Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions.

Size: px
Start display at page:

Download "Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions."

Transcription

1 Combinational logic Possible logic functions of two variables Logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,... Minimal set xioms and theorems of oolean algebra Proofs by re-writing Proofs by perfect induction Gate logic Networks of oolean functions Time behavior Canonical forms Two-level Incompletely specified functions 16 possible functions of 2 input variables: 2**(2**n) functions of n inputs 16 possible functions (F0 F15) and xor or F = nor not ( or ) not not 1 nand not ( and ) CS Spring 2004 Lec #2: Transistor & Gate Logic - 1 CS Spring 2004 Lec #2: Transistor & Gate Logic - 2 Cost of different logic functions Minimal set of functions Some are easier, others harder, to implement Each has a cost associated with the number of switches needed 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high (F3) and (F5): require 0 switches, output is one of inputs ' (F12) and ' (F10): require 2 switches for "inverter" or NOT-gate nor (F4) and nand (F14): require 4 switches or (F7) and and (F1): require 6 switches = (F9) and (F6): require 16 switches ecause NOT, NOR, and NND are the cheapest they are the functions we implement the most in practice CS Spring 2004 Lec #2: Transistor & Gate Logic - 3 Implement any logic functions from NOT, NOR, and NND? For example, implementing and is the same as implementing not ( nand ) Do it with only NOR or only NND NOT is just a NND or a NOR with both inputs tied together nor nand and NND and NOR are "duals", i.e., easy to implement one using the other nand not ( (not ) nor (not ) ) nor not ( (not ) nand (not ) ) ased on the mathematical foundations of logic: oolean lgebra CS Spring 2004 Lec #2: Transistor & Gate Logic - 4 n algebraic structure oolean algebra n algebraic structure consists of a set of elements binary operations { +, } and a unary operation { ' } such that the following axioms hold: oolean algebra = {0, 1} + is logical OR, is logical ND ' is logical NOT ll algebraic axioms hold 1. set contains at least two elements, a, b, such that a b 2. closure: a + b is in a b is in 3. commutativity: a + b = b + a a b = b a 4. associativity: a + (b + c) = (a + b) + c a (b c) = (a b) c 5. identity: a + 0 = a a 1 = a 6. distributivity: a + (b c) = (a + b) (a + c) a (b + c) = (a b) + (a c) 7. complementarity: a + a' = 1 a a' = 0 CS Spring 2004 Lec #2: Transistor & Gate Logic - 5 CS Spring 2004 Lec #2: Transistor & Gate Logic - 6

2 Logic functions and oolean algebra ny logic function that can be expressed as a truth table can be written as an expression in oolean algebra using the operators: ', +, and xioms and theorems of oolean algebra Identity = 1D. 1 = Null = 1 2D. 0 = 0 ' ' Idempotency: 3. + = 3D. = Involution: 4. (')' = ' ' ' ' ( ) + ( ' ' ) ( ) + ( ' ' ) $ = oolean expression that is true when the variables and have the same value, are oolean algebra variables and false, otherwise CS Spring 2004 Lec #2: Transistor & Gate Logic - 7 Complementarity: 5. + ' = 1 5D. ' = 0 Commutativity: 6. + = + 6D. = ssociativity: 7. ( + ) + = + ( + ) 7D. ( ) = ( ) CS Spring 2004 Lec #2: Transistor & Gate Logic - 8 xioms and theorems of oolean algebra (cont d) xioms and theorems of oolean algebra (cont ) Distributivity: 8. ( + ) = ( ) + ( ) 8D. + ( ) = ( + ) ( + ) Uniting: 9. + ' = 9D. ( + ) ( + ') = bsorption: = 10D. ( + ) = 11. ( + ') = 11D. ( ') + = + Factoring: 12. ( + ) (' + ) = 12D. + ' = + ' ( + ) (' + ) de Morgan's: 14. ( )' = ' '... 14D. (...)' = ' + ' +... generalized de Morgan's: 15. f'(1,2,...,n,0,1,+, ) = f(1',2',...,n',1,0,,+) establishes relationship between and + Concensus: 13. ( ) + ( ) + (' ) = 17D. ( + ) ( + ) (' + ) = + ' ( + ) (' + ) CS Spring 2004 Lec #2: Transistor & Gate Logic - 9 CS Spring 2004 Lec #2: Transistor & Gate Logic - 10 xioms and theorems of oolean algebra (cont ) Proving theorems (rewriting) Duality Dual of a oolean expression is derived by replacing by +, + by, 0 by 1, and 1 by 0, and leaving variables unchanged ny theorem that can be proven is thus also proven for its dual! Meta-theorem (a theorem about theorems) duality: Using the axioms of oolean algebra: e.g., prove the theorem: + ' = distributivity (8) + ' = ( + ') complementarity (5) ( + ') = (1) identity (1D) (1) = generalized duality: 17. f (1,2,...,n,0,1,+, ) f(1,2,...,n,1,0,,+) Different than demorgan s Law this is a statement about theorems this is not a way to manipulate (re-write) expressions CS Spring 2004 Lec #2: Transistor & Gate Logic - 11 e.g., prove the theorem: + = identity (1D) + = 1 + distributivity (8) 1 + = (1 + ) identity (2) (1 + ) = (1) identity (1D) (1) = CS Spring 2004 Lec #2: Transistor & Gate Logic - 12

