CARLETON UNIVERSITY Final EXAMINATION April 16, 2003

Size: px
Start display at page:

Download "CARLETON UNIVERSITY Final EXAMINATION April 16, 2003"

Transcription

1 LTN UNIVSIT Final MINTIN pril 6, 23 Name: Number: Signature: UTIN: HUS No. of Student: epartment Name & ourse Number: ourse Instructor(s) UTHI MMN 3 4 lectronic ngineering L267, and Profs. N. Tait and J. Knight ny notes or books, any non-communicating calculator. Students MUST count the number of pages in this eamination question paper before beginning to write, and report any discrepancy immediately to a proctor. This question paper has 8 pages. This eamination paper May Not be taken from the eamination room. In addition to this question paper, students require: an eamination booklet yes no may request a Scantron sheet yes no Please answer on the eamination paper. The correct answers should easily fit in the space given. ou may ask for a booklet if you need it. heck on the right if your answer is in the booklet. 2% oolean lgebra a) Find the dual of the function F = ( + ) + F = [ ( + [ ])] + [ ] Many people forgot the [..] brackets F dual = [+( [+])] [+] Too many called the dual F. F dual = [ + [+]] [+] function is not equal to it s dual. a) vg 63.% 2% 7% b) valuate the inverse of the function = + as a Σ of Π epression = ( [ ]) + Partial step dual =(+[+]) = (+[+]) = (+ ) Not adding brackets around N terms caused much grief. lternately, using a map = ( [+]) + = + +, plot this = +, circle zeros Many people did not use the eneralized emorgan Theorem 2 Karnaugh Maps a) etermine the Σ of Π function f(,,,,) which gives the minimum number of letters d d f(,,,,) = d d 8 letters f = Maps for f ommon errors: Not sharing the term between and thus getting a term, Some people did not even share, using Not minimizing on one map by using instead of d d 8 letters. f = ne could reduce the letter count slightly by factoring out and, but this would no longer be Σ of Π. b) vg 69.7% 2 a) vg 84.2% page Profs. N. Tait and J. Knight page of 8

2 arleton University lectronic ngineering L267 Name 6% 2 Karnaugh Maps (continued) b) Find the simplest (minimum number of letters) implementation for the function g(,,,) defined by the Σ of Π map below. However the sum of products may not be the the best answer. Map for g Long Hard Solution g = =( + ) + ( + ) g(,,,) = =( + )( + ) + ( + )( + ) Swap =( + )[( +) + ( + )] =( + )[( + ) + ][( + ) + ( + )] 2 Map for g = ( + ) [( + )( + + )][( + + )( )] 2 Simple Solution ircle zeros g = + + using eneralized emorgan (+)(+)(++) 7 letters = ( + )( + )( + + )( + + ) = ( + )( + )( + + ) onsensus 2 a) vg 79.% 3 Programmable Logic 8% a) The functions defined by the maps are to be inplemented by a 3-output PL. PLs can share N plane (product) terms so the object here is to use the minimum number of N plane terms in the PL. ircle the maps to minimize these terms. List these product terms. 3 a) vg 79.% PL F d d d d F ll of these reduce sharing and marks Total number of different product terms st product = 5th product = 2nd product = 6th product = 3rd product = 7th product = 4th product = 8th product = 9th product = th product = th product = 2th product = Minimizing the maps individually is a very poor method and would give 2 products. F d PL d d d F Total number of different product terms_8 st product = 5th product = 9th product = 2nd product = 6th product = th product = 3rd product = 7th product = th product = 4th product = 8th product = 2th product = lternately the 6th and 7th products could be ( or ) and ( or ) Profs. N. Tait and J. Knight 9/4/9 page 2, of 8

3 arleton University lectronic ngineering L267 Name 3% 3 Programmable Logic (ontinued) b) rite the oolean epression represented by the PL shown below. F Permanent connection Programmable connection 3 a) vg 99.% F = + + = + + 4% c) rite an alternate epression for F and, from 3b) above, which could be realized using the minimum number of product lines in a PL. F = + + = + + educed number of products F = + = + Sharing the line does no good, in fact it is not possible with the PL which has fied plane logic. 3 c) vg 53.5% 4 Synchronous ircuits: a) For the state graph shown 7% 4 a) vg i) onstruct the state table. ii) raw the circuit using minimal logic. 74.2% ommon errors Shifting order of and columns between table and maps. Not making table in K-map order. Not transfering net state columns to maps properly Taking the net state as the output thus making Mealy outputs. Note the output is the same as the state. Interchanging map titles so = + instead of +. Not drawing a correct circuit from the equations. Trying to combine both outputs into one variable. State Net State + + inputs utput utput = state + Map of = + Map of = + = = + = = Profs. N. Tait and J. Knight 9/4/9 page 3, of 8

