October 11,

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer 3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer Makoto Takamiya 1, Koichi Ishida 1, Koichi Takemura 2,3, and Takayasu Sakurai 1 1 University of Tokyo, Japan 2 NEC Corporation,

More information

Agenda. 1. Atomic Layer Deposition Technology

Agenda. 1. Atomic Layer Deposition Technology Agenda 1. Atomic Layer Deposition Technology 2. What is ALD? Atomic Layer Deposition is invented in 1977 by T. Suntola et al. - New Deposition Method for Electro-Luminescent Display (ZnS:Mn Thin Films)

More information

PROGRESS AND ISSUES IN DIELECTRIC MATERIALS FOR SUB-100NM DRAM TECHNOLOGY ABSTRACT

PROGRESS AND ISSUES IN DIELECTRIC MATERIALS FOR SUB-100NM DRAM TECHNOLOGY ABSTRACT PROGRESS AND ISSUES IN DIELECTRIC MATERIALS FOR SUB-100NM DRAM TECHNOLOGY Kanta Saino Device Integration Group, Technology & Development Office, Elpida Memory Inc. 7-10 Yoshikawakogyodanchi, Higashihiroshima,

More information

Low leakage ZrO 2 based capacitors for sub 20 nm DRAM technology nodes

Low leakage ZrO 2 based capacitors for sub 20 nm DRAM technology nodes Low leakage ZrO 2 based capacitors for sub 20 nm DRAM technology nodes Milan Pešić, 1 Steve Knebel, 1 Maximilian Geyer, 1 Sebastian Schmelzer 2, Ulrich Böttger 2, Nadiia Kolomiiets 3, Valeri V. Afanas

More information

RECENTLY, (Ba, Sr)TiO thin films have been intensively

RECENTLY, (Ba, Sr)TiO thin films have been intensively 342 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 2, FEBRUARY 1999 Impact of Time Dependent Dielectric Breakdown and Stress-Induced Leakage Current on the Reliability of High Dielectric Constant

More information

Alternative deposition solution for cost reduction of TSV integration

Alternative deposition solution for cost reduction of TSV integration Alternative deposition solution for cost reduction of TSV integration J. Vitiello, F. Piallat, L. Bonnet KOBUS 611 rue Aristide Bergès, Z.A. de Pré Millet, Montbonnot-Saint-Martin, 38330 France Ph: +33

More information

ALD deposited ferroelectric HfO 2

ALD deposited ferroelectric HfO 2 ALD deposited ferroelectric HfO 2 S. Slesazeck 1, U. Schroeder 1, E. Yurchuk 1, J. Müller 2, S. Müller 1, D. Martin 1, T. Schenk 1, C. Richter 1,C. Adelmann 3, S. Kalinin 5, A. Kersch 7, and T. Mikolajick

More information

Jusung Engineering, Korea and France

Jusung Engineering, Korea and France First Int. Workshop on Power Supply On Chip (PowerSoC08), Sept. 22-24, 2008, Cork, Ireland Ultrahigh-density (> 0.4 µf/mm 2 ) trench capacitors in silicon F. Roozeboom 1,2, W. Dekkers 1, K. Jinesh 1, W.

More information

MODELING OF CV CHARACTERISTICS OF HIGH-k MIM CAPACITORS

MODELING OF CV CHARACTERISTICS OF HIGH-k MIM CAPACITORS Chapter 6 MODELING OF CV CHARACTERISTICS OF HIGH-k MIM CAPACITORS 6.1 Introduction and Motivation Capacitance-Voltage characteristics and voltage linearity of MIM capacitor are important performance parameters

More information

EE 292L : Nanomanufacturing. Week 5: Advanced Process Technology. Oct

EE 292L : Nanomanufacturing. Week 5: Advanced Process Technology. Oct EE 292L : Nanomanufacturing Week 5: Advanced Process Technology Oct 22 2012 1 Advanced Process Technology 1 HAR etch 2 3 HAR Gapfill Metal ALD 4 Reflow 5 6 SAC Airgap 7 8 Strain Ge/III-V Engineering 1

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors

Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors Journal of the Korean Physical Society, Vol. 44, No. 1, January 2004, pp. 112 116 Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors Y. K. Park, Y. S. Ahn, S. B. Kim, K. H. Lee, C. H.