3 Proving theorems (perfect induction) simple example Using perfect induction (complete truth table): e.g., de Morgan's: ( + )' = ' ' NOR is equivalent to ND with inputs complemented ( )' = ' + ' NND is equivalent to OR with inputs complemented ' ' ( + )' ' ' ' ' ( )' ' + ' bit binary adder inputs:,, Carry-in outputs: Sum, Carry-out Cin S Cout Cin S Cout S = ' ' Cin + ' Cin' + ' Cin' + Cin Cout = ' Cin + ' Cin + Cin' + Cin CS Spring 2004 Lec #2: Transistor & Gate Logic - 13 CS Spring 2004 Lec #2: Transistor & Gate Logic - 14 pply the theorems to simplify expressions From oolean expressions to logic gates The theorems of oolean algebra can simplify oolean expressions e.g., full adder's carry-out function (same rules apply to any function) Cout = ' Cin + ' Cin + Cin' + Cin = ' Cin + ' Cin + Cin' + Cin + Cin = ' Cin + Cin + ' Cin + Cin' + Cin = (' + ) Cin + ' Cin + Cin' + Cin = (1) Cin + ' Cin + Cin' + Cin = Cin + ' Cin + Cin' + Cin + Cin = Cin + ' Cin + Cin + Cin' + Cin = Cin + (' + ) Cin + Cin' + Cin = Cin + (1) Cin + Cin' + Cin = Cin + Cin + (Cin' + Cin) = Cin + Cin + (1) = Cin + Cin + NOT ' ~ ND OR CS Spring 2004 Lec #2: Transistor & Gate Logic - 15 CS Spring 2004 Lec #2: Transistor & Gate Logic - 16 From oolean expressions to logic gates (cont d) From oolean expressions to logic gates (cont d) NND NOR OR NOR = xor = ' + ' or but not both ("inequality", "difference") xnor = + ' ' and are the same ("equality", "coincidence") More than one way to map expressions to gates T2 e.g., = ' ' (C + D) = (' (' (C + D))) T1 C D T2 T1 C D use of 3-input gate CS Spring 2004 Lec #2: Transistor & Gate Logic - 17 CS Spring 2004 Lec #2: Transistor & Gate Logic - 18

4 Waveform view of logic functions Choosing different realizations of a function Just a sideways truth table but note how edges don't line up exactly it takes time for a gate to switch its output! time C two-level realization (we don't count NOT gates) multi-level realization (gates with fewer inputs) change in takes time to "propagate" through gates OR gate (easier to draw but costlier to build) CS Spring 2004 Lec #2: Transistor & Gate Logic - 19 CS Spring 2004 Lec #2: Transistor & Gate Logic - 20 Which realization is best? Which is the best realization? (cont d) Reduce number of inputs literal: input variable (complemented or not) can approximate cost of logic gate as 2 transistors per literal why not count inverters? Fewer literals means less transistors smaller circuits Fewer inputs implies faster gates gates are smaller and thus also faster Fan-ins (# of gate inputs) are limited in some technologies Reduce number of gates Fewer gates (and the packages they come in) means smaller circuits directly influences manufacturing costs Reduce number of levels of gates Fewer level of gates implies reduced signal propagation delays Minimum delay configuration typically requires more gates wider, less deep circuits How do we explore tradeoffs between increased circuit delay and size? utomated tools to generate different solutions Logic minimization: reduce number of gates and complexity Logic optimization: reduction while trading off against delay CS Spring 2004 Lec #2: Transistor & Gate Logic - 21 CS Spring 2004 Lec #2: Transistor & Gate Logic - 22 re all realizations equivalent? Implementing oolean functions Under the same inputs, the alternative implementations have almost the same waveform behavior delays are different glitches (hazards) may arise variations due to differences in number of gate levels and structure Three implementations are functionally equivalent Technology independent Canonical forms Two-level forms Multi-level forms Technology choices Packages of a few gates Regular logic Two-level programmable logic Multi-level programmable logic CS Spring 2004 Lec #2: Transistor & Gate Logic - 23 CS Spring 2004 Lec #2: Transistor & Gate Logic - 24

