Silicon Controlled Rectifiers UNIT-1

Size: px
Start display at page:

Download "Silicon Controlled Rectifiers UNIT-1"

Transcription

1 Silicon Conrolled Recifiers UNIT-1

2 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon conrolled recifier is a rade name for he ype of hyrisor commercialized a General Elecric in 1957

3 Silicon Conrolled Recifier An SCR can be seen as a convenional recifier conrolled by a gae signal I is a 4-layered 3-erminal device When he gae o cahode volage exceeds a cerain hreshold, he device urns 'on' and conducs curren

4 Silicon Conrolled Recifier The operaion of a SCR can be undersood in erms of a pair of ighly coupled Bipolar Juncion Transisors SCR has hree saes: Reverse blocking mode, forward blocking mode, and forward conducing mode

5

6 V-I Characerisic Curve

7 Silicon Conrolled Recifier Indusrially SCRs are applied o produce DC volages for moors from AC line volage Recifier Half-wave recifier, full-wave recifier

8 Half-wave recifier

9 Half-wave recifier

10 Half-wave recifier

11 題目 : 已知 SCR 的 IGT 為 20mA, 請問直流電壓由 0V 向上調整, 要調到多少伏特,SCR 才導通? 解答 : 由基本原理說明可知 V=20m =3.7V

12 Reviews A SCR is essenially a diode wih an exra erminal added This exra erminal is called he gae, and i is used o rigger he device ino conducion by he applicaion of a small volage

13 Applicaion: DC Moor Driver DC moor speed generally depends on a combinaion of he volage and curren flowing in he moor coils and he moor loads or braking orque The speed of he moor is proporional o he volage, and he orque is proporional o he curren

14 DC Moors Curren Driver A recifier is one or more diodes arranged for convering AC o DC The curren used o drive he DC moor ypically comes from : Fixed volage: Baery Volage regulaor Adjusable volage: PWM curren source Silicon conrolled recifier modulaed AC source

15 Volage regulaor DC Moors Curren Drives

16 DC Moors Curren Drives Linear power ransisor & OP amp

17 DC Moors Curren Drives Pulse Widh Modulaion

18 DC Moors Curren Drives

19 DC Moors Curren Drives

20 DC Choppers 20

21 Inroducion Chopper is a saic device. A variable dc volage is obained from a consan dc volage source. Also known as dc-o-dc converer. Widely used for moor conrol. Also used in regeneraive braking. Thyrisor converer offers greaer efficiency, faser response, lower mainenance, smaller size and smooh conrol. 21

22 Choppers are of Two Types Sep-down choppers. Sep-up choppers. In sep down chopper oupu volage is less han inpu volage. In sep up chopper oupu volage is more han inpu volage. 22

23 Principle Of Sep-down Chopper Chopper i 0 + V R V 0 23

24 A sep-down chopper wih resisive load. The hyrisor in he circui acs as a swich. When hyrisor is ON, supply volage appears across he load When hyrisor is OFF, he volage across he load will be zero. 24

25 v 0 V V dc ON OFF i 0 V/R T I dc 25

26 V I dc dc ON OFF Average value of oupu or load volage. Average value of oupu or load curren. Time inerval for which SCR conducs. Time inerval for which SCR is OFF. T Period of swiching or chopping period. ON OFF 1 f Freq. of chopper swiching or chopping freq. T 26

27 Average Oupu Volage V V ON dc ON OFF V V ON V. d dc T bu ON d duy cycle 27

28 Average Oupu Curren I I dc dc V dc R V ON V R T R RMS value of oupu volage d V O 1 ON T 0 2 o v d 28

29 Bu during, v V ON Therefore RMS oupu volage o V O 1 T ON 0 2 V d 2 V V ON. V O ON T T V O d. V 29

30 Oupu power Bu P I Oupu power O O O O V I V O R P P O O V 2 O R dv R 2 30

31 Effecive inpu resisance of chopper R R i i V I R d dc The oupu volage can be varied by varying he duy cycle. 31

32 Mehods Of Conrol The oupu dc volage can be varied by he following mehods. Pulse widh modulaion conrol or consan frequency operaion. Variable frequency conrol. 32