4 arleton University lectronic ngineering L267 Name 4% 4 Synchronous ircuits (ontinued) b) Sketch the waveforms for, and. Their initial values are, and respectively as shown. synch eset lock 4 a) vg 34.8% 3% This circuit is called a Johnson or Mobius ounter ommon errors: Not realizing just after the clock edge must be what was just before that edge. Not realizing just after the clock edge must be what was just before that edge. esetting c) The circuit below shows a three-bit binary counter. dd the circuitry for the synchronous clear so the count will be 2 = on the net active clock edge after synchronous clear is made. There is no synchronous clear on these flip-flops. SNHNUS L = ( ) From the Midi lab. 4 c) vg 45.% = ( ) = ( 2 ( ) 6% d) The circuit below uses the same three-bit binary counter as above after the synchronous clear is added. Use it and etra gates to make a circuit which will generate the pulse P as shown. P comes up on the 4th cycle after the clear and every 8 cycles thereafter. SNHNUS L P e) vg 43.2% SNHNUS L 3-IT UNT 2 P This is straight from the Midi lab. lternately: The counter counts ->->2->3->4->5->6->7-> ou need an output P when the count is 4 () The gate does that. Then P goes to zero when the count continues 5->6->7->8->->->2->3-> and becomes, eight counts later on the second 4. Profs. N. Tait and J. Knight 9/4/9 page 4, of 8

5 arleton University lectronic ngineering L267 Name 4 Synchronous ircuits (ontinued) e) (i) Find a state assignment for the circuit below with logic minimization as the objective. 6% Make the reset state, and give a brief eplaination. (ii) Fill in the two-column net-state table. 4 a) vg State Table 48.5% STT 2 NT STT UTPUT ule. Parents of the same child (same input) should cuddle -up on the K-map. ( and ), ( and ), ( and ) ule 2. Sisters should cuddle up (, ), (,), (,), (,), (,) einforces ule. annot make both (,) and (,) adjacent, and still follow ule. K-map like, State Table STT NT STT NT STT STT = = = = = = = = = = = = = = = STT NT STT Scratch Table NT STT STT ne choice. nother choice Still Used in the another K-map like choice state table 5% f) raw a logic circuit with 2 inputs and y, and an output z. z= if y=, z= if y=, and z stays at its previous value if y=. The y= input never happens. (L) y S(H) z + 4 f) vg 27.% lternately make an asynchronous state macine with state and net state z + This is the set-reset latch latch described in the notes with =S(H) and y=(l) Net state z + State y= y= y= y= d d y d d z + = z y + 4% g) ssume it takes ns for a signal change to go from the input of a NN N or NT gate to the output. raw a circuit which will oscillate with a half period of 3ns. 3ns dd number of inverters gives an oscillator. Input change to output change = 3ns This feeds back and changes the input again. 4 h) vg 4.5% Profs. N. Tait and J. Knight 9/4/9 page 5, of 8

6 arleton University lectronic ngineering L267 Name 4 Synchronous ircuits (ontinued) h) i) omplete the waveforms and 4% ii) fill in the state for the machine shown. Initially =. 4 a) vg Synchronous State raph LK 72.6% = = = z== z= Initially = so State is. State n active clock edge =, so State stays ait till net active clock edge =, so state changes to. ait till net active clock edge =, so state changes to ait till net active clock edge =, so state changes to 7% State i) (i) educe the state table below to the minimum number of states. (ii) Make a new state table with the minimum number of states. Net State = = utput = = F 4 i) vg 8.8% F utputs Incompatable F. an merge, and, and, F and.. State Net State = = utput = = F Profs. N. Tait and J. Knight 9/4/9 page 6, of 8

