Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Midterm Examination CLOSED BOOK

Size: px
Start display at page:

Download "Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Midterm Examination CLOSED BOOK"

Transcription

1 Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall Midterm Examination CLOSED OOK Kewal K. Saluja Date: November 2, 203 Place: Room 2535 Engineering Hall Time: 7:5-8:30 PM Duration: 75 minutes PROLEM TOPIC General Questions 0 2 Test Economics 6 3 Modeling 4 Fault Simulation 4 5 SCOP Computation 0 6 Test Generation - Comb 4 7 Test Generation - Seq 0 8 Checking Sequence 5 TOTL 00 POINTS SCORE Show your work carefully for both full and partial credit. You will be given credit only for what appears on your exam. Last Name (Please print): SOLUTION First Name: ID Number: Fall 203 (Lec: Saluja)

2 . (0 points) General Questions nswer the following in brief and to the point. You must not use more than two to three lines of explanation where an an explanation is needed. (a) ( point) Memory usage by a concurrent fault simulator is smaller than the memory usage by a deductive fault simulator. nswer False. (b) ( point) Memory usage by a serial fault simulator is smaller that the memory usage by a deductive fault simulator. nswer True (c) (2 point) gate level fanout-free realization of a circuit has 20 inputs and 2 outputs. What is the maximum number of tests we will need to test this circuit. Hint: think checkpoints. In a fanout free circuit there are no branches. Therefore only checkpoints in the circuit are primary inputs. Hence the total number of faults for which we need to find tests is 2x20 = 40. Thus the max number of tests is 40. (d) (2 points) If a fault f dominates fault f 2, and the fault f 2 dominates a fault f 3. which of these faults can be deleted to reduce the fault list for fault detection. Give reason. We delete the fault that dominates. Hence delete faults f and f 2. (e) ( point) Method of oolean Difference can be used to determine if a fault in a combinational circuit is redundant. nswer True (f) ( points) Easy/Hard heuristic can only be used in PODEM during backtrace and it can not be used during D-drive. nswer False. (g) ( points) If SCOP CC0 value of a line in a circuit is 25 then it means that this line can always be set to 0 by assigning appropriate values to the inputs to the circuit. nswer False. (h) ( points) If SCOP CC value of a line in a circuit is inf then it means that this line can never be set to no matter what values are assigned to the inputs to the circuit. nswer True 2 Fall 203 (Lec: Saluja)

3 2. (6 points) Test Economics chip manufacturer is to produce ICs in a very large quantity and it has worked out its cost as follows:. Cost of design (amortized on each IC) = $ Production cost of each IC = $.00. Test cost for each IC = $ 2.00 Test as filter has the following properties based on the quality of test:. 95% of the truly good devices will pass the test.. 96% of the bad devices will fail the test. ased on the technology used, it is known that the true yield of ICs being fabricated is 80%. Now answer the following questions: (a) ( point) What percentage of good devices will fail the test? 5% (b) ( point) What percentage of bad devices will pass the test? 4% (c) (3 point) Determine the Yield of the above devices. You must show your work. 0.95x x0.2 = Which is 76.8% (d) (3 point) Determine the Defect Level (DL) of the above devices. You must show your work and write the value of defect level in parts per million? (0.04x0.2)/0.768 = which is 047 ppm 3 Fall 203 (Lec: Saluja)

4 (e) (3 point) Determine the Yield loss due to above testing. You must show your work. 0.05x0.8 = 0.04 which is 4% Note this is corrct answer - but some students felt that yield loss is a ratio of good devices faild to the good devices or devices tested good - I gave points for that if it was explained by the student. (f) (5 points) ssuming that the manufacturer will have to pay $50.00 for every bad device sold to a customer (because customer will return a bad IC), at what price should an IC be sold so that the manufacture breaks even. Let y be the break even cost. Then: y(0.8x x0.04) - 50x0.2x0.04 = Solving for y we obtain the break even cost to be $ Fall 203 (Lec: Saluja)