More information

Influence of electrode materials on CeO x based resistive switching

Influence of electrode materials on CeO x based resistive switching Influence of electrode materials on CeO x based resistive switching S. Kano a, C. Dou a, M. Hadi a, K. Kakushima b, P. Ahmet a, A. Nishiyama b, N. Sugii b, K. Tsutsui b, Y. Kataoka b, K. Natori a, E. Miranda

More information

FIB Voltage Contrast for Failure Localisation on CMOS Circuits an Overview

FIB Voltage Contrast for Failure Localisation on CMOS Circuits an Overview for Failure Localisation on CMOS Circuits an Overview 8th European FIB User Group Meeting Zürich 2004 Dr. rer. nat. Rüdiger Rosenkranz Infineon Technologies Dresden Physical Failure Analysis Page 1 Never

More information

CVD: General considerations.

CVD: General considerations. CVD: General considerations. PVD: Move material from bulk to thin film form. Limited primarily to metals or simple materials. Limited by thermal stability/vapor pressure considerations. Typically requires

More information

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric 048 SCIENCE CHINA Information Sciences April 2010 Vol. 53 No. 4: 878 884 doi: 10.1007/s11432-010-0079-8 Frequency dispersion effect and parameters extraction method for novel HfO 2 as gate dielectric LIU

More information

Ferroelectric HfO 2 Thin Films

Ferroelectric HfO 2 Thin Films Ferroelectric HfO 2 Thin Films May 12 th, 2015 JACKSON ANDERSON ELECTRICAL AND MICROELECTRONIC ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY Outline Introduction Background Project Objectives Experimental

More information

Objective: Competitive Low-Cost Thin-Film Varactor Technology. Integrated Monolithic Capacitors using Sputtered/MOCVD material on low-cost substrates

Objective: Competitive Low-Cost Thin-Film Varactor Technology. Integrated Monolithic Capacitors using Sputtered/MOCVD material on low-cost substrates Overview of Program Objective: Competitive Low-Cost Thin-Film Varactor Technology coplanar waveguide (CPW) capacitor ground signal ground Si substrate etched troughs Focus of Our Program! Reproducibility!

More information

Steep-slope WSe 2 Negative Capacitance Field-effect Transistor

Steep-slope WSe 2 Negative Capacitance Field-effect Transistor Supplementary Information for: Steep-slope WSe 2 Negative Capacitance Field-effect Transistor Mengwei Si, Chunsheng Jiang, Wonil Chung, Yuchen Du, Muhammad A. Alam, and Peide D. Ye School of Electrical

More information

Thin Film Transistors (TFT)

Thin Film Transistors (TFT) Thin Film Transistors (TFT) a-si TFT - α-si:h (Hydrogenated amorphous Si) deposited with a PECVD system (low temp. process) replaces the single crystal Si substrate. - Inverted staggered structure with

More information

3D capacitors on silicon with high density pore network and ZrO2 dielectric films deposited by MOCVD

3D capacitors on silicon with high density pore network and ZrO2 dielectric films deposited by MOCVD 3D capacitors on silicon with high density pore network and ZrO2 dielectric films deposited by MOCVD Magali Brunet 1, Gérald Leclerc 1, Emmanuel Scheid 1, Jean- Louis Sanchez 1 1 LAAS-CNRS, University

More information

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 1 Analysis of Band-to-band Title of Talk Tunneling Structures Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012 A Science & Technology Center Vertical Type-II TFET Structure

More information

Aerospace Performances of IPDiA -250 C up to 250 C Grade Silicon Capacitors

Aerospace Performances of IPDiA -250 C up to 250 C Grade Silicon Capacitors Aerospace Performances of IPDiA -250 C up to 250 C Grade Silicon Capacitors Laurent Lengignon, IPDiA, 2 rue de la Girafe, 14000 Caen, France Alter Technology, Madrid, Spain, Demetrio Lopez ESA/ESTEC, Noordwijk,

More information

+ V gate M O. Trend: As k, E g. Part 6: High Dielectric Constant (k), Gate Electrode, & Channel Materials. Bandgap versus Dielectric Constant (k) k k

