The Digital Logic Level

Size: px
Start display at page:

Download "The Digital Logic Level"

Transcription

1 The Digital Logic Level Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University Wolfgang Schreiner RISC-Linz

2 The Digital Logic Level The computer s real hardware. asic elements: gates. asic logic: oolean algebra. Combinatorial Circuits. rithmetic Circuits. Memory. CPUs and buses. oundary between computer science and electrical engineering. Wolfgang Schreiner 1

3 Gates gate is a device that computes a function on a two-valued signal. Fundament: transistor can operate as a binary switch. Three connections to the outside: collector, base, emitter. Input voltage V in < critical value: transistor becomes infinite resistance. Output voltage V out becomes externally regultated voltage V cc (5V). Input voltage V in > critical value: transistor becomes a wire. Output voltage V out is pulled to ground (0V). Interpret voltages as logical values. High voltage (V cc ) is a logical 1. Low voltage (ground) is a logical 0. Transistor acts like a logical inverter (NOT). Wolfgang Schreiner 2

4 asic Gates: Construction +V CC +V CC +V CC V out Collector V 1 V out V out V in V 2 V 1 V 2 ase Emitter (a) (b) (c) NND and NOR gates can be constructed by wiring two transistors in parallel respectively in series. Wolfgang Schreiner 3

5 asic Gates: Logic NOT X NND X NOR X ND X OR X X X X X X (a) (b) (c) (d) (e) Most computers are based on NND and NOR gates. Wolfgang Schreiner 4

6 oolean lgebra C C lgebra of boolean functions. 1 Inputs and results are logical values. 4 C oolean function of n variables has 2 n input combinations. Representation by truth table with 2 n rows. 2 2n oolean functions with n variables exist. 5 C C M 2 8 M C C 3 C 7 C (a) (b) Wolfgang Schreiner 5

7 Other Notation Truth tables are too clumsy too handle. Suffices to specify which combinations of inputs gives output 1. Let Ā denote negation, denote conjunction, + denote disjunction. M = ĀC + C + C + C. function of n variables can be descried by a sum of at most 2 n product terms of n variables. Linear representation of oolean functions. Wolfgang Schreiner 6

8 Implementation of oolean Functions Construct circuit for a given oolean function. Systematic process: 1. Write down the truth table for the function. 2. Provide inverters to generate the complement of each input. 3. Draw and ND gate for each term with a 1 in the result column. 4. Wire the ND gates to the appropriate inputs. 5. Feed the output of all ND gates into an OR gate. Further transformations possible: 1. Replace multi-input gates by two-input gates ( + + C + D = ( + ) + (C + D)). 2. Replace NOT, ND, OR gates by NND gates (or by NOR gates). Circuit is not necessarily the simplest one. Wolfgang Schreiner 7

9 Construction of NOT, ND, OR ny oolean function can be constructed from NND or NOR only. (a) + + (b) (c) NND gates and NOR gates are complete. Wolfgang Schreiner 8

10 Circuit Equivalence Try to reduce the number of gates in a circuit. + C ( + C) C C C + C C C + C (a) C + C ( + C) (b) Wolfgang Schreiner 9

11 Integrated Circuits Gates are manufactured in units called Integrated Circuits (ICs). Square piece of silicon (5 mm 5 mm). Gates are deposited on these chips. Multiple chips are mounted in packages of e.g. 15 mm 50mm. Two parallel rows of pins are placed on long edges. Various integration scales. V CC Pin 8 SSI (Small Scale Integrated): MSI (Medium Scale Integrated): Notch LSI (Large Scale Integrated): VLSI (Very Large Scale Integrated): > Today: up to 10 million transistors per chip. GND Wolfgang Schreiner 10