5 3. ( points) Modeling-sol library cell of a design library realizes a function f(,,c) =.. C. designer, makes a mistake, while building this cell and makes incorrect connections and realizes the function. C.. nswer the following and you must show your work for full credit. (a) (3 points) Write all primitive cubes of f. ll primitive cubes are (I used the order of variable to be C /outpur, same as in f): xx0/ x/ 0x/0 x0/0 (b) (4 points) Write two propagation D-cubes of f: i. a propagation D cube with at least one of the inputs to be logic : D / D ; nother propagation D cube with this property is D / D Clearly complementing D will also obtain additional valid cubes. ii. a propagation D cube with at least one of the inputs to be logic 0: X 0 D / D; nother propagation D cube with this property is 0 x D / D Clearly complementing D and D will also obtain additional valid cubes. (c) (4 points) Write two primitive cubes of failure for the mistake specified in the problem description. Primitive cubes of the faulty function are x / ; x 0 x / ; 0 x / 0; x 0 / 0; These in conjunction with the primitive cubes of f generate the following primitive cubes of fault: 0 / D; 0 0 / D; 0 0 / D; 0 / D 5 Fall 203 (Lec: Saluja)

6 4. (4 points) Fault Simulation - Deductive The circuit of Fig is to be simulated using the pattern given below: pattern = C D E F = C D E 0 k l p j h o 0 0 m i n s u t F 0 0 r Figure : Circuit for deductive fault simulation - Solution The fault list that needs to be simulated for this pattern is given below: / / C/0 D/0 E/0 F/ h/0 i/0 k/0 n/0 s/0 Note: During fault simulation, list associated with any line or gate must not contain a fault that is not in the above list. (a) (2 points) Indicate the true signal values in every gate of the circuit. For your convenience, I have already provided values in one of the gates. True values are shown in the gates. 6 Fall 203 (Lec: Saluja)

7 (b) (0 points) In the table below, provide the deductive fault lists associated with every line in the circuit. gain to get you started, I have already completed the entries associated with all primary input lines. Line Name fault list Line Name fault list / l C/ - - m D/0; h/0 C C/0 n D/0; h/0; n/0 D D/0 o D/0; h/0 E E/0 p C/0; D/0; k/0 F F/ r D/0; h/0; n/0 h D/0; h/0 s C/0; D/0; h/0; k/0; s/0 i E/0 t C/0; D/0; h/0; k/0;/ n/0; s/0 j D/0 u / k C/0; k/0 (c) (2 points) Now, indicate which of the faults will be detected and at which output. Faults detected at output u: / Faults detected at output t: C/0; D/0; h/0; k/0;/ n/0; s/0 7 Fall 203 (Lec: Saluja)

8 5. (0 points) SCOP Computation Consider the circuits shown in Figure 2 for SCOP computations. This circuit is a part of a larger combinational circuit. (30,5)55 (45,24) 46 (45,24) 85 (45,24) 46 2 C (70,3)96 (40,3)30 G (40,3) 7 G2 D (9,73)29 G2 (38,46)7 (40,3) 30 (05,20)97 G3 Z (67,39) 50 Z2 Figure 2: Combinational Circuit for SCOP Computations - solution In this circuit some of the SCOP values, i.e the CC0, CC and CO values, are already computed and shown in the circuit. The notation used is (CC0,CC) CO. While many other values need to be computed. You are to compute all the remaining values, i.e. CC0, CC and CO values which are not shown in the figure. Enter these values in the table below. I have already entered the values shown in the figure in this table, therefore you need only to complete the blank entries. Line Controllability Observability Line Controllability Observability CC0 CC CO CC0 CC CO G G G Z C G D Z Fall 203 (Lec: Saluja)

9 6. (4 points) Combinational Test Generation PODEM like test generator is used to generate a test of for the line 20 s-a- in the circuit of Figure 3. C D E F Figure 3: Circuit for test generation It is still in the process of test generation and has made the assignments at some of the primary inputs as follows and in the order shown: = C = 0 C = = = 0 (a) (3 points) Construct the decision tree for the completed work this far. 0 --> C --> no test (backtrack) change decision --> --> no test (backtrack) 0 --> we are here 9 Fall 203 (Lec: Saluja)

10 (b) (7 points) In the table below indicate all the implications of the above assignments and the D frontier. I have already filled in a few implications for some signal lines. ssignments Implications D frontier Comments =, C=, =0 Lines 2, 5, 8 are ; Lines, 3, 4, 6 are 0; Line 7, 9, 0 are 0; Line, 2, 3, 4, 5, 9 are ; Lines 20 is 0 hence Lines 2, 22, 23 are D; Line 25 is D; Gates 27, 26 and 28 D = Line 24, 28 are ; Line 26 is D and 27 is ; line 29 is null backtrack (c) (4 points) If the next assignment is D =, will that cause a back track or lead to a next new assignment? Show your work in the table above. D frontier will disappear and it will lead to backtrack. 0 Fall 203 (Lec: Saluja)