+ V gate M O. Trend: As k, E g. Part 6: High Dielectric Constant (k), Gate Electrode, & Channel Materials. Bandgap versus Dielectric Constant (k) k k Part 6: High Dielectric Constant (k), Gate Electrode, & Channel Materials O 2 gate oxide is approaching physical limits Thickness & Current M O S poly-crystalline V Source W Source Contact Insulator n

More information

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Shih-Ching Lo 1, Yiming Li 2,3, and Jyun-Hwei Tsai 1 1 National Center for High-Performance

More information

Inductive crystallization effect of atomic-layerdeposited

Inductive crystallization effect of atomic-layerdeposited Zhang et al. Nanoscale Research Letters (2015) 10:25 DOI 10.1186/s11671-014-0711-4 NANO EXPRESS Open Access Inductive crystallization effect of atomic-layerdeposited Hf 0.5 Zr 0.5 O 2 films for ferroelectric

More information

Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors

Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors M. Adachi 1, K. Okamoto 1, K. Kakushima 2, P. Ahmet 1, K. Tsutsui 2, N.

More information

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications Hyunsang Hwang Dept. of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST), KOREA

More information

Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM

Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM C. Cagli 1, J. Buckley 1, V. Jousseaume 1, T. Cabout 1, A. Salaun 1, H. Grampeix 1, J. F. Nodin 1,H. Feldis 1, A. Persico 1, J.

More information

Abstract. Metal-insulator-metal (MIM) capacitors comprised of amorphous Si:SrTiO 3 -Al 2 O 3 -Si:SrTiO 3

Abstract. Metal-insulator-metal (MIM) capacitors comprised of amorphous Si:SrTiO 3 -Al 2 O 3 -Si:SrTiO 3 Si:SrTiO 3 -Al 2 O 3 -Si:SrTiO 3 multi-dielectric architecture for metal-insulatormetal capacitor applications Sita Dugu 1, Shojan P. Pavunny 1*, James F. Scott 1,2, and Ram S. Katiyar 1 * 1 Department

More information

High Dielectric Constant (k) Materials

High Dielectric Constant (k) Materials Part 6: High Dielectric Constant (k), Gate Electrode, & Channel Materials O 2 gate ide is approaching physical limits Thickness & Current M O S poly-crystalline V Source W Source Contact Insulator n +

More information

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1 Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W fin =20nm) with High Mobility (μ Hole =700 cm 2 /Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate A. Agrawal 1, M. Barth 1, G. B. Rayner

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing

Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing Fourmun Lee*, Steve Marcus, Eric Shero, Glen Wilk Johan Swerts, Jan Willem Maes, Tom Blomberg ASM America Inc.,

More information

Chapter 13. Capacitors

Chapter 13. Capacitors Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

More information

Challenges and Opportunities. Prof. J. Raynien Kwo 年

Challenges and Opportunities. Prof. J. Raynien Kwo 年 Nanoelectronics Beyond Si: Challenges and Opportunities Prof. J. Raynien Kwo 年 立 Si CMOS Device Scaling Beyond 22 nm node High κ,, Metal gates, and High mobility channel 1947 First Transistor 1960 1960

More information

Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides

Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides Alexey Kovalgin MESA+ Institute for Nanotechnology Semiconductor Components group a.y.kovalgin@utwente.nl 1 Motivation 1. Materials

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of metal, dielectric, ferroelectric, and polymer thin films. We seek to understand and describe nucleation and growth

More information

CVD-3 LFSIN SiN x Process

CVD-3 LFSIN SiN x Process CVD-3 LFSIN SiN x Process Top Electrode, C Bottom Electrode, C Pump to Base Time (s) SiH 4 Flow Standard LFSIN Process NH 3 Flow N 2 HF (watts) LF (watts) Pressure (mtorr Deposition Time min:s.s Pump to

More information

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D.