12 Combinatorial Circuits Wolfgang Schreiner 11

13 Multiplexers 2 n data inputs, one data outputs, 1 control input. Control input selects one of the data inputs. Selected input is routed to the output. Inverse is demultiplexer. 1 data inputs, 2 n outputs, 1 control input. Input is routed to the selected output. D 0 D 1 D 2 D 3 D 4 F Fundamental routing operations. D 5 D 6 D 7 C C C Wolfgang Schreiner 12

14 Decoders n-bit number as input, 2 n output lines. Input selects output line which is set to 1. Example application: Memory of eight 1M chips. 0 1M, 1-2M,... ddress is presented to memory. High-order 3 bits are used to select one chip. Fundamental control operations. C C C D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 Wolfgang Schreiner 13

15 rithmetic Circuits Wolfgang Schreiner 14

16 dders Half adder. Two inputs, two outputs. Sum of inputs in one output. Carry in other output. Sum Carry Exclusive OR gate Sum Carry in Full adder. Three inputs, two outputs. Sum of inputs in one output. Carry but in other output Carry in Sum Carry out Carry Sum asis of 1 bit LU Carry out Wolfgang Schreiner 15 (a) (b)

17 rithmetic Logic Units 1 bit LU. Inputs enabled or not (set to 0). Control input selects operation. ND, OR, NOT, ddition. asis of n bit LU. INV EN EN Logical unit + Carry in Sum Output Enable lines F 0 Full adder F 1 Decoder Carry out Wolfgang Schreiner 16

18 rithmetic Logic Units 8 bit LU. Connection of 1-bit LU slices. F1 F bit LU 1-bit LU 1-bit LU 1-bit LU 1-bit LU 1-bit LU 1-bit LU 1-bit LU INC O 7 O 6 O 5 O 4 O 3 O 2 O 1 O 0 Carry in Carry out n-bit LUs can be constructed from 1-bit slices. Wolfgang Schreiner 17

19 Memory Wolfgang Schreiner 18

20 Clocks In digital circuits, timing relations must be controlled. Clock: circuit that emits sequence of pulses (crystal oscillator). Precise pulse width; precise interval between pulses (clock cycle time). Derived clock signals can be constructed by delays. y combination, clock cycle can be divided in subcycles. C1 Delay C2 (a) (b) C (c) Wolfgang Schreiner 19

21 Latches Circuits that remember previous input values. SR latch. S input: sets the latch; R input: resets the latch. If S is 1 and R is 0, Q gets 1. If R is 1 and S is 0, Q gets 0. If R and S are 0, Q remains unchanged. Q is inverse of Q. S Q S Q NOR R Q Q 0 R 1 0 (a) (b) (c) Wolfgang Schreiner 20

22 Pulse Generators Circuits which generates very short pulses. signal a and its negation b are fed into an ND gate. When signal a is set, negation b is slightly delayed. For a short period, there is a signal on output d. d a b d b ND c c c (a) b a Time (b) Wolfgang Schreiner 21

23 Flip-Flops Circuit which stores a data value at a precise time. Combination of a pulse generator and a latch. Inputs of latch are D ND D (no inconsistency may occur between R and S). Inputs are conjoined with output of pulse generator (input is read at well-defined time). D Q Q Current value of D is read and stored a fixed time after clock signal. Wolfgang Schreiner 22

24 Memory Organization Individual words must be addressed. Data in I 2 I 1 I 0 Write gate D Q CK D Q CK D Q CK Word memory. Input lines I i. ddress lines j. Chip select signal CS. RD signal for read/write. OE signal for output enable. Simple regular structure. 1 0 Word 0 select line Word 1 select line Word 2 select line CS RD D Q CK D Q CK D Q CK D Q CK D Q CK D Q CK D Q CK D Q CK D Q CK Word 1 Word 2 Word 3 CS RD O 1 O 2 O 3 OE Output enable = CS RD OE Wolfgang Schreiner 23

