VBIC. SPICE Gummel-Poon. (Bipolar Junction Transistor, BJT) Gummel Poon. BJT (parasitic transistor) (avalance mutliplication) (self-heating)

Size: px
Start display at page:

Download "VBIC. SPICE Gummel-Poon. (Bipolar Junction Transistor, BJT) Gummel Poon. BJT (parasitic transistor) (avalance mutliplication) (self-heating)"

Transcription

1 page 4 VBC SPCE Gummel-Poon (Bipolar Junction Transistor, BJT) 1970 Gummel Poon GP BJT (parasitic transistor) (avalance mutliplication) (self-heating) (qusai-saturation) Early GP BJT (Heter-junction Bipolar Transistor HBT) Vertical Bipolar nter-company (VBC) VBC Gummel-Poon page 4

2 page 5 Gummel-Poon GP VBC.1 VBC Gummel-Poon VBC BJT Gummel-Poon VBC 1. (Base width modulation) BJT HBT GP VA(Early voltage). (parasitic PNP) 3. Kull (quasi-saturation) (distributed base) (current crowding effect) 7. epi-layer 8. (self-heating) 9. (weak avalanche breakdown) 10. (excess phase shift) page 5

3 page 6 NPN VBC -1 Gummel-Poon NPN Gummel-Poon PNP R C Q BCX Q BC BE BEX BC gc BC C BEO C BCO Double Poly-Silicon BJT (poly-silicon base) R B R BP (normalized base charge qb qbp) (DC AC Transient) VBC Weil-McNamee RLC (thermal network) page 6

4 page 7 S C si R S C BCO R CX tfp trp bp BCP Q BCP R BP q bp cx BEP Q BEP Q BCX R C ci B R BX Q BEX bx bex R B q b Q BC Q BE bc bi be gc ei txf tzr C BEO R E E dt F lxf xf xf 1 tzf RTH CTH tzf Q cxf 1Ω t 1 page 7

5 Chap. VBC page (cc) CC (Transport current) tzf tzr s V bei V bci cc = tzf tzr = exp 1 exp 1 q b NF V th NR V th (.1a) V th k T q = (.1b) Vth (Thermal voltage) k q T ( K) q b ( ) qb q S q S q S q je q jc q1s 1 VER VEF s V bei s V bci qs = exp 1 exp 1 KF + N FV tv KR NR V tv = + + (.a) = + + (.b) (.c) q 1S (Base-width modulation) q S (High Level injection effect) q je q jc C JE C JC.1. ( be, bc ) VBC ( ) ( Recombination) V bei V bei BE = WBE BE exp 1 + BEN exp 1 NE V th N EN V th (.3a) page 8

6 page 9 V bei V bei BEX = ( 1 WBE ) BE exp 1 + BEN exp 1 NE V th NEN V th V bci V bci BC = BC exp 1 + BCN exp 1 NCV th NCN V th (.3b) (.3c) BE BC - - NE NC - - (emission coefficient) BEN BCN NEN NCN W BE (ntrinsic) (extrinsic).1.3 (Weak Avalanche Effect) BC BC ( i ) ( ) d ε qe i = d εi P = exp = exp λ qeλ (mean free path) gc α n b n gc = n xd Emax exp (.4a) b E n max n = cc bc (.4b) gc BC x d E max BC n ( NPN ) gc << n page 9

7 page 10 CJC C jc = (.5a) MC VBC 1 PC ε xd = (.5b) C x d jc PC V Emax = 1 MC BC (.5c) C BC CJC BC PC jc BC (Built-in potential) MC BC (Grading coefficient) BC (.4a) AVC igc = ( cc BC ) AVC1 ( PC Vbci ) exp ( ) 1 MC PC Vbci αn 1 AVC1 = b 1 MC ( 1 MC ) εbn AVC = CJC PC n MC (.6) AVC1 AVC VBC Gummel-Poon.1.4 (Quasi-saturation effects) Kirk Effect ( β ) (f T ) ( ρ c ) page 10

8 Chap. VBC page 11 ( C R ), BC V V ( R R ) = + BCi BC C CX C VBC BC BC - ci cx contact BE SCR BC SCR Emitter Base Collector Sub collector contact ci cx R C R CX [11] rci rci K Vrci + VthK bci Kbcx ln K = Vrci RC 1+ VO bci bcx (.7) RC VO GAMM VBC. VBC CC( ) GCTC (Global Communication Technology Coporation) ngap/gaas HBT VBC page 11

9 page 1-3 Emitter n + n + ngaas GaAs Ledge n ngap Ledge Base p + GaAs Collector n GaAs Subcollector n + GaAs Semi nsulator Substrate..1-1 VBC (R E ) (R CX ) page 1

10 page 13 (R B ) (R BX )..1.1 RE-flyback RC-flyback -4 HP 414 R E (E) (ei) C ( ) V CE R E V CE B R E -4(a) B + V CE = 0 ~ 10mA = 0A step 100uA C B + V EC = 0 ~ 0mA 0 E = A step 100uA (a) (b) RE-flyback(a) RCX-flyback(b) R E 1 = V B CE (.8).8 page 13