33 Pulse Widh Modulaion ON is varied keeping chopping frequency f & chopping period T consan. Oupu volage is varied by varying he ON ime ON 33

34 V 0 V ON OFF T V 0 V ON OFF 34

35 Variable Frequency Conrol Chopping frequency f is varied keeping eiher ON or OFF consan. To obain full oupu volage range, frequency has o be varied over a wide range. This mehod produces harmonics in he oupu and for large OFF load curren may become disconinuous 35

36 v 0 V ON T OFF v 0 V ON OFF T 36

37 Sep-down Chopper Wih R-L Load Chopper i 0 + R V FWD L V 0 E 37

38 When chopper is ON, supply is conneced across load. Curren flows from supply o load. When chopper is OFF, load curren coninues o flow in he same direcion hrough FWD due o energy sored in inducor L. 38

39 Load curren can be coninuous or disconinuous depending on he values of L and duy cycle d For a coninuous curren operaion, load curren varies beween wo limis I max and I min When curren becomes equal o I max he chopper is urned-off and i is urned-on when curren reduces o I min. 39

40 v 0 V Oupu volage i 0 I max ON T OFF Oupu curren I min i 0 Coninuous curren Oupu curren Disconinuous curren 40

41 Principle Of Sep-up Chopper I + L D + V Chopper C L O A D V O 41

42 Sep-up chopper is used o obain a load volage higher han he inpu volage V. The values of L and C are chosen depending upon he requiremen of oupu volage and curren. When he chopper is ON, he inducor L is conneced across he supply. The inducor curren I rises and he inducor sores energy during he ON ime of he chopper, ON. 42

43 When he chopper is off, he inducor curren I is forced o flow hrough he diode D and load for a period, OFF. The curren ends o decrease resuling in reversing he polariy of induced EMF in L. Therefore volage across load is given by di V V L i. e., V V O O d 43

44 A large capacior C conneced across he load, will provide a coninuous oupu volage. Diode D prevens any curren flow from capacior o he source. Sep up choppers are used for regeneraive braking of dc moors. 44

45 Expression For Oupu Volage Assume he average inducor curren o be I during ON and OFF ime of Chopper. When Chopper is ON Volage across inducor L V Therefore energy sored in inducor Where = V. I. ON ON ON period of chopper. 45

46 When Chopper is OFF (energy is supplied by inducor o load) Volage across Energy supplied by inducor where OFF L V V O L V V I OFF period of Chopper. Neglecing losses, energy sored in inducor L = energy supplied by inducor L O OFF 46

47 VI V V I V O ON O OFF V ON OFF VO V T ON OFF Where T = Chopping period or period of swiching. T 47

48 T ON OFF V V O O V 1 V 1 1 T 1 d ON ON Where d duy cyle T 48

49 For variaion of duy cycle ' d ' in he range of 0 d 1 he oupu volage will vary in he range V V O V O 49

50 Performance Parameers The hyrisor requires a cerain minimum ime o urn ON and urn OFF. Duy cycle d can be varied only beween a min. & max. value, limiing he min. and max. value of he oupu volage. Ripple in he load curren depends inversely on he chopping frequency, f. To reduce he load ripple curren, frequency should be as high as possible. 50

51 Classificaion Of Choppers Choppers are classified as Class A Chopper Class B Chopper Class C Chopper Class D Chopper Class E Chopper 51

52 Class A Chopper i 0 + v 0 V Chopper FWD L O A D v 0 V i 0 52

53 When chopper is ON, supply volage V is conneced across he load. When chopper is OFF, v O = 0 and he load curren coninues o flow in he same direcion hrough he FWD. The average values of oupu volage and curren are always posiive. Class A Chopper is a firs quadran chopper. 53

