Technology Scaling. 9nm. Advanced Digital IC-Design. Content. What happens when technology is scaled? Progress: Described by Gordon Moore

Size: px
Start display at page:

Download "Technology Scaling. 9nm. Advanced Digital IC-Design. Content. What happens when technology is scaled? Progress: Described by Gordon Moore"

Transcription

1 Advanced Digial IC-Design Conen 0.μm Wha happens when echnology is scaled? Technology caling 9nm ource Gae Drain ource Gae Drain ubsrae ubsrae IC Design pace Progress: Described by Gordon Moore peed Tradiional design space Area New echnologies give a new design space Complexiy Flexibiliy New Design pace Power Moore s law, formulaed 965 The complexiy for minimum componen coss has increased a a rae of roughly a facor of wo per year no reason o believe i will no remain nearly consan for a leas 0 years ource: Elecronics, Volume 38, Number 8, 9 April 965

2 Moore s aw: Processors Example: 30 nm Transisor Reformulaed by Moore 975 The # of ransisors will be doubled every 8 h monh ource Gae Drain n + n + ource: Inel p - subsra Inel 0 nm Transisor ITR Inernaional Technology Roadmap for emiconducors Esimae of fuure echnologies in a 5 year perspecive New esimae every second year hp://public.irs.ne/

3 ITR ysem Drivers Where are we in abou 0 years? MPU (Micro Processor Uni) oc (ysem-on-chip) - Muli echnology (digial, analog, and mixed) - High Performance (high speed) -ow Power AM/ (Analog & Mixed ignal) DRAM (Dynamic RAM) Virus 00 Proein Molecule DNA Molecule 0 [nm] Technology Oxide hickness Meal Oxid Halvledare (semiconducor) 9nm Channel lengh decrease by 7 Oxide hickness decrease by 5 Thickness of a few aoms Technology predicions from four scenarios Aom nm ource: ITR 00 Updae (High performance logic echnology) Gae Oxide in an 50 nm echnology Polysilicon Gae Gae Oxide ilicon crysal Abou 0 molecular layers of io Manufacuring: A lihographic process Phoographic glass plae (mask) Each layer is projeced o he silicon die Dimensions close o ligh wavelenghs Ou of reach for he Opics!!! 3

4 Manufacuring: A lihographic process ine widhs smaller han he wavelengh of ligh Opical Primiy Correcion (OPC) Predisorion of he mask layou is needed when scaling down he echnology No OPC OPC Correcions Wih OPC Original ayou Needed for 0. micron and less Manufacuring: A lihographic process Power Consumpion Paining a cm line wih a 3 cm brush Two major ypes Dynamic power consumpion -Two ypes aic power consumpion aic power consumpion - Tradiionally wo major ypes - Four in submicron echnologies Couresy : IBM 4

5 Wha Happens wih he Power Consumpion? Curren pikes (hor Circui) V Charge Previous focus: Dynamic charging/discharging g g g of he load Curren peak when boh N- and PMO are open Power consumpion: P = C V f V -V T Discharge 80-90% from he load and 0-0% from oher sources N open P open V T I peak Dynamic Power Consumpion Why do he aic Power Increase? 90% capaciive swiching and [V] 5 0% shor circui i power ower hreshold volage V T o increase he gae overdrive Tha is, o keep a reasonable propagaion delay hor circui power will decrease in submicron echnologies when V ges closer o V T (Close o Zero when V =V T ) 4 3 Disance beween V and V T will decrease V V T Technology [μm] Vola age (V) ource: ITR 0.93V Gae Overdrive (V V T ) 0.75V V V T 0 5