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D. cw_kim@samsung.com Acknowledgements Collaboration Funding Outline Introduction Current research status Nano fabrication Process Nanoscale patterning SiN thin film Si Nanoparticle Nano devices Nanoscale

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

CVD-3 SIO-HU SiO 2 Process

CVD-3 SIO-HU SiO 2 Process CVD-3 SIO-HU SiO 2 Process Top Electrode, C Bottom Electrode, C Pump to Base Time (s) SiH 4 Flow Standard SIO-HU Process N 2 O Flow N 2 HF (watts) LF (watts) Pressure (mtorr Deposition Time min:s.s Pump

More information

An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B

An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B Thin Solid Films 488 (2005) 167 172 www.elsevier.com/locate/tsf An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B S.C. Chen a, T, J.C. Lou a, C.H. Chien

More information

R&D Issues for High-k Gate Dielectrics

R&D Issues for High-k Gate Dielectrics R&D Issues for High-k Gate Dielectrics T.P. Ma Yale University Spacer High-k Gate Dielectric Stack Source Drain Gate electrode, poly Upper interfacial region Bulk high-k film Lower interfacial region Substrate

More information

Laboratoire L2MP 14 janvier 2005

Laboratoire L2MP 14 janvier 2005 Assemblée e Générale G L2MP 14 janvier 2005 A highly reliable 3-dimensional integrated SBT ferroelectric capacitor enabling FeRAM scaling L2MP (France) N. Menou (PhD), V. Madigou,, Ch. Turquat, D. Goguenheim,,

More information

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters Michael W. Baker, PhD Maxim Integrated Power SoC Northeastern University, Boston MA. October 7, 2014 Mobile Device Trends Power Management

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction In this chapter, ferroelectric materials are briefly introduced with emphasis on their nonvolatile memory properties and their potential impact on the current state of digital memories.

More information

Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements Materials 01, 5, 1005-103; doi:10.3390/ma5061005 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage

More information

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate Hu Ai-Bin( 胡爱斌 ) and Xu Qiu-Xia( 徐秋霞 ) Institute of Microelectronics,

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

Enhanced Mobility CMOS

Enhanced Mobility CMOS Enhanced Mobility CMOS Judy L. Hoyt I. Åberg, C. Ni Chléirigh, O. Olubuyide, J. Jung, S. Yu, E.A. Fitzgerald, and D.A. Antoniadis Microsystems Technology Laboratory MIT, Cambridge, MA 02139 Acknowledge

More information

Emerging Applications for High K Materials in VLSI Technology

Emerging Applications for High K Materials in VLSI Technology Materials 2014, 7, 2913-2944; doi:10.3390/ma7042913 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Emerging Applications for High K Materials in VLSI Technology Robert D. Clark

More information

Characterization of Charge Trapping and Dielectric Breakdown of HfAlOx/SiON Dielectric Gate Stack

Characterization of Charge Trapping and Dielectric Breakdown of HfAlOx/SiON Dielectric Gate Stack Characterization of Charge Trapping and Dielectric Breakdown of HfAlOx/SiON Dielectric Gate Stack Y. Pei, S. Nagamachi, H. Murakami, S. Higashi, S. Miyazaki, T. Kawahara and K. Torii Graduate School of

More information

Chapt ha e pt r e r 9 Capacitors

Chapt ha e pt r e r 9 Capacitors Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the

More information

CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process

CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process Standard MFSIN-HU-2 Process Top C Bottom C Pump to Base Time (s) SiH 4 Flow HF/ LF NH 3 Flow HF/LF N 2 HF/LF HF (watts) LF (watts) HF Time LF Time Pressure

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Automotive Grade Silicon Capacitors for Under the Hood Applications

Automotive Grade Silicon Capacitors for Under the Hood Applications Automotive Grade Silicon Capacitors for Under the Hood Applications Sébastien Jacqueline, Laurent Lengignon, Laëtitia Omnès IPDiA, 2 rue de la Girafe, 14000 Caen, France laetitia.omnes@ipdia.com, +33 (0)

More information

CVD-3 MFSIN-HU-1 SiN x Mixed Frequency Process

CVD-3 MFSIN-HU-1 SiN x Mixed Frequency Process CVD-3 MFSIN-HU-1 SiN x Mixed Frequency Process Standard MFSIN-HU-1 Process Top C Bottom C Pump to Base Time (s) SiH 4 Flow HF/ LF NH 3 Flow HF/LF N 2 HF/LF HF (watts) LF (watts) HF Time LF Time Pressure