54 Class A Chopper is a sep-down chopper in which power always flows form source o load. I is used o conrol he speed of dc moor. The oupu curren equaions obained in sep down chopper wih R-L load can be used o sudy he performance of Class A Chopper. 54

55 i g Thyrisor gae pulse i 0 Oupu curren v 0 CH ON FWD Conducs Oupu volage ONT 55

56 Class B Chopper D i 0 + v 0 V R L v 0 Chopper E i 0 56

57 When chopper is ON, E drives a curren hrough L and R in a direcion opposie o ha shown in figure. During he ON period of he chopper, he inducance L sores energy. When Chopper is OFF, diode D conducs, and par of he energy sored in inducor L is reurned o he supply. 57

58 Average oupu volage is posiive. Average oupu curren is negaive. Therefore Class B Chopper operaes in second quadran. In his chopper, power flows from load o source. Class B Chopper is used for regeneraive braking of dc moor. Class B Chopper is a sep-up chopper. 58

59 i g Thyrisor gae pulse i 0 OFF ON I max I min v 0 T D conducs Chopper conducs Oupu curren Oupu volage 59

60 Expression for Oupu Curren 60

61 During he inerval diode 'D' conducs volage equaion is given by LdiO V RiO E d For he iniial condiion i.e., i I a 0 O min The soluion of he above equaion is obained along similar lines as in sep-down chopper wih R-L load 61

62 A R R V E L L io 1 e Imine 0 R i I OFF O max OFF R V E OFF L Imax 1 e Imine R During he inerval chopper is ON volage equaion is given by 0 Ldi d O Ri O E R L OFF 62

63 Redefining he ime origin, a 0 i I The soluion for he saed iniial condiion is R R E L L io Imaxe 1 e 0 R A i I ON R ON E L Imin Imaxe 1 e R O R L min ON O max ON 63

64 Class C Chopper CH 1 D 1 i 0 + v0 V R CH 2 D 2 L v 0 Chopper E i 0 64

65 Class C Chopper is a combinaion of Class A and Class B Choppers. For firs quadran operaion, CH 1 is ON or D 2 conducs. For second quadran operaion, CH 2 is ON or D 1 conducs. When CH 1 is ON, he load curren is posiive. The oupu volage is equal o V & he load receives power from he source. When CH 1 is urned OFF, energy sored in inducance L forces curren o flow hrough he diode D 2 and he oupu 65

66 Curren coninues o flow in posiive direcion. When CH 2 is riggered, he volage E forces curren o flow in opposie direcion hrough L and CH 2. The oupu volage is zero. On urning OFF CH 2, he energy sored in he inducance drives curren hrough diode D 1 and he supply Oupu volage is V, he inpu curren becomes negaive and power flows from 66

67 Average oupu volage is posiive Average oupu curren can ake boh posiive and negaive values. Choppers CH 1 & CH 2 should no be urned ON simulaneously as i would resul in shor circuiing he supply. Class C Chopper can be used boh for dc moor conrol and regeneraive braking of dc moor. Class C Chopper can be used as a sep-up or sep-down chopper. 67

68 i g1 i g2 i 0 Gae pulse of CH 1 Gae pulse of CH 2 Oupu curren V 0 D 1 CH 1 D 2 CH 2 D 1 CH 1 D 2 CH 2 ON ON ON ON Oupu volage 68

69 Class D Chopper CH 1 v 0 D 2 V R i 0 + v 0 L E i 0 D 1 CH 2 69

70 Class D is a wo quadran chopper. When boh CH 1 and CH 2 are riggered simulaneously, he oupu volage v O = V and oupu curren flows hrough he load. When CH 1 and CH 2 are urned OFF, he load curren coninues o flow in he same direcion hrough load, D 1 and D 2, due o he energy sored in he inducor L. Oupu volage v O = - V. 70

71 Average load volage is posiive if chopper ON ime is more han he OFF ime Average oupu volage becomes negaive if ON < OFF. Hence he direcion of load curren is always posiive bu load volage can be posiive or negaive. 71