11 7. (0 points) Sequential Test Generation Consider the sequential circuit given in Figure 4 containing two D-type flip-flops and a logic gate. FF FF2 D Q D Q Z Q Q Figure 4: Figure for a sequential circuit (a) (2 points) In the Figure 5 I have provided two FFs and a box for the combinational part of the circuit. Redraw the combinational part of circuit in the box and make all the connections. Note the FF labels: FF2 is drawn above FF. Z Q D FF2 Q D FF Figure 5: Figure for combinational part of the sequential circuit The circuit within the block is in Figure 6 (b) (4 points) Draw the time frame expansion of this circuit for three time frames. Clearly draw the timeframe boundaries and label them. Mark the inputs, outputs, pseudo primary inputs and pseudo primary outputs appropriately in the model you The draw. timeframe expansion model is shown in Figure 7 Fall 203 (Lec: Saluja)

12 Z Q D FF2 Q D FF Figure 6: Figure for combinational part of the sequential circuit Z Z Z X 0 0 X X X D X X D Figure 7: Time frame expansion of the sequential circuit (c) (4 points) Derive a test sequence that will detect a stuck-at fault at the output of OR gate. You can use any method you like. Use the time frame expansion drawn by you to show clearly the values of the inputs and the time the values are applied. You must also indicate the time the fault is detected and what will be the expected output and the output of the faulty circuit for the input sequence obtained by you. The input sequence will be (t=) 0X, (t=2) X0, (t=3) XX The fault will be detected after application of second clock, i.e. in the third timeframe. The output will be D, i.e. expected output is 0 and faulty circuit will produce a. 2 Fall 203 (Lec: Saluja)

13 8. (5 points) Checking Experiment State table of a finite state machine with four states,,, C, and D; and a binary input alphabet consisting of 0, and ; is given in Table. Table : State Machine for Problem 8 Input 0 /0 C/0 / D/ C /0 D/0 D / D/ Now consider applying the sequence 0 to this machine. Note when this sequence is applied the initial state of the machine is not known. (a) (2 points) What will be the output sequence. When the output is not known write an X for that. The output sequence will be x x x. (b) (2 points) What will be the state sequence. When the state is not known just indicate the state ambiguity. ssume before the sequence is applied the state ambiguity is (CD). The state ambiguities will be: (CD) () (CD) D D (c) ( points) Does this machine initialize to some state during the application of the above sequence. Clearly machine initializes to state D after the input 0. (d) (2 points) Find a shortest synchronizing sequence for this machine. You must show your work otherwise no points will be awarded. This machine has three shortest synchronizing sequences which are initializes to state ; and 0 - initializes to state ; initializes to state D. 3 Fall 203 (Lec: Saluja)

14 (e) (4 points) Now consider a fault which causes the above machine to change to the state table shown in Table 2. Note that there is only one change due the fault and that is next state of with input 0 is C instead of. Table 2: State Machine of the Faulty Machine for Problem 8 Input 0 /0 C/0 C/ D/ C /0 D/0 D / D/ Will the above sequence detect this fault? You must show your work otherwise no credit will be given. The faulty machine will produce the following output sequence: x x x This is same as the fault free machine. Hence, this sequence will not detect the fault. (f) (4 points) ppend a shortest possible sequence to the above sequence to detect the fault described above. gain, you must show your work otherwise no credit will be given. First we notice that the faulty machine has exactly the same state (D) at the end of sequence 0 as the fault free machine. We apply a 0 and transfer the machine to state. Now we apply the input 0 which will transfer the fault free machine to state while the faulty machine will transfer to state C. Now we use Distinguishing sequence to differentiate between the states and C. This machine has two DS, 0 0 and 0. Either of these will work. Thus we must append or to detect the fault. 4 Fall 203 (Lec: Saluja)

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Midterm Examination CLOSED BOOK

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Midterm Examination CLOSED BOOK Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2014-2015 Midterm Examination CLOSED BOOK Kewal K. Saluja

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2013-2014 Final Examination CLOSED BOOK Kewal K. Saluja Date:

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Department of Electrical and omputer Engineering University of Wisconsin Madison Fall - Assignment # Date: Thursday, ctober, Due date: Tuesday, November, Solution utline. ( points) (ushnell and Agrawal)

More information

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals. Last (family) name: First (given) name: Student I.D. #: Circle section: Lipasti Kim Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/CS 352 Digital System Fundamentals

More information

Assignment #1 SOLUTION

Assignment #1 SOLUTION epartment of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable esign of igital Systems Fall 2014-2015 Assignment #1 SOLUTION 1. (10 points) A certain fabrication