5 Canonical forms Sum-of-products canonical forms Truth table is the unique signature of a oolean function Many alternative gate realizations may have the same truth table Canonical forms Standard forms for a oolean expression Provides a unique algebraic signature lso known as disjunctive normal form lso known as minterm expansion C F F' F = F = ''C+ 'C + 'C + C' + C F' = ''C' + 'C' + 'C' CS Spring 2004 Lec #2: Transistor & Gate Logic - 25 CS Spring 2004 Lec #2: Transistor & Gate Logic - 26 Sum-of-products canonical form (cont d) Product-of-sums canonical form Product term (or minterm) NDed product of literals input combination for which output is true Each variable appears exactly once, in true or inverted form (but not both) C minterms ''C'm0 ''C m1 'C' m 'C m3 'C' m 'C m5 C' m6 C m7 short-hand notation for minterms of 3 variables F in canonical form: F(,, C) = Σm(1,3,5,6,7) = m1 + m3 + m5 + m6 + m7 = ''C + 'C + 'C + C' + C canonical form minimal form F(,, C) = ''C + 'C + 'C + C + C' = ('' + ' + ' + )C + C' = ((' + )(' + ))C + C' = C + C' = C' + C = + C CS Spring 2004 Lec #2: Transistor & Gate Logic - 27 lso known as conjunctive normal form lso known as maxterm expansion C F F' F = F = ( + + C) ( + ' + C) (' + + C) F' = ( + + C') ( + ' + C') (' + + C') (' + ' + C) (' + ' + C') CS Spring 2004 Lec #2: Transistor & Gate Logic - 28 Product-of-sums canonical form (cont d) S-o-P, P-o-S, and de Morgan s theorem Sum term (or maxterm) ORed sum of literals input combination for which output is false each variable appears exactly once, in true or inverted form (but not both) C maxterms ++C M0 ++C' M1 +'+C M '+C' M3 '++C M '++C' M5 '+'+C M6 '+'+C' M7 short-hand notation for maxterms of 3 variables F in canonical form: F(,, C) = ΠM(0,2,4) = M0 M2 M4 = ( + + C) ( + ' + C) (' + + C) canonical form minimal form F(,, C) = ( + + C) ( + ' + C) (' + + C) = ( + + C) ( + ' + C) ( + + C) (' + + C) = ( + C) ( + C) CS Spring 2004 Lec #2: Transistor & Gate Logic - 29 Sum-of-products F' = ''C' + 'C' + 'C' pply de Morgan's (F')' = (''C' + 'C' + 'C')' F = ( + + C) ( + ' + C) (' + + C) Product-of-sums F' = ( + + C') ( + ' + C') (' + + C') (' + ' + C) (' + ' + C') pply de Morgan's (F')' = ( ( + + C')( + ' + C')(' + + C')(' + ' + C)(' + ' + C') )' F = ''C + 'C + 'C + C' + C CS Spring 2004 Lec #2: Transistor & Gate Logic - 30