72 i g1 Gae pulse of CH 1 i g2 Gae pulse of CH 2 i 0 Oupu curren v 0 V CH,CH ON 1 2 D1,D2 Conducing Oupu volage Average v 0 72

73 i g1 Gae pulse of CH 1 i g2 Gae pulse of CH 2 i 0 Oupu curren v 0 V CH CH 1 2 D, D 1 2 Oupu volage Average v 0 73

74 Class E Chopper CH 1 D CH 3 1 D 3 V + i L E 0 R CH 2 D CH 4 2 D 4 v 0 74

75 Four Quadran Operaion v 0 CH 2- D 4Conducs D - D Conducs 1 4 CH 1- CH 4ON CH - D Conducs 4 2 i 0 CH 3- CH 2ON CH - D Conducs 2 4 D 2 - D3 Conducs CH 4- D 2Conducs 75

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

UNIT- III DC CHOPPERS

UNIT- III DC CHOPPERS UN- D HPPES NDUN A chopper is a saic device which is used o obain a variable dc volage from a consan dc volage source. A chopper is also known as dc-o-dc converer. he hyrisor converer offers greaer efficiency,

More information

Chapter 4 DC converter and DC switch

Chapter 4 DC converter and DC switch haper 4 D converer and D swich 4.1 Applicaion - Assumpion Applicaion: D swich: Replace mechanic swiches D converer: in racion drives Assumions: Ideal D sources Ideal Power emiconducor Devices 4.2 D swich

More information

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM)

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM) haper 5. The isconinuous onducion Mode 5.. Origin of he disconinuous conducion mode, and mode boundary 5.. Analysis of he conversion raio M(,K) 5.3. Boos converer example 5.4. Summary of resuls and key

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods 1 Module 1 SR 1. Inroducion 2. SR characerisics 3. Two ransisor saic and ransien models 4. SR urnon mehods 5. SR urnoff mehods 6. SR proecion and Triggering circuis 7. ae proecion circuis 8. Summary Learning

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS A FAMIY OF THREE-EVE DC-DC CONVERTERS Anonio José Beno Boion, Ivo Barbi Federal Universiy of Sana Caarina - UFSC, Power Elecronics Insiue - INEP PO box 5119, ZIP code 88040-970, Florianópolis, SC, BRAZI

More information

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder Fundamenals of Power Elecronics Second ediion Rober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder Chaper 1: Inroducion 1.1. Inroducion o power processing 1.2. Some applicaions of power elecronics

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters Dual Curren-Mode Conrol for Single-Swich Two-Oupu Swiching Power Converers S. C. Wong, C. K. Tse and K. C. Tang Deparmen of Elecronic and Informaion Engineering Hong Kong Polyechnic Universiy, Hunghom,

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies Applicaion Noe AN-8004 Revision: Issue Dae: Prepared by: 00 2008-05-21 Dr. Arend Winrich Ke y Words: SemiSel, Semiconducor Selecion, Loss Calculaion Sofware release of SemiSel version 3.1 New semiconducor

More information

AC VOLTAGE CONTROLLER CIRCUITS (RMS VOLTAGE CONTROLLERS)

AC VOLTAGE CONTROLLER CIRCUITS (RMS VOLTAGE CONTROLLERS) www.bookspar.co TU NTE QUETN PAPER NEW REUT AC TAGE CNTRER CRCUT (RM TAGE CNTRER) AC volage conrollers (ac line volage conrollers) are eployed o vary he RM value of he alernaing volage applied o a load

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor April 996 NP45L / NB45L N-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These logic level N-Channel enhancemen mode power field effec ransisors are produced using

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

Vtusolution.in AC VOLTAGE CONTROLLER CIRCUITS (RMS VOLTAGE CONTROLLERS) Voltage. Controller

Vtusolution.in AC VOLTAGE CONTROLLER CIRCUITS (RMS VOLTAGE CONTROLLERS) Voltage. Controller AC TAGE CNTRER CRCUT (RM TAGE CNTRER) AC volage conrollers (ac line volage conrollers) are eployed o vary he RM value of he alernaing volage applied o a load circui by inroducing Thyrisors beween he load