More information

Synchronous Sequential Circuit

Synchronous Sequential Circuit Synchronous Sequential Circuit The change of internal state occurs in response to the synchronized clock pulses. Data are read during the clock pulse (e.g. rising-edge triggered) It is supposed to wait

More information

ECE 3060 VLSI and Advanced Digital Design. Testing

ECE 3060 VLSI and Advanced Digital Design. Testing ECE 3060 VLSI and Advanced Digital Design Testing Outline Definitions Faults and Errors Fault models and definitions Fault Detection Undetectable Faults can be used in synthesis Fault Simulation Observability

More information

University of Minnesota Department of Electrical and Computer Engineering

University of Minnesota Department of Electrical and Computer Engineering University of Minnesota Department of Electrical and Computer Engineering EE2301 Fall 2008 Introduction to Digital System Design L. L. Kinney Final Eam (Closed Book) Solutions Please enter your name, ID

More information

Fault Modeling. Fault Modeling Outline

Fault Modeling. Fault Modeling Outline Fault Modeling Outline Single Stuck-t Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of oolean Difference Copyright 1998 Elizabeth M. Rudnick

More information

ECE 1767 University of Toronto

ECE 1767 University of Toronto Applications Why Two Fault Simulators Never Agree General Techniques Parallel Pattern Simulation Inactive Fault Removal Critical Path Tracing Fault Sampling Statistical Fault Analysis ECE 767 Fault grading

More information

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department Page 1 of 13 COE 202: Digital Logic Design (3-0-3) Term 112 (Spring 2012) Final

More information

Faculty of Engineering. FINAL EXAMINATION FALL 2008 (December2008) ANSWER KEY

Faculty of Engineering. FINAL EXAMINATION FALL 2008 (December2008) ANSWER KEY 1 McGill University Faculty of Engineering DIGITAL SYSTEM DESIGN ECSE-323 FINAL EXAMINATION FALL 2008 (December2008) ANSWER KEY STUDENT NAME McGILL I.D. NUMBER Examiner: Prof. J. Clark Signature: Associate

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, Second Semester: 2015/2016 Dept. of Computer Engineering Course Title: Logic Circuits Date: 08/06/2016

More information

Lecture 10: Synchronous Sequential Circuits Design

Lecture 10: Synchronous Sequential Circuits Design Lecture 0: Synchronous Sequential Circuits Design. General Form Input Combinational Flip-flops Combinational Output Circuit Circuit Clock.. Moore type has outputs dependent only on the state, e.g. ripple

More information

3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value

3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value EGC22 Digital Logic Fundamental Additional Practice Problems. Complete the following table of equivalent values. Binary. Octal 35.77 33.23.875 29.99 27 9 64 Hexadecimal B.3 D.FD B.4C 2. Calculate the following

More information

Single Stuck-At Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of Boolean Difference

Single Stuck-At Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of Boolean Difference Single Stuck-At Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of Boolean Difference Copyright 1998 Elizabeth M. Rudnick 1 Modeling the effects

More information

Hardware testing and design for testability. EE 3610 Digital Systems

Hardware testing and design for testability. EE 3610 Digital Systems EE 3610: Digital Systems 1 Hardware testing and design for testability Introduction A Digital System requires testing before and after it is manufactured 2 Level 1: behavioral modeling and test benches

More information

Sequential Logic Optimization. Optimization in Context. Algorithmic Approach to State Minimization. Finite State Machine Optimization

Sequential Logic Optimization. Optimization in Context. Algorithmic Approach to State Minimization. Finite State Machine Optimization Sequential Logic Optimization! State Minimization " Algorithms for State Minimization! State, Input, and Output Encodings " Minimize the Next State and Output logic Optimization in Context! Understand

More information

Outline Automatic Test Pattern Generation

Outline Automatic Test Pattern Generation K.T. Tim heng, 5_comb_tg, v. Outline utomatic Test Pattern Generation Test generation systems Test generation for combinational ckts -lgorithm POM oolean Satisfiability approach Test compaction Test generation

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Exam 2 Exam date: 10/31/17 Time Limit: 80 Minutes Name: Student ID: GSI or Section: This exam contains 7 pages (including this cover page) and 7 problems. Problems are printed

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Midterm02 Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Thursday Nov. 16 th In normal lecture (13:00-14:15)