6 Four alternative two-level implementations of F = + C Waveforms for the four alternatives F1 canonical sum-of-products Waveforms are essentially identical Except for timing hazards (glitches) Delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate) C minimized sum-of-products F2 canonical product-of-sums F3 minimized product-of-sums F4 CS Spring 2004 Lec #2: Transistor & Gate Logic - 31 CS Spring 2004 Lec #2: Transistor & Gate Logic - 32 Mapping between canonical forms Incompleteley specified functions Minterm to maxterm conversion Use maxterms whose indices do not appear in minterm expansion e.g., F(,,C) = Σm(1,3,5,6,7) = ΠM(0,2,4) Maxterm to minterm conversion Use minterms whose indices do not appear in maxterm expansion e.g., F(,,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) Minterm expansion of F to minterm expansion of F' Use minterms whose indices do not appear e.g., F(,,C) = Σm(1,3,5,6,7) F'(,,C) = Σm(0,2,4) Maxterm expansion of F to maxterm expansion of F' Use maxterms whose indices do not appear e.g., F(,,C) = ΠM(0,2,4) F'(,,C) = ΠM(1,3,5,6,7) Example: binary coded decimal increment by 1 CD digits encode decimal digits 0 9 in bit patterns C D W off-set of W on-set of W don't care (DC) set of W these inputs patterns should never be encountered in practice "don't care" about associated output values, can be exploited in minimization CS Spring 2004 Lec #2: Transistor & Gate Logic - 33 CS Spring 2004 Lec #2: Transistor & Gate Logic - 34 Notation for incompletely specified functions Simplification of two-level combinational logic Don't cares and canonical forms So far, only represented on-set lso represent don't-care-set Need two of the three sets (on-set, off-set, dc-set) Canonical representations of the CD increment by 1 function: = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15 = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ] = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15 = Π [ M(1,3,5,7,9) D(10,11,12,13,14,15) ] CS Spring 2004 Lec #2: Transistor & Gate Logic - 35 Finding a minimal sum of products or product of sums realization Exploit don't care information in the process lgebraic simplification Not an algorithmic/systematic procedure How do you know when the minimum realization has been found? Computer-aided design tools Precise solutions require very long computation times, especially for functions with many inputs (> 10) Heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions Hand methods still relevant To understand automatic tools and their strengths and weaknesses bility to check results (on small examples) CS Spring 2004 Lec #2: Transistor & Gate Logic - 36

7 Combinational logic summary Logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,..., minimal set xioms and theorems of oolean algebra Proofs by re-writing and perfect induction Gate logic Networks of oolean functions and their time behavior Canonical forms Two-level and incompletely specified functions Later Two-level simplification using K-maps utomation of simplification Multi-level logic Design case studies Time behavior CS Spring 2004 Lec #2: Transistor & Gate Logic - 37

EECS Variable Logic Functions

EECS Variable Logic Functions EECS150 Section 1 Introduction to Combinational Logic Fall 2001 2-Variable Logic Functions There are 16 possible functions of 2 input variables: in general, there are 2**(2**n) functions of n inputs X

More information

Possible logic functions of two variables

Possible logic functions of two variables ombinational logic asic logic oolean algebra, proofs by re-writing, proofs by perfect induction logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,..., minimal set Logic realization

More information

Combinational Logic (mostly review!)

Combinational Logic (mostly review!) ombinational Logic (mostly review!)! Logic functions, truth tables, and switches " NOT, N, OR, NN, NOR, OR,... " Minimal set! xioms and theorems of oolean algebra " Proofs by re-writing " Proofs by perfect

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

Lecture A: Logic Design and Gates

Lecture A: Logic Design and Gates Lecture A: Logic Design and Gates Syllabus My office hours 9.15-10.35am T,Th or gchoi@ece.tamu.edu 333G WERC Text: Brown and Vranesic Fundamentals of Digital Logic,» Buy it.. Or borrow it» Other book:

More information

Chapter 2 Combinational logic

Chapter 2 Combinational logic Chapter 2 Combinational logic Chapter 2 is very easy. I presume you already took discrete mathemtics. The major part of chapter 2 is boolean algebra. II - Combinational Logic Copyright 24, Gaetano Borriello

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions ombinational logic Possible logic functions of two variables asic logic oolean algebra, proofs by re-writing, proofs by perfect induction Logic functions, truth tables, and switches NOT, N, OR, NN,, OR,...,

More information

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS What will we learn? 2 Logic functions and circuits Boolean Algebra Logic gates and Synthesis CAD tools and VHDL Read Section 2.9 and 2.0 Terminology 3 Digital

More information

Switches: basic element of physical implementations

Switches: basic element of physical implementations Combinational logic Switches Basic logic and truth tables Logic functions Boolean algebra Proofs by re-writing and by perfect induction Winter 200 CSE370 - II - Boolean Algebra Switches: basic element