11 page VCE (V) Linear fit of RE VCE (V) B (ma) VCE (V) Linear fit of RCX 0.4 VEC (V) B (ma) page 14

12 page VBC (R BX R B ) (1). (R BX ) (). (R B ) (.8) (Early Effect) VBC (emitter current crowding effect) RB WBE R B R B = RBX + (.8) qb ( ) ( 1 β ) R + R i + R + + R C π BX B b π ac E ( ) R + R i + R BX B b E optimized -1 ngap/gaas HBT (N B >>N E,N C ) R B 0 page 15

13 Chap. VBC page 16 j * MAG + ( ) + + ( ) + + ( 1+ β ) R R i R BX B b E R R i R R BX B b π ac E REAL frequency RBX RB R E ( ) R CX ( ) R BX ( ) R B ( ) Gummel plot ngap/gaas HBT pnp pnp VBC page 16

14 Chap. VBC page 17 Gummel plot Gummel plot Gummel plot (Diode) V E 0 V B V C V B V C -8 ( B ) ( BE N E ) ( BEN N EN ) V BE (Recombination) kt V BE (R E ) - ( C ) KF KF B C NF 1 RE NE BEN S BE NEN V BE page 17

15 page 18 B E KR NC NR 1 RCX BCN BC NEN S V BC Gummel plot -10 ( S ) ngap/gaas HBT Gummel kt Gummel HBT ngap/gaas HBT KF 1 - Gummel plot page 18

16 page x10-4 C E 1x10-5 C & E V BE &V CE x10-4 C & B (A) 1x V BE (V) c Simulation b Simulation b Measurement c Measurement page 19

17 Chap. VBC page x10-4 E & B (A) 1x B Sim (A) E Sim (A) B Mea (A) E mea (A) V BC (V) S(Amp.) 1.58E-5 BE(Amp.) 8.63E-6 BC(Amp.) 4.31E-15 NF 1.03 NE 1.11 NC 1.98 NR 1.01 BEN(Amp.) 1.00E-19 BCN(Amp.) 1.00E-19 KF 1 NEN NCN KR 1.86E (Base Width Modulation Effect) ngap/gaas HBT V EF V ER page 0

18 Chap. VBC page (Quasi-saturation) VBC R C G AMM V O H RCF Q CO R C G AMM V O R C G AMM (epi) V O H RCF Q CO ngap/gaas (mobility) -4 page 1

19 page RC = 500 RC = 1500 C C GAMM = 100 p GAMM = 0 V C V C RC V GAMM V C VO =100 VO = 10 R C 1 G AMM 5.00E-15 V O 100 H RCF 0.1 V C Q CO 1.00E-15 VO V page

20 page measurement data simulation Jc (ma/um ) Vc (V) Measurement Data Simulation Jc (ma/um ) Vc (V) page 3

21 Chap. VBC page 4..5 ngap/gaas HBT VBC 3 1. GaAs pnp. (N B >>N E N C ) V EF V ER 0 3. GaAs (epi-layer) VBC ngap/gaas HBT ngap/gaas HBT S(Amp.) 1.58E-5 BE(Amp.) 8.63E-6 BC(Amp.) 4.31E-15 NF 1.03 NE 1.11 NC 1.98 NR 1.01 BEN(Amp.) 1.00E-19 BCN(Amp.) 1.00E-19 KF 1 NEN NCN KR 1.86E-07 WBE 1 R C 1 R E ( ) 19. VEF 0 G AMM 5.00E-15 R CX ( ) 7 VER 0 V O 100 R BX ( ) 31.4 RTH 4.4K H RCF 0.1 R B ( ) 0 CTH 1.00E-09 Q CO 1.00E-15 page 4

22 Chap. VBC page 5.3 VBC.3.1 VBC VBC (Q BE ) (Q BEX ) - (Q BC ) (Q BCX ) VBC (CBEO) (CBCO) (space charge) (deplete) VBC SGP FC smooth AJ Q, = CJE qj( Vbei, PE, ME, FC, AJE) BE dep C BE QBE, dep qj( Vbei, PE, ME, FC, AJE) = = CJE Vbei Vbei 1 CJE for Vbei < FC PE ME Vbei 1 PE CJE Vbei 1 FC 1 ( 1 ME) ME for Vbei FC PE ME FC PE ( 1 ) (.9) PE - (built-in potential) ME - (0.5, for uniform doped base) - CBE - CBC (1). (). (1). - Q BE page 5

23 page 6 Q = Q + Q BE BE, dep BE, duf = CJE WBE qje + TFF tzf (.10a) tzf V bci TFF = TF( 1+ QTFq1 ) 1 + XTF exp tzf + TF 1.44 VTF (.10b) CJE - WBE TFF VBC (transit time) (). - Q BEX = ( ) = ( ) (.11) QBEX QBE, dep 1 WBE CJE 1 WBE qj( Vbex, PE, ME, FC, AJE) 0<WBE<1 V BEX VBC Vbx-Vei (3). - QBC Q = Q + Q + Q BC BC, dep BC, duf epi, in = CJC qjc + TR qb + QCO K tzr bci (.1) V bci Kbci = 1+ GAMM exp Vth QCO Kbci (base pushout Kirk Effect) (4). - QBCX Q BCX = QCO K (.13a) bcx page 6