25 RMs: Random ccess Memories SRM: Static RM. Constructed from flip-flops. Content is retained as long as power is kept on. Very fast (few nanoseconds access time), used for caches. DRM: Dynamic RM. Each cell consists of transistor and capacitor only. Capacitor can be charged or discharged (0 or 1). Charge leaks out, bit needs to be refreshed every few milliseconds. Rather slow (tens of nanoseconds access time), used for main memory. SDRM: Synchronous DRM. Hybrid of SRM and DRM. ccess driven by synchronous clock. Used for main memory today. Wolfgang Schreiner 24

26 ROMs: Read Only Memories Content is inserted during manufacture. Content cannot be changed or erased, is retained even if power is switched off. Data are etched via mask into silicon surface. PROM: Programmable ROM. Content can be written once. Contains array of tiny fuses that can be blown out by high voltage. EPROM: Erasable PROM. Data can be erased by exposure to ultraviolet light. EEPROM: Electric EPROM. Data can be erased by electric pulses. Flash Memory: memory is block erasable and rewritable. Compact Flash card, Smartmedia card,... Wolfgang Schreiner 25

27 CPU Chips and uses Wolfgang Schreiner 26

28 CPU Chips ll modern CPUs are contained on a single chip. Ineraction with outside world through set of pins. Input signals, output signals, bidirectional signals. Connected to similar pins on memory chips and I/O chips via bus. ddress pins: CPU puts memory address on its address pins to load a memory cell. Data pins: Memory replies by putting requested word on the CPU s data pins. Control pins: CPU asserts via some control lines when it wants to read data. Memory asserts via some control lines when data are available. Wolfgang Schreiner 27

29 Control Pins us control. CPU tells bus whether it wants to use it. Interrupts. I/O devices tell CPU to interrupt current program. us arbitration. Used for regulating traffic on the bus. Coprocessor signaling. Used for making/granting requests to auxiliary processors. Status. ccept or provide status information. ddressing Data us control Interrupts Symbol for clock signal Typical Micro- Processor Φ +5v Power is 5volts us arbitration Coprocessor Status Miscellaneous Symbol for electrical ground Wolfgang Schreiner 28

30 Computer uses Electrical pathways shared between multiple devices. Various functions. Internal to CPU: transport data to and from LU. External to CPU: connect it to memory or to I/O devices. Multiple external buses with special properties. Memory bus, I/O bus, graphics bus,... CPU chip Registers uses us controller Memory bus Memory LU I/O bus On-chip bus Disk Modem Printer Wolfgang Schreiner 29

31 Computer uses Various types of buses: PCI bus (PCs), SCSI bus (PCs and workstations), Universal Serial us (US, PCs), FireWire (consumer electronics),... us Protocols: Sets of rules that devices must obey to use the bus. Masters: active devices that can initiate bus transfers. Slaves: passive devices that wait for requests. CPU master, I/O device slave: initiate data transfer. I/O device master, memory slave: DM (Direct Memory ccess). Design parameters: us width: number of address and data lines (e.g. 64 bits). us cycle time: number of transfers per second (e.g. 100 MHz). us bandwidth = data width * cycle time (781 M/s). Wolfgang Schreiner 30

32 Synchronous uses ll activities take a fixed number of bus cycles. Read cycle with 1 wait state T 1 T 2 T 3 Φ T D DDRESS Memory address to be read T DS DT Data MREQ T ML T M T MH RD T RH T RL T DH WIT Time (a) Wolfgang Schreiner 31 Symbol Parameter Min Max Unit T D ddress output delay 11 nsec

33 Example: Pentium PC Cache bus Local bus Memory bus Level 2 cache CPU PCI bridge Main memory PCI bus SCSI US IS bridge IDE disk Graphics adaptor vailable PCI slot Mouse Key- board IS bus Mon- itor Modem Sound card Printer vailable IS slot Wolfgang Schreiner 32