6 caling & aic Power Consumpion Dynamic vs. aic Power V -V T rade-off New Technologies require reduced V Require lower V T - (or slow devices) High eakage ource: K. Roy V V T I off [V] [V] [um] [pa] Norma alized power aic power is a large conribuor o he power oday Esimaed o be abou equal in oday s echnologies Dynamic power 65 nm aic power Year ource: ITR Mainly subhreshold curren in 65 nm Mos Imporan eakage Currens aic Power in an NMO Device Reverse-biased, drain and source o subsrae juncion band-o-band-unneling (BTBT) Gae ide unneling ubhreshold curren ubhreshold dominaes he power oday Gae leakage will be he major source ua eakage Gae eakage Gae ide unneling na ubhreshold 6 orders of magniude! ub Threshold pa Juncion BTBT Juncion BTBT Juncion BTBT 90 nm 50 nm 5 nm ource K. Roy, IEEE Micro, March April 006 ource K. Roy, IEEE Micro, March April 006 6

7 aic Power in an NMO Device eakage Currens Gae ide unneling eakage increase wih emperaure ubhreshold dominaes a high emperaures 5 na eakage (A/um ) 0 na 5 na Gae eakage Toal Temperaure ubhreshold Juncion BTBT ource K. Roy, IEEE Micro, March April Noe: inear scale ub Threshold Juncion BTBT Juncion BTBT Major source in fuure echnologies (5 nm) Gae ide unneling Major source in fuure echnologies (50 nm and below) ubhreshold curren Major source oday (90 and 65 nm) and below a high operaing emperaures ource K. Roy, IEEE Micro, March April 006 Juncion BTBT Why do he aic Power Increase? Why do he aic Power Increase? hrinking feaure sizes, ource Gae Drain Exponenial increase of he saic power! hrinking hin ide Thin ide ower volage o avoid break-hrough ow V T 0m ln(i D) Increased propagaion delay p : p CV = kv ( - V) T High I off High V T ow I off 00u u 0n 00p p V T I = I e off V G (V) VG VT m vt 7

8 Gae Oxide Tunneling Normalized Gae Oxide Tunneling Gae o bulk curren 90 nm echnology Experimenal echnology High elecrical field over he hin ide ( ) will cause unneling hrough he gae Will be a major obsacle in submicron echnologies Gae ide unneling ub Threshold Juncion BTBT Juncion BTBT C = I gae-leak = C =.6 I gae-leak < 0.0 Oher aic Power Consumpion aic Power and caling Gae-Induced Drain eakage (GID) No very serious for he supply volages suggesed by ITR Drain-Induced Barrier owering (DIB) Resul in an increase of he subhreshold curren Gae Juncion BTBT will increase ubhreshold curren will increase Gae ide unneling will increase DIB and GIB give minor conribuions Gae ide unneling ource DIB GID Drain ub Threshold Juncion BTBT Juncion BTBT 8

9 Threshold Variaions Device Variabiliy a big Problem Threshold volage variaions in 90 nm eakage change exponenially wih he hreshold The problem increases wih denser echnologies Hospos caling & of Errors Rae (ER) Advanced ools o reduce he hospo emperaure Before Afer Cosmic Rays a ground level is abou 5 imes lower han in ouer space Noise margin decreases wih lower V Mainly a memory problem (boh RAM and DRAM) Normalized of Error Rae Exponenial growh wih decreasing V Cosmic ray = high-energy paricle from ouer space 9

10 ome Quoaions Full (ideal) Transisor caling Cosmic rays are almos impossible o sop. They'll go hrough 5 fee of concree wihou any rouble and cause a bi o flip (ange IBM) Original device V D caled device (New Technology) / V D / In 0.3-micron echnology we're seeing some memory echnology wih error raes of 0,000 or 00,000 FITs per megabi. This brings he frequency of error in a single device down o weeks or monhs (Eric-Jones Moys) ource Gae Drain I D ource Gae / Drain I D / A sysem wih GBye of RAM can expec an error every wo weeks; a hypoheical erabye sysem would experience a sof error every few minues (Tezzaron emiconducor) Channel lengh () Channel widh (W) Thin ide hickness ( ) Drain curren (I D ) Volage (V D, V T, V, ec.) Doping (N A ) Channel lengh (/) Channel widh (W/) Thin ide hickness ( /) Drain curren (I D /) Volage (V D /, V T /, V /, ec.) Doping (N A ) FIT/Mbi = Failures In Time: Errors per billion hours of use Increased accepor concenraion for consan elecrical field caling Facors: Area & Capaciance caling Facor: Delay Area ε W Capaciance W C = W V Area W caling facor = C Capaciance W W ε C = caling facor = / Q = C Δ V = C ( V V ) = CV OH O Q = I = k ( V V ) = k ( V V ) n G T ph n T ph W ε = Maerial consan ph CV = k ( V V ) n T 0