24 page 7 K bcx V bcx 1 GAMM exp V = + (.13b) th.3. HP 8510 S S de-embedding Pad de-embedding dummy open S Y S mea Y Y open Y deivce pad page 7

25 page 8 S S S S S 11, open 1, open S 1, open, open S 11, mea 1, mea S 1, mea, mea Y Y Y Y Y 11, open 1, open Y 1, open, open Y 11, mea 1, mea Y 1, mea, mea Y11, device Y1, device Y11, mea Y1, mea Y11, open Y1, open Y Y = Y Y Y Y 1, device, device 1, mea, mea 1, open, open -18 Port 1 Port Ca C c Cb C C C a b c mag ( Y11, device + Y1, device ) = (.14a) mag π f ( Y, device + Y1, device ) = (.14b) -mag π f ( Y1, device ) = (.14c) π f CV C BE V c 0 V b (.14) page 8

26 page 9 Port Port 1 Vb = 5 ~ 1V step 0.V Vc = 0V C BE Port Port 1 Vc = 1 ~ 7.5V step 0.45V Vb = 0V C BC -1 - ngap/gaas HBT page 9

27 page CBE Measurement CBE Simulation 8 CBE (ff) VBE (V) C BE CBC (ff) Measurement Data Simulation VBC (V) C BC page 30

28 page 31 C JE (ff) 7.5 C JC (ff) 10. P E 1.35 P C 1.09 M E 75.01m M C 481.m A JE 1m A JC 1m F C f t (unit current gain frequency) VBC (.15) TFF = 1 π f T tzf V bci TFF = TF( 1+ QTFq1 ) 1 + XTF exp tzf + TF 1.44 VTF (.15) TF XTF TF QTF TF TF TF VTF TF VBC Gummel- Poon VBC VTF VBC S de-embbeding H H 1 page 31

29 page 3 f t H 1-0dB/decade DC~0GHz S H GHz -3 Port Port 1 Vc = 1 ~ 3V step 0.5V Vb = 1. ~ 1.5V step 0.01V ngap/gaas HBT QTF 0 C-CAP -4-7 page 3

30 page Ft (GHz) Measurement Simulation 1x10-5 1x c (A) Ft (GHz) Measurement Simulation c (ma) VBC page 33

31 page 34 VBC TF(psec) 3.01 TF 0.61m QTF 0 VTF 0 XTF TR 0 VBC V BC VBC - (BC) - Kirk Effect VBC V CE (V BC ).3.4 S S TD ADS VBC S S page 34

32 page 35 ngap/gaas HBT VBC C JE (ff) 7.5 C JC (ff) 10. P E 1.35 P C 1.09 M E 75.01m M C 481.m A JE 1m A JC 1m F C 0.9 TF(psec) 3.01 TF 0.61m QTF 0 VTF 0 XTF TR 0 S11 Mag. (db) Qx4 b =15µA V c =V VBC Model Measurement Data(Mag.) S11 Phase(degree) -6-7 VBC Model Measurement Data (Phase) Freq. (GHz) ngap/gaas HBT S VBC (S11) page 35

33 page 36 S1 Mag. (db) VBC Model Measurement Data (Phase) Qx4 b =15µA V c =V VBC Model Measurement Data (Mag.) S1 Phase (degree) Freq. (GHz) ngap/gaas HBT S VBC (S1) S1 Mag. (db) Qx4 b =15µA V c =V VBC Model Measurement Data (Mag.) S1 Phase(degree) - VBC Model Measurement Data (Phase) Freq. (GHz) ngap/gaas HBT S VBC (S1) page 36

34 page 37 S Mag. (db) Qx4 b =15µA V c =V VBC Model Measurement Data (Mag.) S Phase (degree) VBC Model Measurement Data (Phase) Freq. (GHz) ngap/gaas HBT S VBC (S).4 ngap/gaas HBT.3.3 GP VBC BiCMOS HBT f t C V CE V CB TF XTF VTF TF Q GP VBC f C S dq f d C HBT - HBT page 37

35 Chap. VBC page Middle current region 30 V ce 5 Low current region Ft (GHz) High current region 0 1x10-5 1x c (A) Ft c contact BE SCR BC SCR Emitter Base Collector Sub collector contact high current density w E w B w C w BE w BC ngap/gaas HBT page 38

36 Chap. VBC page (Neutral Base Region) w B Q nb ζ ζ w ( ζ 1) e + 1 B wb e 1 i (.16) = + ζ µ V ζ e v e ζ ζ nb T c T µ nb (drift factor) E w V n B ζ = (.17) th ζ wb ( N B ) (intrinsic) ( n i ) En E n V dn V dn = n + N dx n dx T B T i B i (.18) ( n i ) (SiGe) band-gap grading (.16) / ( v c ) (Kirk Effect ) w B v c - vbci ζ ζ dq ( 1) e 1 nb w ζ + B wb e 1 = = + = + (.19) Bf ζ ζ Bfd Bfv dt µ nbvt ζ e vc e ζ page 39