More information

Computer Science Final Examination Friday December 14 th 2001

Computer Science Final Examination Friday December 14 th 2001 Computer Science 03 60 265 Final Examination Friday December 14 th 2001 Dr. Robert D. Kent and Dr. Alioune Ngom Last Name: First Name: Student Number: INSTRUCTIONS EXAM DURATION IS 3 HOURs. CALCULATORS,

More information

Synchronous Sequential Circuit Design. Digital Computer Design

Synchronous Sequential Circuit Design. Digital Computer Design Synchronous Sequential Circuit Design Digital Computer Design Races and Instability Combinational logic has no cyclic paths and no races If inputs are applied to combinational logic, the outputs will always

More information

L10 State Machine Design Topics

L10 State Machine Design Topics L State Machine Design Topics States Machine Design Other topics on state machine design Equivalent sequential machines Incompletely specified machines One Hot State Machines Ref: text Unit 15.4, 15.5,

More information

Learning Objectives:

Learning Objectives: Learning Objectives: t the end of this topic you will be able to; draw a block diagram showing how -type flip-flops can be connected to form a synchronous counter to meet a given specification; explain

More information

Clocked Synchronous State-machine Analysis

Clocked Synchronous State-machine Analysis Clocked Synchronous State-machine Analysis Given the circuit diagram of a state machine: Analyze the combinational logic to determine flip-flop input (excitation) equations: D i = F i (Q, inputs) The input

More information

Name. ECE-200 Intelligent Systems

Name. ECE-200 Intelligent Systems Name Spring 2003 EE-200 Intelligent Systems Pracice Final Solution ll problems have the same weight Problem 1. We are working with a multiplexor that is to switch between four sources (inputs), each one

More information

Fault Modeling. 李昆忠 Kuen-Jong Lee. Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan. VLSI Testing Class

Fault Modeling. 李昆忠 Kuen-Jong Lee. Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan. VLSI Testing Class Fault Modeling 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan Class Fault Modeling Some Definitions Why Modeling Faults Various Fault Models Fault Detection

More information

EECS 579: Logic and Fault Simulation. Simulation

EECS 579: Logic and Fault Simulation. Simulation EECS 579: Logic and Fault Simulation Simulation: Use of computer software models to verify correctness Fault Simulation: Use of simulation for fault analysis and ATPG Circuit description Input data for

More information

UNIVERSITY OF WISCONSIN MADISON

UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Minsub Shin, Lisa Ossian, Sujith Surendran Midterm Examination 2 In Class (50 minutes) Friday,

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Sequential circuit: A circuit that includes memory elements. In this case the output depends not only on the current input but also on the past inputs. Memory A synchronous

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

ECE/Comp Sci 352 Digital System Fundamentals Quiz # 1 Solutions

ECE/Comp Sci 352 Digital System Fundamentals Quiz # 1 Solutions Last (Family) Name: KIME First (Given) Name: Student I: epartment of Electrical and omputer Engineering University of Wisconsin - Madison EE/omp Sci 352 igital System Fundamentals Quiz # Solutions October

More information

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS5 J. Wawrzynek Spring 22 2/22/2. [2 pts] Short Answers. Midterm Exam I a) [2 pts]

More information

Vidyalankar S.E. Sem. III [ETRX] Digital Circuits and Design Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [ETRX] Digital Circuits and Design Prelim Question Paper Solution S.E. Sem. III [ETRX] Digital Circuits and Design Prelim uestion Paper Solution. (a) Static Hazard Static hazards have two cases: static and static. static- hazard exists when the output variable should

More information

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS:

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS: EKURHULENI TECH COLLEGE. No. 3 Mogale Square, Krugersdorp. Website: www. ekurhulenitech.co.za Email: info@ekurhulenitech.co.za TEL: 011 040 7343 CELL: 073 770 3028/060 715 4529 PAST EXAM PAPER & MEMO N3

More information

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 5 Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly Language What a pain! Understand

More information

Outline Fault Simulation

Outline Fault Simulation K.T. Tim Cheng, 4_fault_sim, v. Outline Fault Simulation Applications of fault simulation Fault coverage vs product quality Fault simulation scenarios Fault simulation algorithms Fault sampling K.T. Tim

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University Department of Computer and Information Sciences CSCI 25 (Tarnoff) Computer Organization TEST 2 for Fall Semester, 28

More information

EE 209 Spiral 1 Exam Solutions Name:

EE 209 Spiral 1 Exam Solutions Name: EE 29 Spiral Exam Solutions Name:.) Answer the following questions as True or False a.) A 4-to- multiplexer requires at least 4 select lines: true / false b.) An 8-to- mux and no other logic can be used