11 caling Facor: Delay ( p ) caling Facor: Power Consumpion W = μ = Gain facor k C μ = Elecron mobiliy CV p P = C V f ε = Maerial consan = Delay p p CV C W V V kv ( V) ( V V) W T μc ( ) T V V μ T C W C W ε = = W caled delay p V μ( V VT ) calning facor = W P = C V f ε W V p Delay (facor /) ource: J. Rabaey, Digial Inegraed Circuis ource: J. Rabaey, Digial Inegraed Circuis caling Facor: Power Consumpion caling Facor: Power Consumpion P = CV f ε W V p Power consumpion caling facor = caled power W ε V p caling facor = Area caling facor = Power consumpion caling facor = Area uni

12 Ideal caling: imiaion Velociy auraion Volage scale less han oher parameers eads o higher h E-field in he channel eads o sauraion of he elecron velociy e - e - e- e - e - High E-field Elecron velociy canno have an unlimied increase k W I = n ( V V ) D G T Non-sauraed k n W ID = ( VG VT) α Velociy α < auraed The drain curren is reduced due o he velociy sauraion Velociy auraion (0.5um echnology) Velociy auraion α k n W I ( ) D = VG V α T ow V : Velociy auraion can be negleced High V : α decreases auraion appear earlier in denser echnologies I D V G =5V V G =4V V G =3V V G =V V G =V inear Dependence I d hor ong Device Device I d V G (auraed Region) V G V D [V] V D [V] ource: M. R. an, IEEE Trans. on VI ysems, Apr 0.

13 Delay Power V Non-sauraed gae delay ( V VT ) caling facor = V V Fixed volage gae delay caling facor = ( V V ) auraed gae delay T T ( V V ) α caling facor < (or ) W ε V Non-sauraed power consumpion caling facor = ph Fixed- volage power consumpion W ε V ph caling facor = W ε V auraed power consumpion ph caling facor < (or ) The curren do no increase as expeced a high volages The curren do no increase as expeced a high volages Transisor caling Dynamic Power Consumpion Parameer Full caling Fixed auraed Volage caling Dimensions (W,, and ) / / / V and V T0 / Volage do no scale: leads o increased power consumpion P = CV f Parly limied by velociy sauraion Delay / / / Capaciance / / / I D / Power consumpion / Power per area uni 3 We will compare o ITR laer Dependen on echnology ype Technologies for high performance: Increased consumpion Technologies for low power: ow volage, less increase in power consumpion 3

14 Power in new echnologies? Meal ayers Year Techology (nm) Meal ayers Dynamic power have been dominaing aic power will increase drasicaly How abou inerconnecions? Meal ayers - No a D problem!!! Transisors Tungsen Conacs Delay vs Technology Delay [ps] Gae Delay Inerconnec Delay Technology [um] ource: IA Roadmap 4

15 Capaciive load will increase Inerconnecions on a ilicon Die Conacs Connecion Probabiliy 0.08 Fringing Capaciors Plae capaciors was dominaing Fringing capaciors will dominae in new echnologies Wire engh/chip Diagonal engh.0 ocal Wires Global Wires Global Wires do no scale wih he echnology Comparison of Nework-on-Chip and Busses Copper Wires 40 % reducion in resisance % performance improvemen in a Power PC Transisor 5