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

ALD high-k and higher-k integration on GaAs

ALD high-k and higher-k integration on GaAs ALD high-k and higher-k integration on GaAs Ozhan Koybasi 1), Min Xu 1), Yiqun Liu 2), Jun-Jieh Wang 2), Roy G. Gordon 2), and Peide D. Ye 1)* 1) School of Electrical and Computer Engineering, Purdue University,

More information

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Co- Authors Aixtron Alex Jouvray Simon Buttress Gavin Dodge Ken Teo The work shown here has received partial funding from the European

More information

SCALE-UP OF THE BARIUM TITANATE ATOMIC LAYER DEPOSITION PROCESS ONTO 200 MM WAFER

SCALE-UP OF THE BARIUM TITANATE ATOMIC LAYER DEPOSITION PROCESS ONTO 200 MM WAFER 1.1149/1.229339, copyright The Electrochemical Society SCALE-UP OF THE BARIUM TITANATE ATOMIC LAYER DEPOSITION PROCESS ONTO 2 MM WAFER R. Matero, A. Rahtu, S. Haukka, M. Tuominen, M. Vehkamäki 1, T. Hatanpää

More information

Improved Interfacial and Electrical Properties of GaSb Metal Oxide

Improved Interfacial and Electrical Properties of GaSb Metal Oxide Improved Interfacial and Electrical Properties of GaSb Metal Oxide Semiconductor Devices Passivated with Acidic (NH 4 ) 2 S Solution Lianfeng Zhao, Zhen Tan, Jing Wang, and Jun Xu * Tsinghua National Laboratory

More information

ALD & ALE Tutorial Speakers and Schedule

ALD & ALE Tutorial Speakers and Schedule ALD & ALE Tutorial Speakers and Schedule Sunday, July 29, 2018 1:00-1:05 Tutorial Welcome 1:05-1:50 1:50-2:35 2:35-3:20 Challenges of ALD Applications in Memory Semiconductor Devices, Choon Hwan Kim (SK

More information

Random Access Memory. DRAM & SRAM Design DRAM SRAM MS635. Dynamic Random Access Memory. Static Random Access Memory. Cell Structure. 6 Tr.

Random Access Memory. DRAM & SRAM Design DRAM SRAM MS635. Dynamic Random Access Memory. Static Random Access Memory. Cell Structure. 6 Tr. DRAM & SRAM Design Random Access Memory Volatile memory Random access is possible if you know the address DRAM DRAM Dynamic Random Access Memory SRAM Static Random Access Memory SRAM Cell Structure Power

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf by S. Wolf Chapter 15 ALUMINUM THIN-FILMS and SPUTTER-DEPOSITION 2004 by LATTICE PRESS CHAPTER 15 - CONTENTS Aluminum Thin-Films Sputter-Deposition Process Steps Physics of Sputter-Deposition Magnetron-Sputtering

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

2DFUN - 2D FUNCTIONAL MX 2 /GRAPHENE HETERO-STRUCTURES

2DFUN - 2D FUNCTIONAL MX 2 /GRAPHENE HETERO-STRUCTURES www.2dfun.eu 2DFUN - 2D FUNCTIONAL MX 2 /GRAPHENE HETERO-STRUCTURES FLAG-ERA JTC 2015 PROJECT KICK-OFF APRIL 13, 2016, BUDAPEST, HUNGARY, PROJECT COORDINATOR 2D MATERIALS GRAPHENE AND BEYOND VISION AND

More information

Graphene Varactors as a Sensing Platform for Biotechnology Applications

Graphene Varactors as a Sensing Platform for Biotechnology Applications Graphene Varactors as a Sensing Platform for Biotechnology Applications Steven J. Koester 1, Eric J. Olson 1, David Deen 1, Yao Zhang 1, Mona A. Ebrish 1, Rui Ma 1, Nazila Haratipour 1, Philippe Buhlmann

More information

Three-dimensional AlZnO/Al 2 O 3 /AlZnO nanocapacitor arrays on Si substrate for energy storage

Three-dimensional AlZnO/Al 2 O 3 /AlZnO nanocapacitor arrays on Si substrate for energy storage Li et al. Nanoscale Research Letters 2012, 7:544 NANO EXPRESS Three-dimensional AlZnO/Al 2 O 3 /AlZnO nanocapacitor arrays on Si substrate for energy storage Lian-Jie Li 1, Bao Zhu 1, Shi-Jin Ding 1*,