7 arleton University lectronic ngineering L267 Name 5 Hazards 4% a) eneral hazard question. i) Is it possible to construct a logic circuit for an arbitrary combinational (no storage, no feedback) function using nothing but N, and NT gates in a sum-of-product form? yes ii) Is it possible to construct a logic circuit for an arbitrary combinational function which has no single-variable change hazards? yes If so, describe the major design steps for a small circuit (up to 4 inputs): Multiply out to sum-of-product form Plot on a K map Mask all the hazards on the map. iii)is it possible to construct a logic circuit for an arbitrary combinational function which has no multiple variable-change hazards? No, one cannot mask function hazards If so, describe the major design steps: 5 a) vg 66.3% 7% b) Identify hazards in a logic function constructed according to the formula: F = ( + ) ( + ) + 5 c) vg 63.7% No hazards in since there is no ; also no hazards in. Hazard in when () ( + ) + = (static ) ( +) ( + ) + () ( + ) + Hazard in when = (dynamic ) ( + ) ( + ) + No hazard in ( + ) ( + ) + No hazard in ( + ) ( + ) + ( ) ( + ) () ( + ) Hazard in when = d (static ) No hazard in Profs. N. Tait and J. Knight 9/4/9 page 7, of 8

8 arleton University lectronic ngineering L267 Name 6 synchronous ircuits a) Make a state table for the circuit shown. 7% State Table 6 a) vg STT NT STT a + c + a % c + a + = + = + + = + + c + = b) synchronous state table 2% 6 c) vg State Net State a + b + ircle all stable states s= s= Indicate any races or cycles with arrows. 53.8% For each race/cycle indicate if it is: critical, non-critical, who-cares, oscillating cycle, ace cycle which dies out. Starting in stable state with S=, change S ->. The state table says the net state is which is stable. State Net State a + b + However, because of the race, it might also be or. s= s= From transient state (S=) the net state is so the result is the same as if one had gone directly. From transient state, the net state is which will again send the the machine to. ven with the race, the final state will always be, so the race is non-critical. c) synchronous state table 2% 6 e) vg State Net State a + b + ircle all stable states s= s= Indicate any races or cycles with arrows. 7.3% For each race/cycle indicate if it is: critical, non-critical, who-cares, oscillating cycle, cycle which dies out. Starting from stable state (S=), one gets a cycle immediately when S changes to. Starting from state,with S-> one travels to state and then to state before entering the cycle. State Net State a + b + s= s= Profs. N. Tait and J. Knight 9/4/9 page 8, of 8

CARLETON UNIVERSITY Final rev EXAMINATION Fri, April 22, 2005, 14:00

CARLETON UNIVERSITY Final rev EXAMINATION Fri, April 22, 2005, 14:00 LTON UNIVSITY Final rev MINTION Fri, pril 22, 25, 4: Name: Number: Signature: UTION: 3 HOUS No. of Students: 258 epartment Name & ourse Number: lectronics L 267, and ourse Instructor(s) T..ay and J. Knight

More information

CARLETON UNIVERSITY Final EXAMINATION April 13, 2009: 14:00

CARLETON UNIVERSITY Final EXAMINATION April 13, 2009: 14:00 RLETON UNIVERSITY Final EXMINTION pril 3, 29: 4: Name: Number: Signature: URTION: 3 HOURS No. of Students: 250 epartment Name & ourse Number: Electronics ELE 2607, and ourse Instructor(s) J. W. Rogers

More information

Section 001. Read this before starting!

Section 001. Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University epartment of omputer and Information Sciences SI 25 (Tarnoff) omputer Organization TEST 2 for Fall Semester, 24 Section

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University epartment of omputer and Information Sciences SI 25 (Tarnoff) omputer Organization TEST 2 for Fall Semester, 28 Read

More information

CARLETON UNIVERSITY Final EXAMINATION April 13, 2009: 14:00

CARLETON UNIVERSITY Final EXAMINATION April 13, 2009: 14:00 RLETO UIVERSITY Final EMITIO pril 3, 29: 4: ame: umber: Signature: URTIO: 3 HOURS o. of Stuents: 25 epartment ame & ourse umber: Electronics ELE 267, an ourse Instructor(s) J. W. Rogers an J. Knigt UTHORIZE

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 14:332:231 IGITL LOGI ESIGN Ivan Marsic, Rutgers University Electrical & omputer Engineering all 2013 Lecture #17: locked Synchronous -Machine nalysis locked Synchronous Sequential ircuits lso known as

More information

Synchronous Sequential Circuit Design. Digital Computer Design

Synchronous Sequential Circuit Design. Digital Computer Design Synchronous Sequential Circuit Design Digital Computer Design Races and Instability Combinational logic has no cyclic paths and no races If inputs are applied to combinational logic, the outputs will always