More information

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid SE140: omponents and Design Techniques for Digital Systems Simplification of logic functions Tajana Simunic Rosing 1 What we covered thus far: Number representations Where we are now inary, Octal, Hex,

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and oolean lgebra) cknowledgements: Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University of

More information

Chapter 2: Switching Algebra and Logic Circuits

Chapter 2: Switching Algebra and Logic Circuits Chapter 2: Switching Algebra and Logic Circuits Formal Foundation of Digital Design In 1854 George Boole published An investigation into the Laws of Thoughts Algebraic system with two values 0 and 1 Used

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and oolean lgebra) cknowledgements: Lecture material adapted from Chapter 2 of R. Katz, G. orriello, Contemporary Logic Design (second edition), Pearson Education,

More information

Logic Gates and Boolean Algebra

Logic Gates and Boolean Algebra Logic Gates and oolean lgebra The ridge etween Symbolic Logic nd Electronic Digital Computing Compiled y: Muzammil hmad Khan mukhan@ssuet.edu.pk asic Logic Functions and or nand nor xor xnor not 2 Logic

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Outline. EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) Combinational Logic (CL) Defined

Outline. EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) Combinational Logic (CL) Defined EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) January 30, 2003 John Wawrzynek Outline Review of three representations for combinational logic:

More information

EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits)

EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) EECS150 - Digital Design Lecture 4 - Boolean Algebra I (Representations of Combinational Logic Circuits) September 5, 2002 John Wawrzynek Fall 2002 EECS150 Lec4-bool1 Page 1, 9/5 9am Outline Review of

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Goals for Lecture. Binary Logic and Gates (MK 2.1) Binary Variables. Notation Examples. Logical Operations

Goals for Lecture. Binary Logic and Gates (MK 2.1) Binary Variables. Notation Examples. Logical Operations Introduction to Electrical Engineering, II LETURE NOTES #2 Instructor: Email: Telephone: Office: ndrew. Kahng (lecture) abk@ucsd.edu 858-822-4884 office 3802 P&M lass Website: http://vlsicad.ucsd.edu/courses/ece20b/wi04/

More information

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT):

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT): ENGI 386 Digital Logic II. COMBINATIONAL LOGIC DESIGN Combinational Logic output of digital system is only dependent on current inputs (i.e., no memory) (a) Boolean Algebra - developed by George Boole

More information

Learning Objectives. Boolean Algebra. In this chapter you will learn about:

Learning Objectives. Boolean Algebra. In this chapter you will learn about: Ref. Page Slide /78 Learning Objectives In this chapter you will learn about: oolean algebra Fundamental concepts and basic laws of oolean algebra oolean function and minimization Logic gates Logic circuits

More information

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENEL 353 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2016 SN s ENEL 353 Fall 2016 Slide Set 3 slide

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and Boolean Algebra) Acknowledgements: Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, Contemporary Logic Design (second edition), Pearson

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

CS 226: Digital Logic Design

CS 226: Digital Logic Design CS 226: Digital Logic Design 0 1 1 I S 0 1 0 S Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 29 Objectives In this lecture we will introduce: 1. Logic functions

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

Boolean cubes EECS150. Mapping truth tables onto cubes. Simplification. The Uniting Theorem. Three variable example

Boolean cubes EECS150. Mapping truth tables onto cubes. Simplification. The Uniting Theorem. Three variable example EES5 Section 5 Simplification and State Minimization Fall 2 -cube X oolean cubes Visual technique for indentifying when the uniting theorem can be applied n input variables = n-dimensional "cube" Y 2-cube

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

Part 5: Digital Circuits

Part 5: Digital Circuits Characteristics of any number system are: Part 5: Digital Circuits 5.: Number Systems & Code Conversions. ase or radix is equal to the number of possible symbols in the system 2. The largest value of digit

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Slides for Lecture 10

Slides for Lecture 10 Slides for Lecture 10 ENEL 353: Digital Circuits Fall 2013 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 30 September, 2013 ENEL 353

More information

Prove that if not fat and not triangle necessarily means not green then green must be fat or triangle (or both).