More information

Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices

Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices Rashmi Jha and Branden Long Dept. of Electrical Engineering and Computer Science University of Toledo Toledo,

More information

SPUTTER DEPOSITION PROCESSES FOR THIN FILM OXIDE DIELECTRICS

SPUTTER DEPOSITION PROCESSES FOR THIN FILM OXIDE DIELECTRICS SPUTTER DEPOSITION PROCESSES FOR THIN FILM OXIDE DIELECTRICS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree

More information

Modeling of Leakage Currents in High-κ Dielectrics

Modeling of Leakage Currents in High-κ Dielectrics TECHNISCHE UNIVERSITÄT MÜNCHEN Institut für Nanoelektronik Modeling of Leakage Currents in High-κ Dielectrics Gunther Christian Jegert Vollständiger Abdruck der von der Fakultät für Elektrotechnik und

More information

Nanofabrication Lab Process Development for High-k Dielectrics

Nanofabrication Lab Process Development for High-k Dielectrics Nanofabrication Lab Process Development for Highk Dielectrics Each lab group consists of 4 to 5 students. The dates of these Labs are: Lab 1 Date 14.02.2013 Time: 812 am Lab 2 Date 14.02.2013 Time: 15

More information

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22,

More information

New Ferroelectric Material for Embedded FRAM LSIs

New Ferroelectric Material for Embedded FRAM LSIs New Ferroelectric Material for Embedded FRAM LSIs V Kenji Maruyama V Masao Kondo V Sushil K. Singh V Hiroshi Ishiwara (Manuscript received April 5, 2007) The strong growth of information network infrastructures

More information

There s Plenty of Room at the Bottom and at the Top

There s Plenty of Room at the Bottom and at the Top 14 nm chip X SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark bohr 2014 idf presentation.pdf There s Plenty of Room at the Bottom and at the Top Tsu Jae King Liu Department

More information

A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers. Claudio Truzzi, PhD Chief Technology Officer Alchimer

A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers. Claudio Truzzi, PhD Chief Technology Officer Alchimer A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers Claudio Truzzi, PhD Chief Technology Officer Alchimer Overview Introduction Electrografting (eg) Technology Description

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information

Homework #1 - September 9, Due: September 16, 2005 at recitation ( 2 PM latest) (late homework will not be accepted)

Homework #1 - September 9, Due: September 16, 2005 at recitation ( 2 PM latest) (late homework will not be accepted) Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Homework #1 - September 9, 2005 Due: September 16, 2005 at recitation ( 2 PM latest) (late homework will not be accepted) Please

More information

Chapter 20 Electric Potential and Electric Potential Energy

Chapter 20 Electric Potential and Electric Potential Energy Chapter 20 Electric Potential and Electric Potential Energy 1 Overview of Chapter 20 Electric Potential Energy and the Electric Potential! Energy Conservation! The Electric Potential of Point Charges!

More information

Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets

Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets Andreas Schenk a,, a Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, CH-8092, Switzerland

More information

USOO A United States Patent (19) 11 Patent Number: 5,923,062 Ohno (45) Date of Patent: *Jul. 13, 1999

USOO A United States Patent (19) 11 Patent Number: 5,923,062 Ohno (45) Date of Patent: *Jul. 13, 1999 USOO5923062A United States Patent (19) 11 Patent Number: 5,923,062 Ohno (45) Date of Patent: *Jul. 13, 1999 54 SEMICONDUCTOR DEVICE 5,559,666 9/1996 Figura et al.. NCORPORATING CAPACTORS 5,568,352 10/1996

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of ultrathin metal and dielectric films. Our work seeks to: 1) develop and understand the reactions and chemistry that

More information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Infineon Technologies Corporate Research Munich, Germany Outline

More information

Manufacture of Nanostructures for Power Electronics Applications

Manufacture of Nanostructures for Power Electronics Applications Manufacture of Nanostructures for Power Electronics Applications Brian Hunt and Jon Lai Etamota Corporation 2672 E. Walnut St. Pasadena, CA 91107 APEC, Palm Springs Feb. 23rd, 2010 1 Background Outline

More information

in this web service Cambridge University Press

in this web service Cambridge University Press High-k Materials Mat. Res. Soc. Symp. Proc. Vol. 670 2001 Materials Research Society Materials and Physical Properties of Novel High-k and Medium-k Gate Dielectrics Ran Liu, Stefan Zollner, Peter Fejes,

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

This presentation will describe my research here during SULI s summer 2012 program. My project was to fabricate nano-film capacitors.