More information

Adders allow computers to add numbers 2-bit ripple-carry adder

Adders allow computers to add numbers 2-bit ripple-carry adder Lecture 12 Logistics HW was due yesterday HW5 was out yesterday (due next Wednesday) Feedback: thank you! Things to work on: ig picture, ook chapters, Exam comments Last lecture dders Today Clarification

More information

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process Parity Checker Example A string of bits has even parity if the number of 1 s in the string is even. Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if the parity thus far is even

More information

ME5286 Robotics Spring 2017 Quiz 2

ME5286 Robotics Spring 2017 Quiz 2 Page 1 of 5 ME5286 Robotics Spring 2017 Quiz 2 Total Points: 30 You are responsible for following these instructions. Please take a minute and read them completely. 1. Put your name on this page, any other

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Exam 1 Exam date: 9/26/17 Time Limit: 80 Minutes Name: Student ID: GSI or Section: This exam contains 6 pages (including this cover page) and 7 problems. Problems are printed

More information

Digital Circuits and Systems

Digital Circuits and Systems EE201: Digital Circuits and Systems 4 Sequential Circuits page 1 of 11 EE201: Digital Circuits and Systems Section 4 Sequential Circuits 4.1 Overview of Sequential Circuits: Definition The circuit whose

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Final Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Tuesday Dec 12 th 13:00-15:00 (1-3pm) 2 hour

More information

Chapter 2 Fault Modeling

Chapter 2 Fault Modeling Chapter 2 Fault Modeling Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why Model Faults? Fault Models (Faults)

More information

Sequential Circuit Analysis

Sequential Circuit Analysis Sequential Circuit Analysis Last time we started talking about latches and flip-flops, which are basic one-bit memory units. Today we ll talk about sequential circuit analysis and design. First, we ll

More information

Chapter 6 Testability Analysis

Chapter 6 Testability Analysis 電機系 Chapter 6 Testability Analysis 可測度分析法 2 Outline Introduction SCOAP COP High-level Testability Testability Analysis Applications To give early warnings about the test problems Guide the selection of

More information

Section 001. Read this before starting! You may use one sheet of scrap paper that you will turn in with your test.

Section 001. Read this before starting! You may use one sheet of scrap paper that you will turn in with your test. Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 1 for Spring Semester,

More information

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions.

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions. Combinational logic Possible logic functions of two variables Logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,... Minimal set xioms and theorems of oolean algebra Proofs by re-writing

More information

Digital Design 2010 DE2 1

Digital Design 2010 DE2 1 1 Underviser: D. M. Akbar Hussain Litteratur: Digital Design Principles & Practices 4 th Edition by yj John F. Wakerly 2 DE2 1 3 4 DE2 2 To enable students to apply analysis, synthesis and implementation

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, First Semester: 2017/2018 Dept. of Computer Engineering Course Title: Logic Circuits Date: 29/01/2018

More information

Introduction to VLSI Testing

Introduction to VLSI Testing Introduction to 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan Class Problems to Think How are you going to test A 32 bit adder A 32 bit counter A 32Mb

More information

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014 Outline 1 midterm exam on Friday 11 July 2014 policies for the first part 2 questions with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014 Intro

More information

Built-In Test Generation for Synchronous Sequential Circuits

Built-In Test Generation for Synchronous Sequential Circuits Built-In Test Generation for Synchronous Sequential Circuits Irith Pomeranz and Sudhakar M. Reddy + Electrical and Computer Engineering Department University of Iowa Iowa City, IA 52242 Abstract We consider

More information

EECS 270 Midterm 2 Exam Answer Key Winter 2017

EECS 270 Midterm 2 Exam Answer Key Winter 2017 EES 270 Midterm 2 Exam nswer Key Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of the exam

More information

ECE 512 Digital System Testing and Design for Testability. Model Solutions for Assignment #3

ECE 512 Digital System Testing and Design for Testability. Model Solutions for Assignment #3 ECE 512 Digital System Testing and Design for Testability Model Solutions for Assignment #3 14.1) In a fault-free instance of the circuit in Fig. 14.15, holding the input low for two clock cycles should

More information

Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Homework 5. This homework is due February 29, 2016, at Noon.

Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Homework 5. This homework is due February 29, 2016, at Noon. EECS 16 Designing Information Devices and Systems II Spring 2016 nant Sahai and Michel Maharbiz Homework 5 This homework is due February 29, 2016, at Noon. 1. Homework process and study group Who else

More information

Issues on Timing and Clocking

Issues on Timing and Clocking ECE152B TC 1 Issues on Timing and Clocking X Combinational Logic Z... clock clock clock period ECE152B TC 2 Latch and Flip-Flop L CK CK 1 L1 1 L2 2 CK CK CK ECE152B TC 3 Clocking X Combinational Logic...