Prove that if not fat and not triangle necessarily means not green then green must be fat or triangle (or both). hapter : oolean lgebra.) Definition of oolean lgebra The oolean algebra is named after George ool who developed this algebra (854) in order to analyze logical problems. n example to such problem is: Prove

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

Theorem/Law/Axioms Over (.) Over (+)

Theorem/Law/Axioms Over (.) Over (+) material prepared by: MUKESH OHR Follow me on F : http://www.facebook.com/mukesh.sirji4u OOLEN LGER oolean lgebra is a set of rules, laws and theorems by which logical operations can be mathematically

More information

Lecture 2. Notes. Notes. Notes. Boolean algebra and optimizing logic functions. BTF Electronics Fundamentals August 2014

Lecture 2. Notes. Notes. Notes. Boolean algebra and optimizing logic functions. BTF Electronics Fundamentals August 2014 Lecture 2 Electronics ndreas Electronics oolean algebra and optimizing logic functions TF322 - Electronics Fundamentals ugust 24 Exercise ndreas ern University of pplied Sciences Rev. 946f32 2. of oolean

More information

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept.

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept. hapter 2: Princess Sumaya Univ. omputer Engineering Dept. Basic Definitions Binary Operators AND z = x y = x y z=1 if x=1 AND y=1 OR z = x + y z=1 if x=1 OR y=1 NOT z = x = x z=1 if x=0 Boolean Algebra

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra

Introduction. 1854: Logical algebra was published by George Boole known today as Boolean Algebra oolean lgebra Introduction 1854: Logical algebra was published by George oole known today as oolean lgebra It s a convenient way and systematic way of expressing and analyzing the operation of logic circuits.

More information

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC. Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Chapter 2 - Part 1 2 Chapter 2 - Part 1 3 Chapter 2 - Part 1 4 Chapter 2 - Part

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

Lecture 1. Notes. Notes. Notes. Introduction. Introduction digital logic February Bern University of Applied Sciences

Lecture 1. Notes. Notes. Notes. Introduction. Introduction digital logic February Bern University of Applied Sciences Output voltage Input voltage 3.3V Digital operation (Switch) Lecture digital logic February 26 ern University of pplied Sciences Digital vs nalog Logic =? lgebra Logic = lgebra oolean lgebra Exercise Rev.

More information

CMSC 313 Lecture 16 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates

CMSC 313 Lecture 16 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates CMSC 33 Lecture 6 Postulates & Theorems of oolean lgebra Semiconductors CMOS Logic Gates UMC, CMSC33, Richard Chang Last Time Overview of second half of this course Logic gates & symbols

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates CSA051 - Digital Systems 數位系統導論 Chapter 2 Boolean Algebra and Logic Gates 吳俊興國立高雄大學資訊工程學系 Chapter 2. Boolean Algebra and Logic Gates 2-1 Basic Definitions 2-2 Axiomatic Definition of Boolean Algebra 2-3

More information

Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

CHAPTER 3 LOGIC GATES & BOOLEAN ALGEBRA

CHAPTER 3 LOGIC GATES & BOOLEAN ALGEBRA CHPTER 3 LOGIC GTES & OOLEN LGER C H P T E R O U T C O M E S Upon completion of this chapter, student should be able to: 1. Describe the basic logic gates operation 2. Construct the truth table for basic

More information

Digital Design 2. Logic Gates and Boolean Algebra

Digital Design 2. Logic Gates and Boolean Algebra Digital Design 2. Logic Gates and oolean lgebra József Sütő ssistant Lecturer References: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L. Floyd,

More information

Unit 8A Computer Organization. Boolean Logic and Gates

Unit 8A Computer Organization. Boolean Logic and Gates Unit 8A Computer Organization Boolean Logic and Gates Announcements Bring ear buds or headphones to lab! 15110 Principles of Computing, Carnegie Mellon University - CORTINA 2 Representing and Manipulating

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

Chapter 3. Boolean Algebra. (continued)

Chapter 3. Boolean Algebra. (continued) Chapter 3. Boolean Algebra (continued) Algebraic structure consisting of: set of elements B binary operations {+, -} unary operation {'} Boolean Algebra such that the following axioms hold:. B contains

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

Every time has a value associated with it, not just some times. A variable can take on any value within a range