34 I/O Controllers URT: Universal synchronous Receiver Transmitter. Can read a byte from data bus and output it bit by bit on a serial line. Can read a byte bit by bit from a serial line and put it on the data bus. PIO: Parallel Input/Output chip. Chip that connects to the parallel interface of a computer. Computer writes 8 bit number into a register of the chip. Chip puts 8 bit number on the output lines until register is rewritten. CS 0-1 WR RD RESET D0-D Parallel I/O chip Port Port Port C Wolfgang Schreiner 33

35 Memory Mapped I/O I/O registers are assigned part of the memory address space. CPU reads/writes corresponding memory locations. Chip Select (CS) pin of PIO chip is wired to bus address lines. If corresponding address is issued, data pins of PIO chip take value from bus data lines. EPROM at address 0 RM at address 8000H PIO at FFFCH 0 ddress bus K 8K 12K 16K 20K 24K 28K 32K 36K 40K 44K 48K 52K 56K 60K 64K CS CS CS 2K 3 8 EPROM 2K 3 8 RM PI0 Wolfgang Schreiner 34 ddress bus 0 (a) 15

THE DIGITAL LOGIC LEVEL

THE DIGITAL LOGIC LEVEL 3 THE DIGITL LOGIC LEVEL 1 +V CC +V CC +V CC V out Collector V 1 V out V out V in V 2 V 1 V 2 ase Emitter (a) (b) (c) Figure 3-1. (a) transistor inverter. (b) NND gate. (c) NOR gate. NOT X NND X NOR X

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

CMSC 313 Lecture 25 Registers Memory Organization DRAM

CMSC 313 Lecture 25 Registers Memory Organization DRAM CMSC 33 Lecture 25 Registers Memory Organization DRAM UMBC, CMSC33, Richard Chang A-75 Four-Bit Register Appendix A: Digital Logic Makes use of tri-state buffers so that multiple registers

More information

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form S.E. Sem. III [EXTC] Digital System Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form [5] (i) (42) 10 (ii) (17)

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

Vidyalankar S.E. Sem. III [EXTC] Digital Electronics Prelim Question Paper Solution ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD = B

Vidyalankar S.E. Sem. III [EXTC] Digital Electronics Prelim Question Paper Solution ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD = B . (a). (b). (c) S.E. Sem. III [EXTC] igital Electronics Prelim Question Paper Solution ABC ABC ABC ABC ABC ABC ABC ABC = B LHS = ABC ABC ABC ABC ABC ABC ABC ABC But ( ) = = ABC( ) ABC( ) ABC( ) ABC( )

More information

Boole Algebra and Logic Series

Boole Algebra and Logic Series S1 Teknik Telekomunikasi Fakultas Teknik Elektro oole lgebra and Logic Series 2016/2017 CLO1-Week2-asic Logic Operation and Logic Gate Outline Understand the basic theory of oolean Understand the basic

More information

Digital electronic systems are designed to process voltage signals which change quickly between two levels. Low time.

Digital electronic systems are designed to process voltage signals which change quickly between two levels. Low time. DIGITL ELECTRONIC SYSTEMS Digital electronic systems are designed to process voltage signals which change quickly between two levels. High Voltage Low time Fig. 1 digital signal LOGIC GTES The TTL digital

More information

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation Outline Logic ircuits Introduction Logic Systems TTL MOS Logic Gates NOT, OR, N NOR, NN, XOR Implementation oolean lgebra ombinatorial ircuits Multipleer emultipleer rithmetic ircuits Simplifying Logic

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

A crash course in Digital Logic

A crash course in Digital Logic crash course in Digital Logic Computer rchitecture 1DT016 distance Fall 2017 http://xyx.se/1dt016/index.php Per Foyer Mail: per.foyer@it.uu.se Per.Foyer@it.uu.se 2017 1 We start from here Gates Flip-flops

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Appendix A: Digital Logic. CPSC 352- Computer Organization

Appendix A: Digital Logic. CPSC 352- Computer Organization - CPSC 352- Computer Organization -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties of oolean lgebra.6 The Sum-of-Products Form, and Logic Diagrams.7 The

More information

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture. AMD Quad Core CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2.