More information

Synchronous Sequential Circuit

Synchronous Sequential Circuit Synchronous Sequential Circuit The change of internal state occurs in response to the synchronized clock pulses. Data are read during the clock pulse (e.g. rising-edge triggered) It is supposed to wait

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

Digital Circuit Engineering

Digital Circuit Engineering Digital Circuit Engineering 2nd Distributive ( + A)( + B) = + AB Circuits that work in a sequence of steps Absorption + A = + A A+= THESE CICUITS NEED STOAGE TO EMEMBE WHEE THEY AE STOAGE D MU G M MU S

More information

Computers also need devices capable of Storing data and information Performing mathematical operations on such data

Computers also need devices capable of Storing data and information Performing mathematical operations on such data Sequential Machines Introduction Logic devices examined so far Combinational Output function of input only Output valid as long as input true Change input change output Computers also need devices capable

More information

Digital Circuit Engineering

Digital Circuit Engineering Digital Circuit Engineering 2nd Distributive ( A)( B) = AB Circuits that work in a sequence of steps Absorption A = A A= THESE CICUITS NEED STOAGE TO EMEMBE WHEE THEY AE STOAGE D MU G M MU G S CLK D Flip

More information

Multiply Out Using DeMorgan and K-Maps

Multiply Out Using DeMorgan and K-Maps Multiply Out Using emorgan and K-Maps Method III: Using K-Maps Step : Find F using General emorgan Step 2: Plot F on a K-Map Step 3: Plot F using the 0 Squares Step 4: Get expression for F from map Example:

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017 UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 2-2016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

Written exam with solutions IE1204/5 Digital Design Friday 13/

Written exam with solutions IE1204/5 Digital Design Friday 13/ Written eam with solutions IE204/5 Digital Design Friday / 207 08.00-2.00 General Information Eaminer: Ingo Sander. Teacher: Kista, William Sandqvist tel 08-7904487 Teacher: Valhallavägen, Ahmed Hemani

More information

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1 Ch 7. Finite State Machines VII - Finite State Machines Contemporary Logic esign 1 Finite State Machines Sequential circuits primitive sequential elements combinational logic Models for representing sequential

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design Switching ircuits & Logic esign Jieong Roland Jiang 江介宏 epartment of lectrical ngineering National Taiwan University Fall 22 6 Sequential ircuit esign homsky ierarchy http://www.cs.lmu.edu/~ray/notes/languagetheory/

More information

or 0101 Machine

or 0101 Machine Synchronous State Graph or Synchronous State Graph or Detector Design a state graph for a machine with: One input X, one output Z. Z= after receiving the complete sequence or Overlapped sequences are detected.

More information

PGT104 Digital Electronics. PGT104 Digital Electronics

PGT104 Digital Electronics. PGT104 Digital Electronics 1 Part 6 Sequential Logic ircuits Disclaimer: Most of the contents (if not all) are extracted from resources available for Digital Fundamentals 10 th Edition 2 Basic Shift Register Operations A shift register

More information

Sequential Circuits Sequential circuits combinational circuits state gate delay

Sequential Circuits Sequential circuits combinational circuits state gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

EECS 270 Midterm 2 Exam Answer Key Winter 2017

EECS 270 Midterm 2 Exam Answer Key Winter 2017 EES 270 Midterm 2 Exam nswer Key Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of the exam

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 8 Modified by Yuttapong Jiraraksopakun Floyd, Digital Fundamentals, 10 th 2008 Pearson Education ENE, KMUTT ed 2009 ounting in Binary As you know, the binary

More information

Unit 12 Problem Solutions

Unit 12 Problem Solutions Unit 2 Problem Solutions 2. onsider 3 Y = Y Y Y, that is, we need to add Y to itself 3 times. First, clear the accumulator before the first rising clock edge so that the -register is. Let the d pulse be

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Sequential circuit: A circuit that includes memory elements. In this case the output depends not only on the current input but also on the past inputs. Memory A synchronous

More information

Learning Objectives:

Learning Objectives: Learning Objectives: t the end of this topic you will be able to; draw a block diagram showing how -type flip-flops can be connected to form a synchronous counter to meet a given specification; explain

More information

Counters. We ll look at different kinds of counters and discuss how to build them

Counters. We ll look at different kinds of counters and discuss how to build them Counters We ll look at different kinds of counters and discuss how to build them These are not only examples of sequential analysis and design, but also real devices used in larger circuits 1 Introducing