37 page 40 w B v c c ζ bias Bfd Bfv ( ) w 1 1 B = wb 0 kb c (.0) w w ( V ) = = k b - B0 B BCi 0 c = C jci0 C jci Bfd Bfd 0 b k ( c ) ζ ( ζ ) e = 1 1 w B Bfd 0 = ζ µ nbvt ζ e (.1) E n = 0 ζ w ( ζ 1) e + 1 B wb = = Bfd 0 ζ µ nbvt ζ e µ nbvt Bfv u Vlim vs v = c vs, E lim 1+ u = w = c µ nc 0 (.) u E ( v, i ) / Elim = jc BCi T BC lim E µ nc 0 Bfv ζ wb 0 1+ u e 1 kb ( c 1) v ζ s u e = ζ 1 (.3) page 40

38 page 41 ζ e ζ 1 ζ BC e 1 1+ u u 1 1 kb ( c 1) > 1 BC 1+ u u > 1 1 kb ( c 1) 1 BC Bfd 1+ u u 1 kb ( c 1) u ζ wb 0 e ζ 1 Bfv0 u0 Bfv = 1 Bfv0 1 ζ + = + vs e 1 u 1+ u0 u w e ζ 1 ζ B0 Bfv0 = 1+ ζ vs e 1 u0 (.4) V = 0 u 0 u 1 c Bfv0 BCi.4. - (BC Space Charge Region) - wbc BC = (.5) v c w BC v c - BC (punch-through) ε A C jcip C = w C C jcip jcip BC = BCP = BCP c (.6) C jci C jci0 page 41

39 Chap. VBC page 4 punch-through wc BCP = v c.4.3 (Neutral Emitter Region) w E pe0 pe 0 = dqpe we we d = v + µ V (.7) B ke pe T v ke (contact recombination velotcity) µ pe C β 0 = dc db Ef pe0 = (.8) β 0 0 ( C, Low ) β V = 0 β 0 BCi Ef β ( C Low ) 0, = Ef 0 (.9) β ( V ) 0 C, BCi (ntegral Charge-Control Relation) page 4

40 page 43 β β 0 ( C Low ) g E 0, T 1+ (.30) (, V ) C BCi CK g E CK.4.5 Ef Q Ef g E T Ef = Ef 01 + CK g E Q = 1 + i T Ef Ef 0 T CK (.31) (BE Space Charge Region) - V T v BEi QBE = qae wbe ni exp 1 (.3) PE VT w BE - n i - PE BE BE vbei qae wbeni exp V T 1 = g PE m C (.33) g m g m C BE page 43

41 page (Neutral Collector Region) - (Sub-Collector) Kir-effect Krik-effect f T CK CK v 1 ceff x + x + 10 = 1 + r Ci0 1+ ( vceff Vlim ) 3 (.34a) x v V ceff lim = (.34b) V PT x V PT punchthrough V lim ( v < Vlim ) CK ( V lim V PT ) ceff rci 0 v ceff r Ci0 w qa µ = C (.35a) N E nc 0 C v ceff vcei v CEs = VT ln 1+ exp V T (.35b) v CEs CE CK page 44

42 page 45 v CEi T = ( ) CK Q pc pcs ( ) QpC = pcsit wi wc wc pcs = 4µ nc 0VT (.36) w w ( 1 i ) = Q pc i C CK T T < CK pc Q + + = = + + i = 1 CK it w i i a i hc w w C 1 1 ahc (.37) a hc > 0 pc pc dq w 1 pc CK = = pcs + di C it i + ahc (.38).4.6 page 45

43 Chap. VBC page 46 (1). drift Ef - BC - BE = << 1 ( c ) Bfd 0kb 1 = f 0 Bfd Bfv BC Ef BE ( ) [ ] ( c 1) [ u u 1 ] / sqrt( i ) ( c 1) [ 1 c 1 ] / sqrt( i ) = 0 + BCP C jcip C jci0 Bfd 0kb c 1 + Bfvl u0 u 1 + BE0 / sqrt( it ) (.39) = h Bfvl 0 BE0 T h Bfvl BE0 T 0 Ef 0 Bfd 0 Bfv0 BCP ( C jcip C jci0 ) = V = 0 0h - Early Effect Bfvl T C BCi (). Ef Bf pc Ef = g E ( i ) ( 1 ) Ef Ef 0 T CK Q = i + g Ef Ef T E (.40) Bf pc [11] page 46

44 page 47 fh = hcsw 1+ Q = w i fh hcs T it i ahc w w e ζ w hcs = Bfvs + pcs = + µ 1 4µ CK + ζ Bm C C ζ nc 0VT e nc 0VT (.41) Ef 0 g E hcs a hc V BCi = 0 V BE ( V = 1.5V ) 1 π f CE je jc ( V ) = (.4) ', f CE C T C + C g m 0h matlab Bfvl BE0 r Ci0 = wc 75 qa µ N Ω (.43a) E nc 0 C VPT V (.43b) E lim V v w µ lim s = = lim c nc 0 vs V = wc 0.V (.43c) µ nc 0 w C N C V PT CV matlab page 47