16 Delay vs. Technology Trends for Maximum Power Inerconnec dominaes he load - Fringing capaciances added - 3 dimensions - onger global wires oluions? - Copper wires - Maerials wih low dielecric consan - Inerconnec opimizaion mehodology Physical design mus be considered in all design phases Toal power per funcion P [W] Today, Idag, 50W ource: ITR 00 Updae 06, 90W 58W 3W High performance: Doubling over 5 years ow power: Doubling over 5 years andby: Consan over 5 years Wha abou Moore s aw? Moore s lag: Toal power? The number of ransisors is doubled every 8h monh (965) Gordon Moore P (kw) W oday 5 kw he year 00 5 kw per chip!!! Year År 6

17 Manufacuring Coss Manufacuring Coss - Masks Iniial cos have he larges increase maller sizes leads o an explosion of he coss for a mask-se Mask se cos [M$] M$ Feaure size ource: eaic ource: eaic Cos ($000) nm ource: Jan Rabaey Year 65 nm 90 nm 30 nm 80 nm 50 nm 008 More Expensive in he beginning Exponenial cos increase Manufacuring coss in new Technologies Cos per Funcion (CPF) More Expensive for lower volumes bu cheaper when he volumes goes up CPF reducion beween 9-35% per year Technology / Die ($) Cos 30 nm 80 nm Relaive cos per funcion Technology Technology 3 Technology cross-overover Years Volume (Dies) ource: Rakesh Kumar 7

18 Coss New Fab Wha is volume? 3000 Capial Cos (M$).5 Billion $ " Typical "business case" for an AIC (30 nm): Price of "off-he-shelf" IC - 50$ per Chip 000 8" Manufacure cos - 0$ per Chip Developmen coss - 0M$ " 6" Technology 50$ 0$ Break-even even = Chips 0M$ Break-even is higher for 90 nm, 65nm ource: Peer Olanders, Ericsson Memories on Chip Increase from 50% o over 90% of he silicon area 00% 80% 60% 40% 0% 0% source: Japanese sysem-i indusry % Area Memory % Area Reused ogic % Area New ogic 8

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

Introduction to Digital Circuits

Introduction to Digital Circuits The NMOS nerer The NMOS Depleion oad 50 [ D ] µ A GS.0 + 40 30 0 0 Resisance characerisic of Q 3 4 5 6 GS 0.5 GS 0 GS 0.5 GS.0 GS.5 [ ] DS GS i 0 Q Q Depleion load Enhancemen drier Drain characerisic of

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6 Semiconducor Devices C. Hu: Modern Semiconducor Devices for Inegraed Circuis Chaper 6 For hose of you who are sudying a bachelor level and need he old course S-69.2111 Mikro- ja nanoelekroniikan perusee

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies Modeling he Overshooing Effec for CMOS Inverer in Nanomeer Technologies Zhangcai Huang, Hong Yu, Asushi Kurokawa and Yasuaki Inoue Graduae School of Informaion, Producion and Sysems, Waseda Universiy,

More information

Slides: CMOS Basics.

Slides: CMOS Basics. MO Basics ysem-on-hi oluions & Archiecures Technische Universiä München www.lis.ei.um.de Module ouline Inroducion o MO Where is MO? Wha is MO? Why is MO so aracive? How does MO work? Basics MO evice Basics

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

CHAP.4 Circuit Characteristics and Performance Estimation

CHAP.4 Circuit Characteristics and Performance Estimation HAP.4 ircui haracerisics and Performance Esimaion 4. Resisance esimaion R ρ l w (ohms) where ρ Resisiviy Thickness l onducor lengh w onducor widh l R Rs w where Rs Shee resisance (Ω/square) in 0.5µm o

More information

4. Electric field lines with respect to equipotential surfaces are

4. Electric field lines with respect to equipotential surfaces are Pre-es Quasi-saic elecromagneism. The field produced by primary charge Q and by an uncharged conducing plane disanced from Q by disance d is equal o he field produced wihou conducing plane by wo following

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor April 996 NP45L / NB45L N-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These logic level N-Channel enhancemen mode power field effec ransisors are produced using

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

A Note of Widening on the Redshift Mechanism. June 23, 2010.