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

Digital Electronics Final Examination. Part A

Digital Electronics Final Examination. Part A Digital Electronics Final Examination Part A Spring 2009 Student Name: Date: Class Period: Total Points: /50 Converted Score: /40 Page 1 of 13 Directions: This is a CLOSED BOOK/CLOSED NOTES exam. Select

More information

ECE/Comp Sci 352 Digital System Fundamentals Quiz # 1 Solutions

ECE/Comp Sci 352 Digital System Fundamentals Quiz # 1 Solutions Last (Family) Name: KIME First (Given) Name: Student I: epartment of Electrical and omputer Engineering University of Wisconsin - Madison EE/omp Sci 352 igital System Fundamentals Quiz # Solutions October

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 10 April 12, 2012 Dohn Bowden 1 Today s Lecture First half of the class Circuits for Arithmetic Operations Chapter 18 Should finish at least

More information

University of Minnesota Department of Electrical and Computer Engineering

University of Minnesota Department of Electrical and Computer Engineering University of Minnesota Department of Electrical and Computer Engineering EE2301 Fall 2008 Introduction to Digital System Design L. L. Kinney Final Eam (Closed Book) Solutions Please enter your name, ID

More information

Digital Logic Design - Chapter 4

Digital Logic Design - Chapter 4 Digital Logic Design - Chapter 4 1. Analyze the latch circuit shown below by obtaining timing diagram for the circuit; include propagation delays. Y This circuit has two external input and one feedback

More information

11.1 As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output of

11.1 As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output of EE 2449 Experiment 11 Jack Levine and Nancy Warter-Perez CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-2449 Digital Logic Lab EXPERIMENT 11 SEQUENTIAL CIRCUITS

More information

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2.

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2. Digital Circuits 1. Inputs & Outputs are quantized at two levels. 2. inary arithmetic, only digits are 0 & 1. Position indicates power of 2. 11001 = 2 4 + 2 3 + 0 + 0 +2 0 16 + 8 + 0 + 0 + 1 = 25 Digital

More information

Chapter 9 Asynchronous Sequential Logic

Chapter 9 Asynchronous Sequential Logic 9.1 Introduction EEA051 - Digital Logic 數位邏輯 Chapter 9 Asynchronous Sequential Logic 吳俊興高雄大學資訊工程學系 December 2004 Two major types of sequential circuits: depending on timing of their signals Asynchronous

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering SEQUENTIAL CIRCUITS: LATCHES Overview Circuits require memory to store intermediate

More information

CSE370 HW6 Solutions (Winter 2010)

CSE370 HW6 Solutions (Winter 2010) SE370 HW6 Solutions (Winter 2010) 1. L2e, 6.10 For this problem we are given a blank waveform with clock and input and asked to draw out the how different flip-flops and latches would behave. LK a) b)

More information

BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO

BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO UN IVERSIT Y O F CA LIFO RNI A AT BERKELEY BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO SAN TA BARBA RA S AN TA CRUZ De p a r tm en t of Ele ctr i ca l En gin e e rin g a

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Following the slides of Dr. Ahmed H. Madian Lecture 10 محرم 1439 ه Winter

More information

EET 310 Flip-Flops 11/17/2011 1

EET 310 Flip-Flops 11/17/2011 1 EET 310 Flip-Flops 11/17/2011 1 FF s and some Definitions Clock Input: FF s are controlled by a trigger or Clock signal. All FF s have a clock input. If a device which attempts to do a FF s task does not

More information

Dr. S. Shirani COE2DI4 Midterm Test #2 Nov. 9, 2010

Dr. S. Shirani COE2DI4 Midterm Test #2 Nov. 9, 2010 Dr. S. Shirani COE2DI4 Midterm Test #2 Nov. 9, 2010 Instructions: This examination paper includes 11 pages and 20 multiple-choice questions starting on page 3. You are responsible for ensuring that your

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

Topic 8: Sequential Circuits

Topic 8: Sequential Circuits Topic 8: Sequential Circuits Readings : Patterson & Hennesy, Appendix B.4 - B.6 Goals Basic Principles behind Memory Elements Clocks Applications of sequential circuits Introduction to the concept of the

More information

Mealy & Moore Machines

Mealy & Moore Machines Mealy & Moore Machines Moore Machine is a finite-state machine whose output values are determined solely by its current state and can be defined as six elements (S, S 0, Σ, Λ, T, G), consisting of the