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Converter - Brake - Inverter Module (CBI2)

Converter - Brake - Inverter Module (CBI2) Converer - Brake - Inverer Module (CBI2) 21 22 D11 D13 D15 1 2 3 7 D7 16 15 T1 D1 T3 D3 T5 D5 18 6 17 5 19 4 D12 D14 D16 T7 T2 D2 T4 D4 T6 D6 23 14 24 11 12 13 NTC 8 9 Three Phase Brake Chopper Three Phase

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

Non Linear Op Amp Circuits.

Non Linear Op Amp Circuits. Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o

More information

Dead-time Induced Oscillations in Inverter-fed Induction Motor Drives

Dead-time Induced Oscillations in Inverter-fed Induction Motor Drives Dead-ime Induced Oscillaions in Inverer-fed Inducion Moor Drives Anirudh Guha Advisor: Prof G. Narayanan Power Elecronics Group Dep of Elecrical Engineering, Indian Insiue of Science, Bangalore, India

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Secondary Rectifier For Buck-Derived Converters

Secondary Rectifier For Buck-Derived Converters Secondary Recifier For Buck-Derived Converers Presened by Xinbo Ruan Aero-Power Sci-ech Cener Nanjing Universiy of Aeronauics & Asronauics 211-1-27 1 Full-wave, Full-Bridge and Curren Doubler Recifier

More information

Converter - Brake - Inverter Module (CBI2)

Converter - Brake - Inverter Module (CBI2) Converer - Brake - Inverer Module (CBI2) 21 22 D11 D13 D1 1 2 3 7 D7 16 1 T1 D1 T3 D3 T D 18 2 6 17 19 4 D12 D14 D16 T7 T2 D2 T4 D4 T6 D6 23 14 24 11 1 12 13 NTC 8 9 Three Phase Brake Chopper Three Phase

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

Converter - Brake - Inverter Module (CBI2)

Converter - Brake - Inverter Module (CBI2) MUBW 5-6 7 Converer - Brake - Inverer Module (CBI2) 2 22 D D3 D5 2 3 7 D7 6 5 T D T3 D3 T5 D5 8 2 6 7 5 9 4 D2 D4 D6 T7 T2 D2 T4 D4 T6 D6 23 4 24 2 3 NTC 8 9 Three Phase Brake Chopper Three Phase Recifier

More information

Converter - Brake - Inverter Module (CBI3)

Converter - Brake - Inverter Module (CBI3) MUBW 35-12 8 Converer - Brake - Inverer Module (CBI3) 21 22 D11 D13 D15 1 2 3 7 D7 1 15 T1 D1 T3 D3 T5 D5 18 2 17 5 19 4 D12 D14 D1 23 14 24 T7 11 1 T2 D2 T4 D4 T D 12 13 See ouline drawing for pin arrangemen

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

CHAPTER 3 PSM BUCK DC-DC CONVERTER UNDER DISCONTINUOUS CONDUCTION MODE

CHAPTER 3 PSM BUCK DC-DC CONVERTER UNDER DISCONTINUOUS CONDUCTION MODE 7 HAPER PSM BUK D-D ONVERER UNDER DISONINUOUS ONDUION MODE Disconinuous conducion mode is he operaing mode in which he inducor curren reaches zero periodicall. In pulse widh modulaed converers under disconinuous

More information

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation Principle and Analysis of a Novel Linear Synchronous Moor wih Half-Wave Recified Self Exciaion Jun OYAMA, Tsuyoshi HIGUCHI, Takashi ABE, Shoaro KUBOTA and Tadashi HIRAYAMA Deparmen of Elecrical and Elecronic

More information

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6 Semiconducor Devices C. Hu: Modern Semiconducor Devices for Inegraed Circuis Chaper 6 For hose of you who are sudying a bachelor level and need he old course S-69.2111 Mikro- ja nanoelekroniikan perusee