More information

EECS 270 Midterm Exam 2 Fall 2009

EECS 270 Midterm Exam 2 Fall 2009 EECS 270 Midterm Exam 2 Fall 2009 Name: unique name: UMID: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: NOTES: Problem # Points 1&2

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO

BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO UN IVERSIT Y O F CA LIFO RNI A AT BERKELEY BER KELEY D AV IS IR VINE LOS AN GELES RIVERS IDE SAN D IEGO S AN FRANCISCO SAN TA BARBA RA S AN TA CRUZ De p a r tm en t of Ele ctr i ca l En gin e e rin g a

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

Final Exam. ECE 25, Spring 2008 Thursday, June 12, Problem Points Score Total 90

Final Exam. ECE 25, Spring 2008 Thursday, June 12, Problem Points Score Total 90 Final Exam ECE 25, Spring 2008 Thursday, June 12, 2008 Name: PID: Problem Points Score 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 Total 90 1) Number representation (10 pts) a) For each binary vector

More information

10. The GNFA method is used to show that

10. The GNFA method is used to show that CSE 355 Midterm Examination 27 February 27 Last Name Sample ASU ID First Name(s) Ima Exam # Sample Regrading of Midterms If you believe that your grade has not been recorded correctly, return the entire

More information

Section 001. Read this before starting!

Section 001. Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University epartment of omputer and Information Sciences SI 25 (Tarnoff) omputer Organization TEST 2 for Fall Semester, 24 Section

More information

ECE/Comp Sci 352 Digital Systems Fundamentals. Charles R. Kime Section 2 Fall Logic and Computer Design Fundamentals

ECE/Comp Sci 352 Digital Systems Fundamentals. Charles R. Kime Section 2 Fall Logic and Computer Design Fundamentals University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Charles R. Kime Section 2 Fall 2001 Lecture 5 Registers & Counters Part 2 Charles Kime Counters Counters are sequential circuits

More information

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid CSE140: Components and Design Techniques for Digital Systems Midterm Information Instructor: Mohsen Imani Midterm Topics In general: everything that was covered in homework 1 and 2 and related lectures,

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 5SP_CS_W_Digital Logic_598 Delhi Noida hopal Hyderabad Jaipur Lucknow Indore Pune hubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 452462 CLSS TEST 289 COMPUTER SCIENCE & IT Subject :

More information

FSM model for sequential circuits

FSM model for sequential circuits 1 FSM model for sequential circuits The mathematical model of a sequential circuit is called finite-state machine. FSM is fully characterized by: S Finite set of states ( state ~ contents of FFs) I Finite

More information

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q Digital Arithmetic In Chapter 2, we have discussed number systems such as binary, hexadecimal, decimal, and octal. We have also discussed sign representation techniques, for example, sign-bit representation

More information

Different encodings generate different circuits

Different encodings generate different circuits FSM State Encoding Different encodings generate different circuits no easy way to find best encoding with fewest logic gates or shortest propagation delay. Binary encoding: K states need log 2 K bits i.e.,

More information

Sequential Circuits Sequential circuits combinational circuits state gate delay

Sequential Circuits Sequential circuits combinational circuits state gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

Chapter 9 Asynchronous Sequential Logic

Chapter 9 Asynchronous Sequential Logic 9.1 Introduction EEA051 - Digital Logic 數位邏輯 Chapter 9 Asynchronous Sequential Logic 吳俊興高雄大學資訊工程學系 December 2004 Two major types of sequential circuits: depending on timing of their signals Asynchronous

More information

DO NOT COPY DO NOT COPY

DO NOT COPY DO NOT COPY Drill Problems 3 benches. Another practical book is VHDL for Programmable Logic, by Kevin Skahill of Cypress Semiconductor (Addison-esley, 1996). All of the ABEL and VHDL examples in this chapter and throughout

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering Final Examination ECE 241F - Digital Systems Examiners: S. Brown,

More information

VLSI System Testing. Testability Measures

VLSI System Testing. Testability Measures ECE 538 VLSI System Testing Krish Chakrabarty Testability Measures ECE 538 Krish Chakrabarty 1 Testability Measures Origins Controllability and observability SCOAP measures Sources of correlation error

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

University of Florida EEL 3701 Summer 2015 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Tuesday, 30 June 2015