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, Second Semester: 2015/2016 Dept. of Computer Engineering Course Title: Logic Circuits Date: 08/06/2016

More information

Problem Set 9 Solutions

Problem Set 9 Solutions CSE 26 Digital Computers: Organization and Logical Design - 27 Jon Turner Problem Set 9 Solutions. For each of the sequential circuits shown below, draw in the missing parts of the timing diagrams. You

More information

Chapter #7: Sequential Logic Case Studies Contemporary Logic Design

Chapter #7: Sequential Logic Case Studies Contemporary Logic Design hapter #7: Sequential Logic ase Studies ontemporary Logic Design No. 7- Storage egister Group of storage elements read/written as a unit 4-bit register constructed from 4 D FFs Shared clock and clear lines

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University epartment of Computer and Information Sciences CSCI 25 (Tarnoff) Computer Organization TEST 2 for Spring Semester, 27

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 9 Sections 9-1 thru 9-5 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ET285 Agenda Week 2 Quiz 0: Covered

More information

Adders allow computers to add numbers 2-bit ripple-carry adder

Adders allow computers to add numbers 2-bit ripple-carry adder Lecture 12 Logistics HW was due yesterday HW5 was out yesterday (due next Wednesday) Feedback: thank you! Things to work on: ig picture, ook chapters, Exam comments Last lecture dders Today Clarification

More information

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering Final Examination ECE 241F - Digital Systems Examiners: J. Rose and

More information

Lecture 10: Synchronous Sequential Circuits Design

Lecture 10: Synchronous Sequential Circuits Design Lecture 0: Synchronous Sequential Circuits Design. General Form Input Combinational Flip-flops Combinational Output Circuit Circuit Clock.. Moore type has outputs dependent only on the state, e.g. ripple

More information

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department Page 1 of 13 COE 202: Digital Logic Design (3-0-3) Term 112 (Spring 2012) Final

More information

Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd..

Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd.. Indian Institute of Technology Jodhpur, Year 2017-2018 Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd.. Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

15.1 Elimination of Redundant States

15.1 Elimination of Redundant States 15.1 Elimination of Redundant States In Ch. 14 we tried not to have unnecessary states What if we have extra states in the state graph/table? Complete the table then eliminate the redundant states Chapter

More information

Overview of Chapter 4

Overview of Chapter 4 Overview of hapter 4 Types of Sequential ircuits Storage Elements Latches Flip-Flops Sequential ircuit Analysis State Tables State Diagrams Sequential ircuit Design Specification Assignment of State odes

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

EE 209 Spiral 1 Exam Solutions Name:

EE 209 Spiral 1 Exam Solutions Name: EE 29 Spiral Exam Solutions Name:.) Answer the following questions as True or False a.) A 4-to- multiplexer requires at least 4 select lines: true / false b.) An 8-to- mux and no other logic can be used

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University Department of Computer and Information Sciences CSCI 25 (Tarnoff) Computer Organization TEST 2 for Spring Semester,

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals CHAPTER 8 Counters Slide 2 Counting

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

Vidyalankar S.E. Sem. III [ETRX] Digital Circuits and Design Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [ETRX] Digital Circuits and Design Prelim Question Paper Solution S.E. Sem. III [ETRX] Digital Circuits and Design Prelim uestion Paper Solution. (a) Static Hazard Static hazards have two cases: static and static. static- hazard exists when the output variable should

More information

74F193 Up/Down Binary Counter with Separate Up/Down Clocks

74F193 Up/Down Binary Counter with Separate Up/Down Clocks April 1988 Revised September 2000 Up/Down Binary Counter with Separate Up/Down Clocks General Description The is an up/down modulo-16 binary counter. Separate Count Up and Count Down Clocks are used, and

More information

3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value

3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value EGC22 Digital Logic Fundamental Additional Practice Problems. Complete the following table of equivalent values. Binary. Octal 35.77 33.23.875 29.99 27 9 64 Hexadecimal B.3 D.FD B.4C 2. Calculate the following

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download:

More information

Quiz 2 Solutions Room 10 Evans Hall, 2:10pm Tuesday April 2 (Open Katz only, Calculators OK, 1hr 20mins)