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Advanced Power Electronics For Automotive and Utility Applications

Advanced Power Electronics For Automotive and Utility Applications Advanced Power Elecronics For Auomoive and Uiliy Applicaions Fang Z. Peng Dep. of Elecrical and Compuer Engineering Michigan Sae Universiy Phone: 517-336-4687, Fax: 517-353-1980 Email: fzpeng@egr.msu.edu

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Analysis and design of a high-efficiency zero-voltage-switching step-up DC DC converter

Analysis and design of a high-efficiency zero-voltage-switching step-up DC DC converter Sādhanā Vol. 38, Par 4, Augus 2013, pp. 653 665. c Indian Academy of Sciences Analysis and design of a high-efficiency zero-volage-swiching sep-up DC DC converer JAE-WON YANG and HYUN-LARK DO Deparmen

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Chapter 9 Sinusoidal Steady State Analysis

Chapter 9 Sinusoidal Steady State Analysis Chaper 9 Sinusoidal Seady Sae Analysis 9.-9. The Sinusoidal Source and Response 9.3 The Phasor 9.4 pedances of Passive Eleens 9.5-9.9 Circui Analysis Techniques in he Frequency Doain 9.0-9. The Transforer

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = 12 I C2 = 16 = 2.2 CE(sa) Boos Chopper + free wheeling Diode Par number MID14-123 Backside: isolaed 1 3 4 2 Feaures / dvanages: pplicaions: Package: Y4 NPT IGBT echnology low sauraion

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Switching Characteristics of Power Devices

Switching Characteristics of Power Devices Swiching Characeriic of Power Device Device uilizaion can be grealy improved by underanding he device wiching charcaeriic. he main performance wiching characeriic of power device: he ave operaing area

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = 12 I C25 = 16 = 2.2 CE(sa) Buck Chopper + free wheeling Diode Par number MDI145-123 Backside: isolaed 1 7 6 3 2 Feaures / dvanages: pplicaions: Package: Y4 NPT IGBT echnology low

More information

Three-Level Converters A New Approach for High Voltage and High Power DC-DC Conversions. Presented by Xinbo Ruan

Three-Level Converters A New Approach for High Voltage and High Power DC-DC Conversions. Presented by Xinbo Ruan ThreeLevel Converers New pproach for High Volage and High Power DCDC Conversions Presened by Xinbo Ruan College of Elecrical and Elecronic Engineering Huazhong Universiy of Science and Technology 20121210

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = x 1 I C = 9 =. CE(sa) Phase leg Par number MII7-13 1 Backside: isolaed 7 3 Feaures / dvanages: pplicaions: Package: Y NPT IGBT echnology low sauraion volage low swiching losses

More information

Unified Control Strategy Covering CCM and DCM for a Synchronous Buck Converter

Unified Control Strategy Covering CCM and DCM for a Synchronous Buck Converter Unified Conrol Sraegy Covering CCM and DCM for a Synchronous Buck Converer Dirk Hirschmann, Sebasian Richer, Chrisian Dick, Rik W. De Doncker Insiue for Power Elecronics and Elecrical Drives RWTH Aachen

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Smart Highside Power Switch

Smart Highside Power Switch Smar ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive loads Reverse baery proecion

More information

2 Definitions and parameters of the impulse-technics

2 Definitions and parameters of the impulse-technics efiniions and parameers of he impulse-echnics igial logic-circuis are driven wih signals, which only represen wo levels: he levels LOW and HIGH or he variables wih he values "" and ". These levels are

More information

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

Chapter 5-4 Operational amplifier Department of Mechanical Engineering MEMS08 Chaper 5-4 Operaional amplifier Deparmen of Mechanical Engineering Insrumenaion amplifier Very high inpu impedance Large common mode rejecion raio (CMRR) Capabiliy o amplify low leel signals Consisen