45 page 48 ngap/gaas HBT f 0 (psec).6 Ef rci h (psec) 1.3 g E.7 VPT.5 Bfvl (psec) 0.01 hcs (psec) 5 Vlim 0.34 BE0 5.5e-14 a hc 0.65 VCEs Measurement Simulation 5 Ft (GHz) x10-5 1x c (A) (log) page 48

46 page Ft (GHz) Measurement Simulation c (ma) (lin) page 49

1 Introduction -1- C continuous (smooth) modeling

1 Introduction -1- C continuous (smooth) modeling 1 Introduction For over 0 years the SPICE Gummel-Poon (SGP) model (Gummel, 1970; Nagel, 1975) has been the IC industry standard for circuit simulation for bipolar junction transistors (BJTs). This is a

More information

BIPOLAR JUNCTION TRANSISTOR MODELING

BIPOLAR JUNCTION TRANSISTOR MODELING BIPOLAR JUNCTION TRANSISTOR MODELING Introduction Operating Modes of the Bipolar Transistor The Equivalent Schematic and the Formulas of the SPICE Gummel-Poon Model A Listing of the Gummel-Poon Parameters

More information

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31 Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31 A. Pawlak, M. Schroter, A. Mukherjee, J. Krause Chair for Electron Devices and Integrated Circuits (CEDIC) Technische Universität Dresden, Germany pawlak@iee.et.tu-dresden.de,

More information

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics A Novel Method for Transit Time Parameter Extraction Taking into Account the Coupling Between DC and AC Characteristics Dominique BEGE and Didier CELI STMicroelectronics, 850, rue jean Monnet F-38926 Cedex

More information

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model HICUM HICUM / L2 A geometry scalable physics-based compact bipolar transistor model M. Schroter, A. Pawlak, A. Mukherjee Documentation of model version 2.32 August, 2013 M. Schroter 16/5/14 1 HICUM List

More information

ECE-305: Spring 2018 Final Exam Review

ECE-305: Spring 2018 Final Exam Review C-305: Spring 2018 Final xam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapters 10 and 11 (pp. 371-385, 389-403) Professor Peter Bermel lectrical and Computer ngineering Purdue University,

More information

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2 Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:00-11:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,

More information

VBIC Fundamentals. Colin McAndrew. Motorola, Inc East Elliot Rd. MD EL-701 Tempe, AZ USA 1 VBIC

VBIC Fundamentals. Colin McAndrew. Motorola, Inc East Elliot Rd. MD EL-701 Tempe, AZ USA 1 VBIC VBIC Fundamentals Colin McAndrew Motorola, Inc. 2100 East Elliot Rd. MD EL-701 Tempe, AZ 85284 USA 1 VBIC Outline History Review of VBIC model improvements over SGP model formulation observations and comments

More information

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007 6.72J/3.43J - Integrated Microelectronic Devices - Spring 27 Lecture 38-1 Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 27 Contents: 1. Non-ideal effects in BJT in FAR Reading material: del Alamo,

More information

HICUM release status and development update L2 and L0

HICUM release status and development update L2 and L0 HICUM release status and development update L2 and L0 M. Schröter, A. Pawlak 17th HICUM Workshop Munich, Germany May 29th, 2017 Contents HICUM/L2 in a nutshell Release of HICUM/L2 version 2.4.0 Strong

More information

About Modeling the Reverse Early Effect in HICUM Level 0

About Modeling the Reverse Early Effect in HICUM Level 0 About Modeling the Reverse Early Effect in HICUM Level 0 6 th European HICUM Workshop, June 12-13, 2006, Heilbronn Didier CELI, STMicroelectronics 1/21 D. Céli Purpose According to the bipolar models,

More information

HICUM Parameter Extraction Methodology for a Single Transistor Geometry

HICUM Parameter Extraction Methodology for a Single Transistor Geometry HICUM Parameter Extraction Methodology for a Single Transistor Geometry D. Berger, D. Céli, M. Schröter 2, M. Malorny 2, T. Zimmer 3, B. Ardouin 3 STMicroelectronics,, France 2 Chair for Electron Devices

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 5a Bipolar Transistor Dep. Region Neutral Base n(0) b B C n b0 P C0 P e0 P C xn 0 xp 0 x n(w) b W B Adib Abrishamifar EE Department IUST Contents Bipolar Transistor

More information

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I V characteristics in forward active regime Reading Assignment:

More information

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 19 BJT Base Resistance and Small Signal Modelling Lecture Outline Lecture 17 derived static (dc) injection model to predict dc currents from terminal voltages This

More information

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format Bipolar Junction Transistor (BJT) Model Old Content - visit altiumcom/documentation Modified by Admin on Sep 13, 2017 Model Kind Transistor Model Sub-Kind BJT SPICE Prefix Q SPICE Netlist Template Format

More information

MEXTRAM (level 504) the Philips model for bipolar transistors

MEXTRAM (level 504) the Philips model for bipolar transistors MEXTRAM (level 504) the Philips model for bipolar transistors Jeroen Paasschens, Willy Kloosterman, Ramses van der Toorn FSA modeling workshop 2002 Philips Electronics N.V. 2002 apple PHILIPS Philips Research

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L15 05Mar02 1 Charge components in the BJT From Getreau,

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything

More information

Modelling the Vertical PNP - Transistor using ICCAP and VBIC

Modelling the Vertical PNP - Transistor using ICCAP and VBIC Modelling the ertical PNP - Transistor using AP and Jörg erkner nfineon Technologies AG Munich, Germany 1 Abstract: This paper deals with modelling the vertical pnp-transistor (PNP) using the 95 model.