Quiz 2 Solutions Room 10 Evans Hall, 2:10pm Tuesday April 2 (Open Katz only, Calculators OK, 1hr 20mins) UNIVERSITY OF CALIFORNIA AT BERKELEY ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO SANTA BARBARA SANTA CRUZ Department of Electrical Engineering and Computer Sciences Quiz 2 Solutions

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Synchronous Sequential Circuits Basic Design Steps CprE 281: Digital Logic Iowa State University, Ames,

More information

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop EE210: Switching Systems Lecture 14: State Tables, Diagrams, Latches, and Flip Flop Prof. YingLi Tian Nov. 6, 2017 Department of Electrical Engineering The City College of New York The City University

More information

Different encodings generate different circuits

Different encodings generate different circuits FSM State Encoding Different encodings generate different circuits no easy way to find best encoding with fewest logic gates or shortest propagation delay. Binary encoding: K states need log 2 K bits i.e.,

More information

Analysis of clocked sequential networks

Analysis of clocked sequential networks Analysis of clocked sequential networks keywords: Mealy, Moore Consider : a sequential parity checker an 8th bit is added to each group of 7 bits such that the total # of 1 bits is odd for odd parity if

More information

6. Finite State Machines

6. Finite State Machines 6. Finite State Machines 6.4x Computation Structures Part Digital Circuits Copyright 25 MIT EECS 6.4 Computation Structures L6: Finite State Machines, Slide # Our New Machine Clock State Registers k Current

More information

Exam for Physics 4051, October 31, 2008

Exam for Physics 4051, October 31, 2008 Exam for Physics 45, October, 8 5 points - closed book - calculators allowed - show your work Problem : (6 Points) The 4 bit shift register circuit shown in Figure has been initialized to contain the following

More information

MATC DIGITAL ELECTRONICS LAB ASYNCHRONOUS RIPPLE COUNTERS

MATC DIGITAL ELECTRONICS LAB ASYNCHRONOUS RIPPLE COUNTERS MT IGITL ELETONIS L SYNHONOUS IPPLE OUNTES Submitted to: Mr. Pham Submitted by: Jody ecker Submitted on: //00 Performed on: //00 Lab Group # OJETIVES Jody ecker Elctec 0-00 Lab synchronous ounters Page

More information

CPE/EE 422/522. Chapter 1 - Review of Logic Design Fundamentals. Dr. Rhonda Kay Gaede UAH. 1.1 Combinational Logic

CPE/EE 422/522. Chapter 1 - Review of Logic Design Fundamentals. Dr. Rhonda Kay Gaede UAH. 1.1 Combinational Logic CPE/EE 422/522 Chapter - Review of Logic Design Fundamentals Dr. Rhonda Kay Gaede UAH UAH Chapter CPE/EE 422/522. Combinational Logic Combinational Logic has no control inputs. When the inputs to a combinational

More information

Review for B33DV2-Digital Design. Digital Design

Review for B33DV2-Digital Design. Digital Design Review for B33DV2 The Elements of Modern Behaviours Design Representations Blocks Waveforms Gates Truth Tables Boolean Algebra Switches Rapid Prototyping Technologies Circuit Technologies TTL MOS Simulation

More information

Synchronous Sequential Logic

Synchronous Sequential Logic 1 IT 201 DIGITAL SYSTEMS DESIGN MODULE4 NOTES Synchronous Sequential Logic Sequential Circuits - A sequential circuit consists of a combinational circuit and a feedback through the storage elements in

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

Time Allowed 3:00 hrs. April, pages

Time Allowed 3:00 hrs. April, pages IGITAL ESIGN COEN 32 Prof. r. A. J. Al-Khalili Time Allowed 3: hrs. April, 998 2 pages Answer All uestions No materials are allowed uestion a) esign a half subtractor b) esign a full subtractor c) Using

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC6 74HC/HCT/HCU/HCMOS ogic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

Faculty of Engineering. FINAL EXAMINATION FALL 2008 (December2008) ANSWER KEY

Faculty of Engineering. FINAL EXAMINATION FALL 2008 (December2008) ANSWER KEY 1 McGill University Faculty of Engineering DIGITAL SYSTEM DESIGN ECSE-323 FINAL EXAMINATION FALL 2008 (December2008) ANSWER KEY STUDENT NAME McGILL I.D. NUMBER Examiner: Prof. J. Clark Signature: Associate

More information

Figure 1-1 Basic Gates

Figure 1-1 Basic Gates Figure - Basic Gates B ND: = B B OR: = + B NOT: = ' B ELUSIVE OR: = + B Figure -2 Full dder Y in FULL DDER (a) Full adder module out Sum Y in outsum (b) Truth Table Sum = 'Y'in + 'Yin' + Y'in' + Yin =

More information

Let s now begin to formalize our analysis of sequential machines Powerful methods for designing machines for System control Pattern recognition Etc.