A Note of Widening on the Redshift Mechanism. June 23, 2010. A Noe of Widening on he Redshif Mechanism June 3, 1. José Francisco García Juliá / Dr. Marco Merenciano, 65, 5. 465 Valencia (Spain) -mail: jose.garcia@dival.es Absrac A single ired ligh mechanism has

More information

Chapter 1 Electric Circuit Variables

Chapter 1 Electric Circuit Variables Chaper 1 Elecric Circui Variables Exercises Exercise 1.2-1 Find he charge ha has enered an elemen by ime when i = 8 2 4 A, 0. Assume q() = 0 for < 0. 8 3 2 Answer: q () = 2 C 3 () 2 i = 8 4 A 2 8 3 2 8

More information

NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor

NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor March 996 NS356P P-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion These P-Channel logic level enhancemen mode power field effec ransisors are produced using Fairchild's proprieary,

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor June 997 NS33P P-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These P-Channel logic level enhancemen mode power field effec ransisors are produced using Fairchild's

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

NDS355AN N-Channel Logic Level Enhancement Mode Field Effect Transistor

NDS355AN N-Channel Logic Level Enhancement Mode Field Effect Transistor January 997 NS3AN N-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures SuperSOT TM -3 N-Channel logic level enhancemen mode power field effec ransisors are produced using

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

Advanced Power Electronics For Automotive and Utility Applications

Advanced Power Electronics For Automotive and Utility Applications Advanced Power Elecronics For Auomoive and Uiliy Applicaions Fang Z. Peng Dep. of Elecrical and Compuer Engineering Michigan Sae Universiy Phone: 517-336-4687, Fax: 517-353-1980 Email: fzpeng@egr.msu.edu

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies Applicaion Noe AN-8004 Revision: Issue Dae: Prepared by: 00 2008-05-21 Dr. Arend Winrich Ke y Words: SemiSel, Semiconducor Selecion, Loss Calculaion Sofware release of SemiSel version 3.1 New semiconducor

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE06 Embee Elecronics Le Le3 Le4 Le Ex Ex PI-block Documenaion, Seriecom Pulse sensors I, U, R, P, series an parallel K LAB Pulse sensors, Menu program Sar of programing ask Kirchhoffs laws Noe analysis

More information

Type Marking Pin Configuration Package SMBT3904/MMBT3904 SOT23 SMBT3904S 2=E 1=B 3=C 1=E1 2=B1 3=C2

Type Marking Pin Configuration Package SMBT3904/MMBT3904 SOT23 SMBT3904S 2=E 1=B 3=C 1=E1 2=B1 3=C2 SMBT94...MMBT94 NPN Silicon Swiching Transisors High D curren gain:. ma o ma Low collecoremier sauraion volage For SMBT94S: Two (galvanic) inernal isolaed ransisors wih good maching in one package omplemenary

More information

XPT IGBT Module MIXA450PF1200TSF. Phase leg + free wheeling Diodes + NTC MIXA450PF1200TSF. Part number

XPT IGBT Module MIXA450PF1200TSF. Phase leg + free wheeling Diodes + NTC MIXA450PF1200TSF. Part number XPT IGBT Module CS 2x 12 I C25 1.8 C(sa) Phase leg + free wheeling Diodes + NTC Par number Backside: isolaed 5 2 1 8 7 9 3 4 /11 Feaures / dvanages: pplicaions: Package: SimBus F High level of inegraion

More information

NDH834P P-Channel Enhancement Mode Field Effect Transistor

NDH834P P-Channel Enhancement Mode Field Effect Transistor May 997 NH834P P-Channel Enhancemen Mode Field Effec Transisor General escripion Feaures SuperSOT TM -8 P-Channel enhancemen mode power field effec ransisors are produced using Fairchild's proprieary,

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm apaciors An elecrical componen which sores charge E 2 2 d A 2 parallel plae capacior Scale in cm Leyden Jars I was invened independenly by German cleric Ewald Georg von Kleis on Ocober 745 and by Duch