More information

Smart Highside Power Switch PROFET

Smart Highside Power Switch PROFET Smar ighside Power Swich PROFET BTS 410E2 Feaures TO220AB/ Overload proecion Curren limiaion Shor circui proecion Thermal shudown 1 1 Overvolage proecion (including Sandard Sraigh leads SMD load dump)

More information

STATE PLANE ANALYSIS, AVERAGING,

STATE PLANE ANALYSIS, AVERAGING, CHAPER 3 SAE PLAE AALYSIS, AVERAGIG, AD OHER AALYICAL OOLS he sinusoidal approximaions used in he previous chaper break down when he effecs of harmonics are significan. his is a paricular problem in he

More information

Efficiency Optimization of an Automotive Multi-Phase Bi-directional DC-DC Converter

Efficiency Optimization of an Automotive Multi-Phase Bi-directional DC-DC Converter Efficiency Opimizaion of an Auomoive Muli-Phase Bi-direcional DC-DC Converer S. Waffler and J.W. Kolar Power Elecronic Sysems Laboraory ETH Zurich 892 Zurich, Swizerland Email: waffler@lem.ee.ehz.ch Phone:

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information

7. Capacitors and Inductors

7. Capacitors and Inductors 7. Capaciors and Inducors 7. The Capacior The ideal capacior is a passive elemen wih circui symbol The curren-volage relaion is i=c dv where v and i saisfy he convenions for a passive elemen The capacior

More information

Join discussion of this test paper at Q.1 Q.30 carry one mark each. = + is: Z 2 i 1 i 2

Join discussion of this test paper at   Q.1 Q.30 carry one mark each. = + is: Z 2 i 1 i 2 GATE EE - 005 Q. Q.0 carry one mark each.. In Fig.Q, he value of R is.5ω 8A R 5.0Ω (c) 7.5Ω (d) 0.0Ω 00V 0Ω 0Ω. The RMS value of he volage u ( ) 4cos ( ) = is: 5V (c) 7V 7V (d) ( ) V Z i i ν Z ν. For he

More information

copper ring magnetic field

copper ring magnetic field IB PHYSICS: Magneic Fields, lecromagneic Inducion, Alernaing Curren 1. This quesion is abou elecromagneic inducion. In 1831 Michael Faraday demonsraed hree ways of inducing an elecric curren in a ring

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

PDH Course E246. DC Dynamic Braking. Carlo DeLuca, PE, MBA. PDH Center Dakota Lakes Drive Herndon, VA

PDH Course E246. DC Dynamic Braking. Carlo DeLuca, PE, MBA. PDH Center Dakota Lakes Drive Herndon, VA PDH Course E246 DC Dynamic Braking Carlo DeLuca, PE, MBA 2007 PDH Cener 2410 Dakoa Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcener.com An Approved Coninuing Educaion

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor June 997 NS33P P-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These P-Channel logic level enhancemen mode power field effec ransisors are produced using Fairchild's

More information

Smart Highside Power Switch

Smart Highside Power Switch Smar ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive loads Reverse baery proecion

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges.

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges. Chaper Soluions Secion. Inroducion. Curren source. Volage source. esisor.4 Capacior.5 Inducor Secion. Charge and Curren.6 b) The curren direcion is designaed as he direcion of he movemen of posiive charges..7

More information

Physics 1502: Lecture 20 Today s Agenda

Physics 1502: Lecture 20 Today s Agenda Physics 152: Lecure 2 Today s Agenda Announcemens: Chap.27 & 28 Homework 6: Friday nducion Faraday's Law ds N S v S N v 1 A Loop Moving Through a Magneic Field ε() =? F() =? Φ() =? Schemaic Diagram of

More information

Electromagnetic Induction: The creation of an electric current by a changing magnetic field.

Electromagnetic Induction: The creation of an electric current by a changing magnetic field. Inducion 1. Inducion 1. Observaions 2. Flux 1. Inducion Elecromagneic Inducion: The creaion of an elecric curren by a changing magneic field. M. Faraday was he firs o really invesigae his phenomenon o

More information