Every time has a value associated with it, not just some times. A variable can take on any value within a range Digital Logic Circuits Binary Logic and Gates Logic Simulation Boolean Algebra NAND/NOR and XOR gates Decoder fundamentals Half Adder, Full Adder, Ripple Carry Adder Analog vs Digital Analog Continuous»

More information

Working with Combinational Logic. Design example: 2x2-bit multiplier

Working with Combinational Logic. Design example: 2x2-bit multiplier Working with ombinational Logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and NORs

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010 Digital Logic & Computer Design CS 434 Professor Dan Moldovan Spring 2 Copyright 27 Elsevier 2- Chapter 2 :: Combinational Logic Design Digital Design and Computer rchitecture David Money Harris and

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

Boolean Algebra. Boolean Variables, Functions. NOT operation. AND operation. AND operation (cont). OR operation

Boolean Algebra. Boolean Variables, Functions. NOT operation. AND operation. AND operation (cont). OR operation oolean lgebra asic mathematics for the study of logic design is oolean lgebra asic laws of oolean lgebra will be implemented as switching devices called logic gates. Networks of Logic gates allow us to

More information

EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系. September 2004

EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系. September 2004 EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系 September 2004 Boolean Algebra (formulated by E.V. Huntington, 1904) A set of elements B={0,1} and two binary operators + and Huntington postulates 1. Closure

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Huntington Postulates 1. (a) Closure w.r.t. +. (b) Closure w.r.t.. 2. (a) Identity element 0 w.r.t. +. x + 0 = 0 + x = x. (b) Identity element 1 w.r.t.. x 1 =

More information

Contents. Chapter 2 Digital Circuits Page 1 of 30

Contents. Chapter 2 Digital Circuits Page 1 of 30 Chapter 2 Digital Circuits Page 1 of 30 Contents Contents... 1 2 Digital Circuits... 2 2.1 Binary Numbers... 2 2.2 Binary Switch... 4 2.3 Basic Logic Operators and Logic Expressions... 5 2.4 Truth Tables...

More information

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL. 2017-18 XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL HALF ADDER 1. The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders. 2. A unit that adds two

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Lab 1 starts this week: go to your session

Lab 1 starts this week: go to your session Lecture 3: Boolean Algebra Logistics Class email sign up Homework 1 due on Wednesday Lab 1 starts this week: go to your session Last lecture --- Numbers Binary numbers Base conversion Number systems for

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Ch1: Digital Systems and Binary Numbers Ch2: Ch3: Gate-Level Minimization Ch4: Combinational Logic Ch5: Synchronous Sequential Logic Ch6: Registers and Counters Switching Theory & Logic Design Prof. Adnan

More information

CSE140: Components and Design Techniques for Digital Systems. Introduction. Instructor: Mohsen Imani

CSE140: Components and Design Techniques for Digital Systems. Introduction. Instructor: Mohsen Imani CSE4: Components and Design Techniques for Digital Systems Introduction Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Welcome to CSE 4! Instructor: Mohsen Imani Email:

More information

4 Switching Algebra 4.1 Axioms; Signals and Switching Algebra

4 Switching Algebra 4.1 Axioms; Signals and Switching Algebra 4 Switching Algebra 4.1 Axioms; Signals and Switching Algebra To design a digital circuit that will perform a required function, it is necessary to manipulate and combine the various input signals in certain

More information

WEEK 2.1 BOOLEAN ALGEBRA

WEEK 2.1 BOOLEAN ALGEBRA WEEK 2.1 BOOLEAN ALGEBRA 1 Boolean Algebra Boolean algebra was introduced in 1854 by George Boole and in 1938 was shown by C. E. Shannon to be useful for manipulating Boolean logic functions. The postulates

More information

COSC3330 Computer Architecture Lecture 2. Combinational Logic

COSC3330 Computer Architecture Lecture 2. Combinational Logic COSC333 Computer rchitecture Lecture 2. Combinational Logic Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Today Combinational Logic oolean lgebra Mux, DeMux, Decoder

More information

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST Discrete Mathematics CS204: Spring, 2008 Jong C. Park Computer Science Department KAIST Today s Topics Combinatorial Circuits Properties of Combinatorial Circuits Boolean Algebras Boolean Functions and

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 326, brendan.morris@unlv.edu http://www.ee.unlv.edu/~bmorris/cpe/ CPE: Digital Logic Design I Section 4: Dr. Morris Combinational Logic Design Chapter 2 Chapter