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2. Digital Circuits 1. Inputs & Outputs are quantized at two levels. 2. inary arithmetic, only digits are 0 & 1. Position indicates power of 2. 11001 = 2 4 + 2 3 + 0 + 0 +2 0 16 + 8 + 0 + 0 + 1 = 25 Digital

More information

Lecture 9: Digital Electronics

Lecture 9: Digital Electronics Introduction: We can classify the building blocks of a circuit or system as being either analog or digital in nature. If we focus on voltage as the circuit parameter of interest: nalog: The voltage can

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

Software Engineering 2DA4. Slides 8: Multiplexors and More

Software Engineering 2DA4. Slides 8: Multiplexors and More Software Engineering 2DA4 Slides 8: Multiplexors and More Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital Logic

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code:

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Semiconductor memories

Semiconductor memories Semiconductor memories Semiconductor Memories Data in Write Memory cell Read Data out Some design issues : How many cells? Function? Power consuption? Access type? How fast are read/write operations? Semiconductor

More information

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1 Lab 3 Revisited Zener diodes R C 6.091 IAP 2008 Lecture 4 1 Lab 3 Revisited +15 Voltage regulators 555 timers 270 1N758 0.1uf 5K pot V+ V- 2N2222 0.1uf V o. V CC V Vin s = 5 V Vc V c Vs 1 e t = RC Threshold

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept. WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400)

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400) P57/67 Lec9, P Digital Electronics Introduction: In electronics we can classify the building blocks of a circuit or system as being either analog or digital in nature. If we focus on voltage as the circuit

More information

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 4.1.1 Signal... 4 4.1.2 Comparison of Analog and Digital Signal... 7 4.2 Number Systems... 7 4.2.1 Decimal Number System... 7 4.2.2 Binary

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering Sp 6 Reg. No. Question Paper Code : 27156 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Computer Science and Engineering CS 6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

3 Logic Function Realization with MSI Circuits

3 Logic Function Realization with MSI Circuits 3 Logic Function Realization with MSI Circuits Half adder A half-adder is a combinational circuit with two binary inputs (augund and addend bits) and two binary outputs (sum and carry bits). It adds the

More information

Digital Electronics I

Digital Electronics I References Digital Electronics I Katz, R.H. (2004). Contemporary logic design. Benjamin/Cummings. Hayes, J.P. (1993). Introduction to digital logic design. Addison-Wesley. Horowitz, P. & Hill, W. (1989).

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12] Q.1(a) (i) Derive AND gate and OR gate

More information

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 6 nnouncement: no office hours today. Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

COSC3330 Computer Architecture Lecture 2. Combinational Logic

COSC3330 Computer Architecture Lecture 2. Combinational Logic COSC333 Computer rchitecture Lecture 2. Combinational Logic Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Today Combinational Logic oolean lgebra Mux, DeMux, Decoder

More information

Semiconductor Memories

Semiconductor Memories Introduction Classification of Memory Devices "Combinational Logic" Read Write Memories Non Volatile RWM Read Only Memory Random Access Non-Random Access Static RAM FIFO Dynamic RAM LIFO Shift Register

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 OMP2611: omputer Organization ombinational Logic OMP2611 Fall 2015 asics of Logic ircuits 2 its are the basis for binary number representation in digital computers ombining bits into patterns following

More information

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables UNIT 8 Computer Circuitry: Layers of bstraction 1 oolean Logic & Truth Tables Computer circuitry works based on oolean logic: operations on true (1) and false (0) values. ( ND ) (Ruby: && ) 0 0 0 0 0 1

More information

Gates and Flip-Flops

Gates and Flip-Flops Gates and Flip-Flops Chris Kervick (11355511) With Evan Sheridan and Tom Power December 2012 On a scale of 1 to 10, how likely is it that this question is using binary?...4? What s a 4? Abstract The operation