More information

Regional Approach Methods for SiGe HBT compact modeling

Regional Approach Methods for SiGe HBT compact modeling Regional Approach Methods for SiGe HBT compact modeling M. Schroter 1),2) and H. Tran 2) 1) ECE Dept., University of California San Diego, La Jolla, CA, USA 2) Chair for Electron Devices and Integr. Circuits,

More information

The Mextram Bipolar Transistor Model

The Mextram Bipolar Transistor Model Date of issue: January 25, 2016 The Mextram Bipolar Transistor Model level 504.12 G. Niu, R. van der Toorn, J.C.J. Paasschens, and W.J. Kloosterman Mextram definition document NXP Semiconductors 2006 Delft

More information

VBIC MODELING HANDBOOK

VBIC MODELING HANDBOOK -- VBIC MODELING HANDBOOK --------------------------------------------------------------- Keysight Technologies and F.Sischka www.keysight.com www.sisconsult.de VBIC Modeling Handbook /3/27 -2- Foreword

More information

Memories Bipolar Transistors

Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Exams February 5 March 7 April 18 June 27 Exam Four

More information

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 17-1 Lecture 17 - The Bipolar Junction Transistor (I) Contents: Forward Active Regime April 10, 2003 1. BJT: structure and basic operation

More information

2 nd International HICUM user s meeting

2 nd International HICUM user s meeting 2 nd International HICUM user s meeting Monterey, September 22 D. Berger, D. Céli, T. Burdeau STMicroelectronics,, France esults HICUM status in ST Implementation of HICUM model equation in an in-house

More information

Recitation 17: BJT-Basic Operation in FAR

Recitation 17: BJT-Basic Operation in FAR Recitation 17: BJT-Basic Operation in FAR BJT stands for Bipolar Junction Transistor 1. Can be thought of as two p-n junctions back to back, you can have pnp or npn. In analogy to MOSFET small current

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation M. Schroter ),) and H. Tran ) ) ECE Dept., University of California San Diego, La Jolla, CA, USA

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002 Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L16 07Mar02 1 Gummel-Poon Static npn Circuit Model C RC Intrinsic

More information

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34 Methodology for Bipolar Model Parameter Extraction Tzung-Yin Lee and Michael Schröter February 5, 1999 TYL/MS 2/5/99, Page 1/34 Outline General Remarks Brief overview of TRADICA Parameter extraction flowchart

More information

Mextram 504. Jeroen Paasschens Willy Kloosterman Philips Research Laboratories, Eindhoven. c Philips Electronics N.V. 1999

Mextram 504. Jeroen Paasschens Willy Kloosterman Philips Research Laboratories, Eindhoven. c Philips Electronics N.V. 1999 Mextram 54 Jeroen Paasschens Willy Kloosterman Laboratories, Eindhoven c Electronics N.V. 1999 Mextram 54 Introduction (1) Previous CMC: Mextram 53 gives generally good results. Why Mextram 54 Modelling

More information

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.) 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 35-1 Lecture 35 - Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Current-voltage characteristics of ideal BJT (cont.)

More information

The Mextram Bipolar Transistor Model

The Mextram Bipolar Transistor Model Date of issue: March 12, 2012 The Mextram Bipolar Transistor Model level 504.10.1 R. van der Toorn, J.C.J. Paasschens, and W.J. Kloosterman Mextram definition document NXP Semiconductors March 12, 2012

More information

Lecture Notes for ECE 215: Digital Integrated Circuits

Lecture Notes for ECE 215: Digital Integrated Circuits Lecture Notes for ECE 215: Digital Integrated Circuits J. E. Ayers Electrical and Computer Engineering Department University of Connecticut 2002 All rights reserved University of Connecticut 1 Introduction

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

13. Bipolar transistors

13. Bipolar transistors Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector

More information

Lecture 27: Introduction to Bipolar Transistors

Lecture 27: Introduction to Bipolar Transistors NCN www.nanohub.org ECE606: Solid State Devices Lecture 27: Introduction to ipolar Transistors Muhammad Ashraful Alam alam@purdue.edu Alam ECE 606 S09 1 ackground E C E C ase! Point contact Germanium transistor

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017 NAME: PUID: ECE 305 Fall 017 Final Exam (Exam 5) Wednesday, December 13, 017 This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy,

More information

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and Self-Heating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor

More information

12. Memories / Bipolar transistors

12. Memories / Bipolar transistors Technische Universität Graz Institute of Solid State Physics 12. Memories / Bipolar transistors Jan. 9, 2019 Technische Universität Graz Institute of Solid State Physics Exams January 31 March 8 May 17