Let s now begin to formalize our analysis of sequential machines Powerful methods for designing machines for System control Pattern recognition Etc. Finite State Machines Introduction Let s now begin to formalize our analysis of sequential machines Powerful methods for designing machines for System control Pattern recognition Etc. Such devices form

More information

Models for representing sequential circuits

Models for representing sequential circuits Sequential Circuits Models for representing sequential circuits Finite-state machines (Moore and Mealy) Representation of memory (states) Changes in state (transitions) Design procedure State diagrams

More information

Sequential Logic (3.1 and is a long difficult section you really should read!)

Sequential Logic (3.1 and is a long difficult section you really should read!) EECS 270, Fall 2014, Lecture 6 Page 1 of 8 Sequential Logic (3.1 and 3.2. 3.2 is a long difficult section you really should read!) One thing we have carefully avoided so far is feedback all of our signals

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC0 74C/CT/CU/CMOS ogic Family Specifications The IC0 74C/CT/CU/CMOS ogic Package Information The IC0 74C/CT/CU/CMOS ogic

More information

EE 209 Logic Cumulative Exam Name:

EE 209 Logic Cumulative Exam Name: EE 209 Logic Cumulative Exam Name: 1.) Answer the following questions as True or False a.) A 4-to-1 multiplexer requires at least 4 select lines: true / false b.) An 8-to-1 mux and no other logi can be

More information

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #2 Nov 22, 2006

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #2 Nov 22, 2006 COE/EE2DI4 Midterm Test #2 Fall 2006 Page 1 Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #2 Nov 22, 2006 Instructions: This examination paper includes 12 pages and 20 multiple-choice questions starting

More information

ECE380 Digital Logic. Synchronous sequential circuits

ECE380 Digital Logic. Synchronous sequential circuits ECE38 Digital Logic Synchronous Sequential Circuits: State Diagrams, State Tables Dr. D. J. Jackson Lecture 27- Synchronous sequential circuits Circuits here a clock signal is used to control operation

More information

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400)

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400) P57/67 Lec9, P Digital Electronics Introduction: In electronics we can classify the building blocks of a circuit or system as being either analog or digital in nature. If we focus on voltage as the circuit

More information

Lecture 14 Finite state machines

Lecture 14 Finite state machines Lecture 14 Finite state machines Finite state machines are the foundation of nearly all digital computation. The state diagram captures the desired system behavior A formulaic process turns this diagram

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, First Semester: 2017/2018 Dept. of Computer Engineering Course Title: Logic Circuits Date: 29/01/2018

More information

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits

Chapter 3. Chapter 3 :: Topics. Introduction. Sequential Circuits Chapter 3 Chapter 3 :: Topics igital esign and Computer Architecture, 2 nd Edition avid Money Harris and Sarah L. Harris Introduction Latches and Flip Flops Synchronous Logic esign Finite State Machines

More information

CSCI 2150 Intro to State Machines

CSCI 2150 Intro to State Machines CSCI 2150 Intro to State Machines Topic: Now that we've created flip-flops, let's make stuff with them Reading: igital Fundamentals sections 6.11 and 9.4 (ignore the JK flip-flop stuff) States Up until

More information

EECS150 - Digital Design Lecture 23 - FSMs & Counters

EECS150 - Digital Design Lecture 23 - FSMs & Counters EECS150 - Digital Design Lecture 23 - FSMs & Counters April 8, 2010 John Wawrzynek Spring 2010 EECS150 - Lec22-counters Page 1 One-hot encoding of states. One FF per state. State Encoding Why one-hot encoding?

More information

Chapter # 3: Multi-Level Combinational Logic

Chapter # 3: Multi-Level Combinational Logic hapter # 3: Multi-Level ombinational Logic ontemporary Logic esign Randy H. Katz University of alifornia, erkeley June 993 No. 3- hapter Overview Multi-Level Logic onversion to NN-NN and - Networks emorgan's

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 Digital Circuits ECS 371 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 18 Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30 1 Announcement Reading Assignment: Chapter 7: 7-1,

More information