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD

More information

Smart Highside Power Switch PROFET

Smart Highside Power Switch PROFET Smar ighside Power Swich PROFET BTS 410E2 Feaures TO220AB/ Overload proecion Curren limiaion Shor circui proecion Thermal shudown 1 1 Overvolage proecion (including Sandard Sraigh leads SMD load dump)

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 0 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time Propagaion Delay in Saic MOS Family F Propagaion hrough k levels of logic + + + + HL HLn LH(n-1)

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae,

More information

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Pulse Generators. Any of the following calculations may be asked in the midterms/exam. ulse Generaors ny of he following calculaions may be asked in he miderms/exam.. a) capacior of wha capaciance forms an RC circui of s ime consan wih a 0 MΩ resisor? b) Wha percenage of he iniial volage

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Digital Integrated Circuits

Digital Integrated Circuits Digial Inegraed ircuis YuZhuo Fu conac:fuyuzhuo@ic.sju.edu.cn Office locaion:47 room WeiDianZi building,no 800 Donghuan road,minhang amus Inroducion Digial I 3.MOS Inverer Inroducion Digial I ouline MOS

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering CSE 3802 / ECE 3431 Numerical Mehods in Scienific Compuaion Jinbo Bi Deparmen of Compuer Science & Engineering hp://www.engr.uconn.edu/~jinbo 1 Ph.D in Mahemaics The Insrucor Previous professional experience:

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description PI53157 OINY M Low Volage PD nalog wich 2:1 Mux/Demux Bus wich Feaures CMO echnology for Bus and nalog pplicaions Low ON Resisance: 8-ohms a 3.0V Wide Range: 1.65V o 5.5V Rail-o-Rail ignal Range Conrol

More information

CLOSED FORM SOLUTION FOR DELAY AND POWER FOR A CMOS INVERTER DRIVING RLC INTERCONNECT UNDER STEP INPUT

CLOSED FORM SOLUTION FOR DELAY AND POWER FOR A CMOS INVERTER DRIVING RLC INTERCONNECT UNDER STEP INPUT Journal of Elecron Devices, ol. 0, 0, pp. 464-470 JED [ISSN: 68-347 ] CLOSED FORM SOLUTION FOR DELAY AND POWER FOR A CMOS INERTER DRIING RLC INTERCONNECT UNDER STEP INPUT Susmia Sahoo, Madhumani Daa, Rajib

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = 12 I C2 = 16 = 2.2 CE(sa) Boos Chopper + free wheeling Diode Par number MID14-123 Backside: isolaed 1 3 4 2 Feaures / dvanages: pplicaions: Package: Y4 NPT IGBT echnology low sauraion

More information

SOTiny Gate STX. Input. Descriptio n. Features. Block Diagram. Pin Configuration. Recommended Operating Conditions (1) Pin Description.

SOTiny Gate STX. Input. Descriptio n. Features. Block Diagram. Pin Configuration. Recommended Operating Conditions (1) Pin Description. PI74STXG08 4567890456789045678904567890456789045678904567890456789045678904567890456789045678904567890 4567890456789045678904567890456789045678904567890456789045678904567890456789045678904567890 - Feaures

More information

AO V Complementary Enhancement Mode Field Effect Transistor

AO V Complementary Enhancement Mode Field Effect Transistor AO46 6V Complemenary Enhancemen Mode Field Effec Transisor General Descripion The AO46 uses advanced rench echnology MOSFETs o provide excellen and low gae charge. The complemenary MOSFETs may be used

More information

Chapter 16: Summary. Instructor: Jean-François MILLITHALER.