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

Chapter 7. The pn Junction

Chapter 7. The pn Junction Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a P-type substrate such that a layer of semiconductor is converted into N type. Converting

More information

Bipolar junction transistor operation and modeling

Bipolar junction transistor operation and modeling 6.01 - Electronic Devices and Circuits Lecture 8 - Bipolar Junction Transistor Basics - Outline Announcements Handout - Lecture Outline and Summary; Old eam 1's on Stellar First Hour Eam - Oct. 8, 7:30-9:30

More information

Charge-Storage Elements: Base-Charging Capacitance C b

Charge-Storage Elements: Base-Charging Capacitance C b Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers

More information

Status of HICUM/L2 Model

Status of HICUM/L2 Model Status of HICUM/L2 Model A. Pawlak 1), M. Schröter 1),2), A. Mukherjee 1) 1) CEDIC, University of Technology Dresden, Germany 2) Dept. of Electrical and Computer Engin., University of Calif. at San Diego,

More information

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS Name: CARLETON UNIVERSITY SELECTE FINAL EXAMINATION QUESTIONS URATION: 6 HOURS epartment Name & Course Number: ELEC 3908 Course Instructors: S. P. McGarry Authorized Memoranda: Non-programmable calculators

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

****** bjt model parameters tnom= temp= *****

****** bjt model parameters tnom= temp= ***** ****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** Copyright (C) 2013 Synopsys, Inc. All Rights Reserved. Unpublished rights reserved under US copyright laws. This program is protected by law and

More information

Lecture 29: BJT Design (II)

Lecture 29: BJT Design (II) NCN www.nanohub.org C606: Solid State Devices Lecture 9: JT Design () Muhammad Ashraful Alam alam@purdue.edu Alam C 606 S09 1 Outline 1) Problems of classical transistor ) Poly Si emitter 3) Short base

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

Model derivation of Mextram 504

Model derivation of Mextram 504 Nat.Lab. Unclassified Report NL-UR 2002/806 Date of issue: March 2005 Model derivation of Mextram 504 The physics behind the model J.C.J. Paasschens, W.J. Kloosterman, and R. v.d. Toorn Unclassified report

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

Non-standard geometry scaling effects

Non-standard geometry scaling effects Non-standard geometry scaling effects S. Lehmann 1), M. Schröter 1),2), J. Krause 1), A. Pawlak 1) 1) Chair for Electron Devices and Integr. Circuits, Univ. of Technol. Dresden, Germany 2) ECE Dept., University

More information

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction, Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier

More information

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23 NPN Silicon RF Transistor* For broadband amplifiers up to GHz and fast nonsaturated switches at collector currents from 0.5 ma to 0 ma Complementary type: BFT9 (PNP) * Short term description ESD (Electrostatic

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D1 Supersedes data of 1999 Mar 1 1999 Jul 3 FEATURES PINNING Small size Low noise Low distortion High gain Gold metallization ensures excellent reliability.

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

LOW TEMPERATURE MODELING OF I V CHARACTERISTICS AND RF SMALL SIGNAL PARAMETERS OF SIGE HBTS

LOW TEMPERATURE MODELING OF I V CHARACTERISTICS AND RF SMALL SIGNAL PARAMETERS OF SIGE HBTS LOW TEMPERATURE MODELING OF I V CHARACTERISTICS AND RF SMALL SIGNAL PARAMETERS OF SIGE HBTS Except where reference is made to the work of others, the work described in this thesis is my own or was done

More information

Chapter 2. Small-Signal Model Parameter Extraction Method

Chapter 2. Small-Signal Model Parameter Extraction Method Chapter Sall-Signal Model Paraeter Extraction Method In this chapter, we introduce a new paraeter extraction technique for sall-signal HBT odeling. Figure - shows the sall-signal equivalent circuit of

More information

Accurate transit time determination and. transfer current parameter extraction

Accurate transit time determination and. transfer current parameter extraction Accurate transit time determination and transfer current parameter extraction T. Rosenbaum, A. Pawlak, J. Krause, M. Schröter Chair for Electron Devices and Integrated Circuits (CEDIC) University of Technology

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

BFP193. NPN Silicon RF Transistor*

BFP193. NPN Silicon RF Transistor* NPN Silicon RF Transistor* For low noise, highgain amplifiers up to GHz For linear broadband amplifiers f T = 8 GHz, F = db at 900 MHz * Short term description ESD (Electrostatic discharge) sensitive device,

More information

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises Page Microelectronic Circuit esign Fourth Edition - Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or ) 5.V 3.95 V V

More information

HICUM/L2 version 2.2: Summary of extensions and changes

HICUM/L2 version 2.2: Summary of extensions and changes HICUM/L2 version 2.2: Summary of extensions and changes M. Schroter Chair for Electron Devices & Integrated Circuits Dept. of Electrical and Computer Engineering (CEDIC) University of Technology Dresden,

More information

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma NPN Silicon RF Transistor For lownoise, highgain broadband amplifiers at collector currents from ma to ma VPS5 ESD: Electrostatic discharge sensitive device, observe handling precaution! Type Marking Pin

More information

A Simplified, Analytical, One-Dimensional Model for Saturation Operation of the Bipolar Transistor

A Simplified, Analytical, One-Dimensional Model for Saturation Operation of the Bipolar Transistor 82 A Simplified, Analytical, One-Dimensional Model for Saturation Operation of the Bipolar Transistor G.T. Wright and P.P. Frangos Electronic and Electrical Engineering Department, University of Birmingham,

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23 NPN Silicon RF Transistor* For low noise, highgain broadband amplifiers at collector currents from 0.5 ma to ma f T = 8 GHz, F = 0.9 db at 900 MHz Pbfree (RoHS compliant) package ) Qualified according

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.