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates The most common postulates used to formulate various algebraic structures are: 1. Closure. N={1,2,3,4 }, for any a,b N we obtain a unique c N by the operation

More information

Computer Organization: Boolean Logic

Computer Organization: Boolean Logic Computer Organization: Boolean Logic Representing and Manipulating Data Last Unit How to represent data as a sequence of bits How to interpret bit representations Use of levels of abstraction in representing

More information

Digital Logic & Computer Design CS Professor Dan Moldovan Spring Copyright 2007 Elsevier 2-<101>

Digital Logic & Computer Design CS Professor Dan Moldovan Spring Copyright 2007 Elsevier 2-<101> Digital Logic & Computer Design CS 434 Professor Dan Moldovan Spring 2 Copyright 27 Elsevier 2- Chapter 2 :: Combinational Logic Design Digital Design and Computer Architecture David Money Harris and

More information

Digital Logic Circuits - Switching Algebra - Combinational Circuits -

Digital Logic Circuits - Switching Algebra - Combinational Circuits - Digital Logic Circuits - Switching Algebra - Combinational Circuits - Dr. Voicu Groza SITE Hall, Room 57 562 58 ext. 259 Groza@EECS.uOttawa.ca Outline Logic Functions Boolean Algebra Logic Functions Minimization

More information

12/31/2010. Overview. 05-Boolean Algebra Part 3 Text: Unit 3, 7. DeMorgan s Law. Example. Example. DeMorgan s Law

12/31/2010. Overview. 05-Boolean Algebra Part 3 Text: Unit 3, 7. DeMorgan s Law. Example. Example. DeMorgan s Law Overview 05-oolean lgebra Part 3 Text: Unit 3, 7 EEGR/ISS 201 Digital Operations and omputations Winter 2011 DeMorgan s Laws lgebraic Simplifications Exclusive-OR and Equivalence Functionally omplete NND-NOR

More information

Review: Additional Boolean operations

Review: Additional Boolean operations Review: Additional Boolean operations Operation: NAND (NOT-AND) NOR (NOT-OR) XOR (exclusive OR) Expressions: (xy) = x + y (x + y) = x y x y = x y + xy Truth table: x y (xy) x y (x+y) x y x y 0 0 1 0 1

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

Algebraic Methods for the Analysis and Synthesis

Algebraic Methods for the Analysis and Synthesis lgebraic ethods for the nalysis and Synthesis Fundaentals of oolean lgebra asic Postulates. oolean algebra is closed algebraic syste containing a set K of two or ore eleents and two operators and, ND and

More information

CS/COE0447: Computer Organization and Assembly Language

CS/COE0447: Computer Organization and Assembly Language CS/COE0447: Computer Organization and Assembly Language Logic Design Introduction (Brief?) Appendix B: The Basics of Logic Design Dept. of Computer Science Logic design? Digital hardware is implemented

More information

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on.

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on. Chapter 2 Digital Circuits Page 1 of 18 2. Digital Circuits Our world is an analog world. Measurements that we make of the physical objects around us are never in discrete units but rather in a continuous

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms Chapter 2 (Lect 2) Canonical and Standard Forms Sum of Minterms Product of Maxterms Standard Form Sum of products Product of sums Other Logic Operators Logic Gates Basic and Multiple Inputs Positive and

More information

Boolean Algebra and Logic Gates Chapter 2. Topics. Boolean Algebra 9/21/10. EECE 256 Dr. Sidney Fels Steven Oldridge

Boolean Algebra and Logic Gates Chapter 2. Topics. Boolean Algebra 9/21/10. EECE 256 Dr. Sidney Fels Steven Oldridge Boolean Algebra and Logic Gates Chapter 2 EECE 256 Dr. Sidney Fels Steven Oldridge Topics DefiniGons of Boolean Algebra Axioms and Theorems of Boolean Algebra two valued Boolean Algebra Boolean FuncGons

More information

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction Chapter 5 igital systems digital system is any machine that processes information encoded in the form of digits. Modern digital systems use binary digits, encoded as voltage levels. Two voltage levels,

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 OMP2611: omputer Organization ombinational Logic OMP2611 Fall 2015 asics of Logic ircuits 2 its are the basis for binary number representation in digital computers ombining bits into patterns following

More information