More information

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM. EECS 16 Designing Information Devices and Systems II Fall 017 Miki Lustig and Michel Maharbiz Homework 1 This homework is due September 5, 017, at 11:59M. 1. Fundamental Theorem of Solutions to Differential

More information

Lecture 22 Chapters 3 Logic Circuits Part 1

Lecture 22 Chapters 3 Logic Circuits Part 1 Lecture 22 Chapters 3 Logic Circuits Part 1 LC-3 Data Path Revisited How are the components Seen here implemented? 5-2 Computing Layers Problems Algorithms Language Instruction Set Architecture Microarchitecture

More information

Digital Logic Appendix A

Digital Logic Appendix A Digital Logic Appendix A Boolean Algebra Gates Combinatorial Circuits Sequential Circuits 1 Boolean Algebra George Boole ideas 1854 Claude Shannon, apply to circuit design, 1938 Describe digital circuitry

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1)"

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1) CMPE12 - Notes chapter 2 Digital Logic (Textbook Chapters 3.1-3.5 and 2.1)" Truth table" The most basic representation of a logic function." Brute force representation listing the output for all possible

More information

Boolean Algebra. Digital Logic Appendix A. Postulates, Identities in Boolean Algebra How can I manipulate expressions?

Boolean Algebra. Digital Logic Appendix A. Postulates, Identities in Boolean Algebra How can I manipulate expressions? Digital Logic Appendix A Gates Combinatorial Circuits Sequential Circuits Other operations NAND A NAND B = NOT ( A ANDB) = AB NOR A NOR B = NOT ( A ORB) = A + B Truth tables What is the result of the operation

More information

Boolean Algebra. Digital Logic Appendix A. Boolean Algebra Other operations. Boolean Algebra. Postulates, Identities in Boolean Algebra

Boolean Algebra. Digital Logic Appendix A. Boolean Algebra Other operations. Boolean Algebra. Postulates, Identities in Boolean Algebra Digital Logic Appendix A Gates Combinatorial Circuits Sequential Circuits George Boole ideas 1854 Claude Shannon, apply to circuit design, 1938 (piirisuunnittelu) Describe digital circuitry function programming

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each) Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Semiconductor Memory Classification

Semiconductor Memory Classification Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH

More information

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12]

More information

EC-121 Digital Logic Design

EC-121 Digital Logic Design EC-121 Digital Logic Design Lecture 2 [Updated on 02-04-18] Boolean Algebra and Logic Gates Dr Hashim Ali Spring 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Overview What

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

vidyarthiplus.com vidyarthiplus.com vidyarthiplus.com ANNA UNIVERSITY- COMBATORE B.E./ B.TECH. DEGREE EXAMINATION - JUNE 2009. ELECTRICAL & ELECTONICS ENGG. - FOURTH SEMESTER DIGITAL LOGIC CIRCUITS PART-A

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

Lecture 24. CMOS Logic Gates and Digital VLSI II

Lecture 24. CMOS Logic Gates and Digital VLSI II ecture 24 CMOS ogic Gates and Digital VSI II In this lecture you will learn: Static CMOS ogic Gates FET Scaling CMOS Memory, SRM and DRM CMOS atches, and Registers (Flip-Flops) Clocked CMOS CCDs CMOS ogic:

More information

:3 2 D e c o de r S ubs ys te m "0 " One "1 " Ze ro "0 " "0 " One I 1 "0 " One "1 " Ze ro "1 " Ze ro "0 " "0 "

:3 2 D e c o de r S ubs ys te m 0  One 1  Ze ro 0  0  One I 1 0  One 1  Ze ro 1  Ze ro 0  0 dvanced igital Logic esign EES 303 http://ziyang.eecs.northwestern.edu/eecs303/ 5:32 decoder/demultiplexer Teacher: Robert ick Office: L477 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298 \EN 5:32