This presentation will describe my research here during SULI s summer 2012 program. My project was to fabricate nano-film capacitors. This presentation will describe my research here during SULI s summer 2012 program. My project was to fabricate nano-film capacitors. I was given this project because the Linac Coherent Light Source s

More information

Reliability and Instability of GaN MIS-HEMTs for Power Electronics

Reliability and Instability of GaN MIS-HEMTs for Power Electronics Reliability and Instability of GaN MIS-HEMTs for Power Electronics Jesús A. del Alamo, Alex Guo and Shireen Warnock Microsystems Technology Laboratories Massachusetts Institute of Technology 2016 Fall

More information

Atomic layer deposition of titanium nitride

Atomic layer deposition of titanium nitride Atomic layer deposition of titanium nitride Jue Yue,version4, 04/26/2015 Introduction Titanium nitride is a hard and metallic material which has found many applications, e.g.as a wear resistant coating[1],

More information

Film Deposition Part 1

Film Deposition Part 1 1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of

More information

TECHCET s Review of Sematech s Surface Preparation & Cleaning Conference Saratoga Springs, NY, May 12-14, 2015 Part 1 of 2

TECHCET s Review of Sematech s Surface Preparation & Cleaning Conference Saratoga Springs, NY, May 12-14, 2015 Part 1 of 2 TECHCET s Review of Sematech s Surface Preparation & Cleaning Conference Saratoga Springs, NY, May 12-14, 2015 Part 1 of 2 Presentations from SPCC related to the latest Wet Cleaning / Etching / Surface

More information

Jiro Yota. GaAs Technology, Skyworks Solutions, Inc W. Hillcrest Drive, Newbury Park, CA 91320, USA

Jiro Yota. GaAs Technology, Skyworks Solutions, Inc W. Hillcrest Drive, Newbury Park, CA 91320, USA ALD HfO 2 and Al 2 O 3 as MIM Capacitor Dielectric for GaAs HBT Technology Jiro Yota GaAs Technology, Skyworks Solutions, Inc. 2427 W. Hillcrest Drive, Newbury Park, CA 91320, USA jiro.yota@skyworksinc.com

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION CHEMICAL VAPOR DEPOSITION OF ZIRCONIUM TIN TITANATE: A DIELECTRIC MATERIAL FOR POTENTIAL MICROELECTRONIC APPLICATIONS Ebony L. Mays 1, 4, Dennis W. Hess 2 1, 3, 4, and William S. Rees, Jr. Departments

More information

Master Thesis. Effect of Alkali-earth-elements Incorporation on La 2 O 3 Dielectrics for Scaled Silicon MOS Device

Master Thesis. Effect of Alkali-earth-elements Incorporation on La 2 O 3 Dielectrics for Scaled Silicon MOS Device Master Thesis Effect of Alkali-earth-elements Incorporation on Dielectrics for Scaled Silicon MOS Device Tomotsune Koyanagi Department of Electronics and Applied Physics Interdisciplinary Graduate School

More information

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance 1 Seminar Spacer Lithography for Reduced Variability in MOSFET Performance Prof. Tsu-Jae King Liu Electrical Engineering & Computer Sciences Dept. University of California at Berkeley Graduate Student:

More information

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors L05: Capacitors and Inductors 50 Capacitors 51 Outline of the lecture: Capacitors and capacitance. Energy storage. Capacitance formula. Types of capacitors. Inductors and inductance. Inductance formula.

More information

Al-Doped TiO 2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors**

Al-Doped TiO 2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors** DOI: 10.1002/adma.200701085 Al-Doped TiO 2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors** By Seong Keun Kim, Gyu-Jin Choi, Sang Young Lee, Minha Seo, Sang Woon Lee, Jeong Hwan

More information