Chapter 16: Summary. Instructor: Jean-François MILLITHALER. Chaper 16: Summary Insrucor: Jean-François MILLITHALER hp://faculy.uml.edu/jeanfrancois_millihaler/funelec/spring2017 Slide 1 Curren & Charge Elecric curren is he ime rae of change of charge, measured

More information

Smart Highside Power Switch

Smart Highside Power Switch Smar ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive loads Reverse baery proecion

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Standard Rectifier Module

Standard Rectifier Module UB2-6NOX Sandard ecifier Module M = 6 I = 8 D 3~ ecifier I SM = Brake hopper ES = 2 I = 8 25 E(sa) =.7 3~ ecifier Bridge + Brake Uni Par number UB2-6NOX M/O S Backside: isolaed ~6 ~E6 ~K6 U/ W M/O W U

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecure #15: Inerconnec Rajeevan Amiraraja Universiy of California, Davis Ouline Review and Finis: Low Power Design Inerconnec Effecs: Rabaey C. 4 and C. 9 (Kang & Leblebici, 6.5-6.6) Amiraraja,

More information

Chapter 4 DC converter and DC switch

Chapter 4 DC converter and DC switch haper 4 D converer and D swich 4.1 Applicaion - Assumpion Applicaion: D swich: Replace mechanic swiches D converer: in racion drives Assumions: Ideal D sources Ideal Power emiconducor Devices 4.2 D swich

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

JEE MAIN 2016 ONLINE EXAMINATION DATE : SUBJECT : PHYSICS TEST PAPER WITH SOLUTIONS & ANSWER KEY

JEE MAIN 2016 ONLINE EXAMINATION DATE : SUBJECT : PHYSICS TEST PAPER WITH SOLUTIONS & ANSWER KEY JEE MAIN 016 ONLINE EXAMINATION DATE : 09-04-016 SUBJECT : PHYSICS TEST PAPER WITH SOLUTIONS & ANSWER KEY THIS SOLUTION WAS DOWNLOAD FROM RESONANCE JEE Main 016 SOLUTION PORTAL 1. Two paricles are performing

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = 12 I C25 = 16 = 2.2 CE(sa) Buck Chopper + free wheeling Diode Par number MDI145-123 Backside: isolaed 1 7 6 3 2 Feaures / dvanages: pplicaions: Package: Y4 NPT IGBT echnology low

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Mobile Ion Effects on SiC MOS Bias- Temperature Instability Measurements

Mobile Ion Effects on SiC MOS Bias- Temperature Instability Measurements 14-15 Aug 2014 1 U.S. Army Research, Developmen and Engineering Command Mobile Ion Effecs on SiC MOS Bias- Temperaure Insabiliy Measuremens Daniel B. Habersa Neil Goldsman (UMD), and Aivars Lelis 14-15

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Silicon Diffused Power Transistor

Silicon Diffused Power Transistor Philips Semiconducors Silicon Diffused Power Transisor Produc specificaion GENERAL DESCRIPTION Enhanced performance, new generaion, high-volage, high-speed swiching npn ransisor wih an inegraed damper

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

SFH636. Pb Pb-free. Optocoupler, Phototransistor Output, 1 Mbd, 10 kv/ms CMR, Split CollectorTransistor Output VISHAY. Vishay Semiconductors

SFH636. Pb Pb-free. Optocoupler, Phototransistor Output, 1 Mbd, 10 kv/ms CMR, Split CollectorTransistor Output VISHAY. Vishay Semiconductors Opocoupler, Phooransisor Oupu, Mbd, kv/ms CMR, Spli CollecorTransisor Oupu Feaures High Speed Opocoupler wihou Base Connecion Isolaion Tes Volage: 3 V RMS GaAlAs Emier Inegraed Deecor wih Phoo diode and

More information

Smart Highside Power Switch

Smart Highside Power Switch Smar ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive loads Reverse baery proecion

More information

Smart Two Channel Highside Power Switch

Smart Two Channel Highside Power Switch Smar Two Channel ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive loads Reverse

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition . Assuming he passive sign convenion, dv i= C. d (a) i = (dc) 9 9 (b) (22)( 9)(6.2) i= e = 32.8e A 9 3 (c) i (22 = )(8 )(.) sin. = 7.6sin. pa 9 (d) i= (22 )(9)(.8) cos.8 = 58.4 cos.8 na 2. (a) C = 3 pf,

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, rrhenius

More information

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS For more deails see las page or conac @aimaiims.in Physics Mock Tes Paper AIIMS/NEET 07 Physics 06 Saurday Augus 0 Uni es : Moion in

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information