University of Florida EEL 3701 Summer 2015 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Tuesday, 30 June 2015 University of Florida EEL 3701 Summer 2015 Dr Eric M Schwartz Page 1/13 Exam 1 May the Schwartz be with you! Instructions: Turn off all cell phones and other noise making devices Show all work on the front

More information

Chapter 7. Synchronous Sequential Networks. Excitation for

Chapter 7. Synchronous Sequential Networks. Excitation for Chapter 7 Excitation for Synchronous Sequential Networks J. C. Huang, 2004 igital Logic esign 1 Structure of a clocked synchronous sequential network Mealy model of a clocked synchronous sequential network

More information

CSE 355 Test 2, Fall 2016

CSE 355 Test 2, Fall 2016 CSE 355 Test 2, Fall 2016 28 October 2016, 8:35-9:25 a.m., LSA 191 Last Name SAMPLE ASU ID 1357924680 First Name(s) Ima Regrading of Midterms If you believe that your grade has not been added up correctly,

More information

Chapter 4 Part 2 Sequential Circuits

Chapter 4 Part 2 Sequential Circuits University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 4 Part 2 Sequential Circuits Originals by: Charles R. Kime and Tom Kamisnski

More information

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors.

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors. Testability Lecture 6: Logic Simulation Shaahin Hessabi Department of Computer Engineering Sharif University of Technology Adapted from the presentation prepared by book authors Slide 1 of 27 Outline What

More information

Final Exam: Graduate Course { VLSI Testing. 1. Please read all problems before starting your answers. Problems can be answered

Final Exam: Graduate Course { VLSI Testing. 1. Please read all problems before starting your answers. Problems can be answered inal xam: Graduate ourse { VLSI Testing uburn Univ., L 7250, Spring 2004 May 10, 2004 Instructions (please read before you proceed): 1. Please read all problems before starting your answers. Problems can

More information

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 6 nnouncement: no office hours today. Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly

More information

11.1 As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output of

11.1 As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output of EE 2449 Experiment 11 Jack Levine and Nancy Warter-Perez CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-2449 Digital Logic Lab EXPERIMENT 11 SEQUENTIAL CIRCUITS

More information

Fault Equivalence, Dominance & Collapsing. Fault Equivalence

Fault Equivalence, Dominance & Collapsing. Fault Equivalence Fault Equivalence, Dominance & ollapsing Definition: If T a is the set of LL TVs which Detect Fault a, and T b is the set of LL TVs which Detect some other Fault b; the Two Faults a, and b are said to

More information

Design for Testability

Design for Testability Design for Testability Outline Ad Hoc Design for Testability Techniques Method of test points Multiplexing and demultiplexing of test points Time sharing of I/O for normal working and testing modes Partitioning

More information

Digital Electronics Final Examination. Part A

Digital Electronics Final Examination. Part A Digital Electronics Final Examination Part A Spring 2009 Student Name: Date: Class Period: Total Points: /50 Converted Score: /40 Page 1 of 13 Directions: This is a CLOSED BOOK/CLOSED NOTES exam. Select

More information

15.1 Elimination of Redundant States

15.1 Elimination of Redundant States 15.1 Elimination of Redundant States In Ch. 14 we tried not to have unnecessary states What if we have extra states in the state graph/table? Complete the table then eliminate the redundant states Chapter

More information

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department Page of COE 22: Digital Logic Design (3--3) Term (Fall 22) Final Exam Sunday January

More information

Chapter 15 SEQUENTIAL CIRCUITS ANALYSIS, STATE- MINIMIZATION, ASSIGNMENT AND CIRCUIT IMPLEMENTATION

Chapter 15 SEQUENTIAL CIRCUITS ANALYSIS, STATE- MINIMIZATION, ASSIGNMENT AND CIRCUIT IMPLEMENTATION Chapter 15 SEQUENTIAL CIRCUITS ANALYSIS, STATE- MINIMIZATION, ASSIGNMENT AND CIRCUIT IMPLEMENTATION Lesson 2 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT Ch15L2- "Digital Principles and Design", Raj Kamal, Pearson

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during this eam. If you consider a question to be ambiguous, state your assumptions in the margin and do the best you can to provide the

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2018 Introduction to Artificial Intelligence Practice Final You have approximately 2 hours 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Sequential vs. Combinational

Sequential vs. Combinational Sequential Circuits Sequential vs. Combinational Combinational Logic: Output depends only on current input TV channel selector (-9) inputs system outputs Sequential Logic: Output depends not only on current

More information