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture) COSC 243 Introduction to Logic And Combinatorial Logic 1 Overview This Lecture Introduction to Digital Logic Gates Boolean algebra Combinatorial Logic Source: Chapter 11 (10 th edition) Source: J.R. Gregg,

More information

Logic Gates and Boolean Algebra

Logic Gates and Boolean Algebra Logic Gates and oolean lgebra The ridge etween Symbolic Logic nd Electronic Digital Computing Compiled y: Muzammil hmad Khan mukhan@ssuet.edu.pk asic Logic Functions and or nand nor xor xnor not 2 Logic

More information

Sequential Circuits Sequential circuits combinational circuits state gate delay

Sequential Circuits Sequential circuits combinational circuits state gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

D U I S B U R G E S S E N

D U I S B U R G E S S E N Notes on the lecture Logical Design of Digital Systems Prof. Dr.-Ing. Axel Hunger Dr.-Ing. Stefan Werner UNIVERSITÄT D U I S B U R G E S S E N Institute of Computer Engineering, Dr.-Ing. Stefan Werner,

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Ch 4. Combinational Logic Technologies. IV - Combinational Logic Technologies Contemporary Logic Design 1

Ch 4. Combinational Logic Technologies. IV - Combinational Logic Technologies Contemporary Logic Design 1 h 4. ombinational Logic Technologies Technologies ontemporary Logic Design 1 History - From Switches to Integrated ircuits The underlying implementation technologies for digital systems Technologies ontemporary

More information

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141 - Fall 2002 Lecture 27 Memory Announcements We finished all the labs No homework this week Projects are due next Tuesday 9am 1 Today s Lecture Memory:» SRAM» DRAM» Flash Memory 2 Floating-gate transistor

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL

More information

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms Chapter 2 (Lect 2) Canonical and Standard Forms Sum of Minterms Product of Maxterms Standard Form Sum of products Product of sums Other Logic Operators Logic Gates Basic and Multiple Inputs Positive and

More information

Chapter 6 Flip-Flops, and Registers

Chapter 6 Flip-Flops, and Registers Flip-Flops, and Registers Chapter Overview Up to this point we have focused on combinational circuits, which do not have memory. We now focus on circuits that have state or memory. These are called sequential

More information

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering Final Examination ECE 241F - Digital Systems Examiners: J. Rose and

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References EE241 - Spring 2000 Advanced Digital Integrated Circuits Lecture 26 Memory References Rabaey, Digital Integrated Circuits Memory Design and Evolution, VLSI Circuits Short Course, 1998.» Gillingham, Evolution

More information

Shift Register Counters

Shift Register Counters Shift Register Counters Shift register counter: a shift register with the serial output connected back to the serial input. They are classified as counters because they give a specified sequence of states.

More information

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 5 Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly Language What a pain! Understand

More information

Vidyalankar S.E. Sem. III [ETRX] Digital Circuits and Design Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [ETRX] Digital Circuits and Design Prelim Question Paper Solution S.E. Sem. III [ETRX] Digital Circuits and Design Prelim uestion Paper Solution. (a) Static Hazard Static hazards have two cases: static and static. static- hazard exists when the output variable should

More information

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory SRAM Design Chapter Overview Classification Architectures The Core Periphery Reliability Semiconductor Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction Chapter 5 igital systems digital system is any machine that processes information encoded in the form of digits. Modern digital systems use binary digits, encoded as voltage levels. Two voltage levels,

More information

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL. 2017-18 XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL HALF ADDER 1. The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders. 2. A unit that adds two

More information

CSC9R6 Computer Design. Practical Digital Logic

CSC9R6 Computer Design. Practical Digital Logic CSC9R6 Computer Design Practical Digital Logic 1 References (for this part of CSC9R6) Hamacher et al: Computer Organization App A. In library Floyd: Digital Fundamentals Ch 1, 3-6, 8-10 web page: www.prenhall.com/floyd/

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information