More information

BFP196W. NPN Silicon RF Transistor*

BFP196W. NPN Silicon RF Transistor* NPN Silicon RF Transistor* For low noise, low distortion broadband amplifiers in antenna and telecommunications systems up to 1.5 GHz at collector currents from 20 ma to 80 ma Power amplifier for DECT

More information

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements P. Sakalas $,#, A. Pawlak $, M. Schroter $ $ CEDIC, Technische Universität Dresden, Mommsenstrasse 13, Germany # FRLab. Semiconductor

More information

HICUM/L2 version 2.21: Release Notes

HICUM/L2 version 2.21: Release Notes HICUM/L2 version 2.21: Release Notes Chair for Electron Devices & Integrated Circuits (CEDIC) University of Technology Dresden, Germany M. Schroter and A. Chakravorty mschroter@ieee.org http://www.iee.et.tu-dresden.de/iee/eb/

More information

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz NPN Silicon RF Transistor* For low noise, highgain amplifiers up to GHz For linear broadband amplifiers f T = 8 GHz, F = db at 900 MHz Pbfree (RoHS compliant) package ) Qualified according AEC Q * Short

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323 NPN Silicon RF Transistor* For low noise, highgain broadband amplifiers at collector currents from ma to 0 ma f T = 8 GHz, F = 0.9 db at 900 MHz Pbfree (RoHS compliant) package ) Qualified according AEC

More information

Devices. chapter Introduction. 1.2 Silicon Conductivity

Devices. chapter Introduction. 1.2 Silicon Conductivity chapter 1 Devices 1.1 Introduction The properties and performance of analog bicmos integrated circuits are dependent on the devices used to construct them. This chapter is a review of the operation of

More information

CLASS 3&4. BJT currents, parameters and circuit configurations

CLASS 3&4. BJT currents, parameters and circuit configurations CLASS 3&4 BJT currents, parameters and circuit configurations I E =I Ep +I En I C =I Cp +I Cn I B =I BB +I En -I Cn I BB =I Ep -I Cp I E = I B + I C I En = current produced by the electrons injected from

More information

Introduction to Power Semiconductor Devices

Introduction to Power Semiconductor Devices ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Wednesday, October 30, 013 1 Introduction Chapter 4: we considered the

More information

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models LC 3908, Physical lectronics, Lecture 17 Bipolar Transistor njection Models Lecture Outline Last lecture looked at qualitative operation of the BJT, now want to develop a quantitative model to predict

More information

BFP196W. NPN Silicon RF Transistor*

BFP196W. NPN Silicon RF Transistor* NPN Silicon RF Transistor* For low noise, low distortion broadband amplifiers in antenna and telecommunications systems up to 1.5 GHz at collector currents from 20 ma to 80 ma Power amplifier for DECT

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor

More information

Holes (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2

Holes (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2 Part V. (40 pts.) A diode is composed of an abrupt PN junction with N D = 10 16 /cm 3 and N A =10 17 /cm 3. The diode is very long so you can assume the ends are at x =positive and negative infinity. 1.

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

Characteristics of Active Devices

Characteristics of Active Devices 007/Oct/17 1 haracteristics of Active Devices Review of MOSFET Physics MOS ircuit Applications Review of JT Physics MOS Noise JT Noise MS/RF Technology Roadmap MS MOS 1., 1.0, 0.8µm 0.60, 0.50µm 0.45,

More information

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 15-1 Lecture 15 - The pn Junction Diode (I) I-V Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. I-V characteristics

More information

Junction Bipolar Transistor. Characteristics Models Datasheet

Junction Bipolar Transistor. Characteristics Models Datasheet Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017.

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017. T c K Tb K p b b F H O N F H ff ff p V H G F Y 2 Rx G J J Kcbc T H F H p p p p H Hb Gc O R IOOO RTENT V Jc K Ox F Hb Ox F G x R b 6 1 R F R b c j p G E F 1 R p bb G H Gc Y Hb 2 F 3 4 b R K K V R H p Rbb

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE R. AMADOR, A. NAGY, M. ALVAREZ, A. POLANCO CENTRO DE INVESTIGACIONES EN MICROELECTRÓNICA, CIUDAD HABANA 10800, CUBA,

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

junctions produce nonlinear current voltage characteristics which can be exploited

junctions produce nonlinear current voltage characteristics which can be exploited Chapter 6 P-N DODES Junctions between n-and p-type semiconductors are extremely important foravariety of devices. Diodes based on p-n junctions produce nonlinear current voltage characteristics which can

More information