EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

Size: px
Start display at page:

Download "EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive"

Transcription

1 EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive

2 Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD MIN MIN R PD= μ n OX W MIN V DD -V Tn μ n OX W MIN 0.8V DD HL = LH = RPD L ssume μ n /μ p =3 = HL + LH = 2RPD W n =W MIN, W p =3W MIN L n =L p =L MIN In 0.5u proc =20ps, =4fF, R PD =R PU =2.5K (Noe: This OX is somewha larger han ha in he 0.5u ON process)

3 Review from Las Time Quesion: Why is V Tp V Tn V DD /5 in many processes?

4 Review from Las Time ssume μ n /μ p =3 L n =L p =L MIN Device Sizing Equal Worse-ase Rise/Fall Device Sizing Sraegy -- (same as V TRIP =V DD /2 for wors case delay in ypical process considered in example) How many degrees of freedom were available? V DD V DD V DD k M 2k 1 2 k M 21 M 22 M 2k M 2 2 M 22 k M 1k V IN 1 M 21 M 1 2 M 2k M 11 1 M 12 2 M 1k k 1 M 1k INV W n =W MIN, W p =3W MIN = IN FI=1 k-inpu NOR W n =W MIN, W p =3kW MIN 3k+1 IN= 4 3k+1 FI= 4 k-inpu NND W n =kw MIN, W p =3W MIN 3+k IN= 4 3+k FI= 4

5 Review from Las Time Muliple Inpu Gaes: 2-inpu NOR VDD Device Sizing 2-inpu NND k-inpu NOR k-inpu NND VDD VDD VDD k M2k 1 2 k M21 M22 M2k VOUT B 2 1 M22 M21 k M1k B VOUT M11 M12 M1k 1 2 k 2 M2k 1 M1k Equal Wors ase Rise/Fall (and equal o ha of ref inverer when driving ) Wn=? Wp=? Fases response ( HL or LH ) =? Wors case response (, usually of mos ineres)? Inpu capaciance (FI) =? Minimum Sized (assume driving a load of ) Wn=Wmin Wp=Wmin Fases response ( HL or LH ) =? Slowes response ( HL or LH ) =? Wors case response (, usually of mos ineres)? Inpu capaciance (FI) =?

6 Review from Las Time Device Sizing V DD V DD V DD V DD k M 2k VDD 1 2 k M 21 M 22 M 2k M 2 V IN M 1 B 2 1 M 22 M 21 B k M 1k 2 M 2k M 11 1 M 12 2 M 1k k 1 M 1k Minimum Sized (assume driving a load of ) W n =W min W p =W min Inpu capaciance (FI) =? IN = OXWn L n+oxwp L p = OXWminL min + OXWminL min = 2ox WminL min= 2 1 FI = 2 Fases response ( HL or HL ) =? Slowes response ( HL or HL ) =? Wors case response (, usually of mos ineres)?

7 Review from Las Time Device Sizing minimum size driving V DD V DD V DD k M 2k 1 2 k M 21 M 22 M 2k M 2 V IN 2 M 22 k M 1k M 1 1 M 21 2 M 2k M 11 1 M 12 2 M 1k k 1 M 1k INV? 0.5 FI = R R R PU PD PD R k-inpu NOR? 0.5 PD R 3k 2 3k 1 2 FI = PD 2 R PU 3kR PD k-inpu NND? 3 k 2 2 FI = 3 k 2 2 R 3R R 3R PD PD PU PD

8 Review from Las Time Device Sizing Summary V DD V DD V DD k M 2k 1 2 k M 21 M 22 M 2k M 2 V IN 2 M 22 k M 1k M 1 1 M 21 2 M 2k M 11 1 M 12 2 M 1k k 1 M 1k INV k-inpu NOR k-inpu NND IN for N ND gaes is considerably smaller han for NOR gaes for equal wors-case rise and fall imes IN for minimuim-sized srucures is independen of number of inpus and much smaller han IN for he equal rise/fall ime case R PU ges very large for minimum-sized NOR gae

9 Digial ircui Design Hierarchical Design Basic Logic Gaes Properies of Logic Families haracerizaion of MOS Inverer Saic MOS Logic Gaes Raio Logic Propagaion Delay Simple analyical models Elmore Delay Sizing of Gaes Propagaion Delay wih Muliple Levels of Logic Opimal driving of Large apaciive Loads Power Dissipaion in Logic ircuis Oher Logic Syles rray Logic Ring Oscillaors

10 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading F ssume all gaes sized for equal wors-case rise/fall imes For n levels of logic beween and F n = ( k) k=1

11 Propagaion Delay in Muliple- Levels of Logic wih Sage Loading nalysis sraegy : Express delays in erms of hose of reference inverer Reference Inverer V DD = IN= 4OX WMIN LMIN FI= 1 V IN M 2 R PD V.2 L Tn VDD MIN LMIN μ W V -V μ W 0.8V n OX MIN DD Tn n OX MIN DD M 1 = HL + LH =2R PD ssume μ n /μ p =3 L n =L p =L MIN W n =W MIN, W p =3W MIN In 0.5u proc =20ps, =4fF,R PD =2.5K (Noe: This OX is somewha larger han ha in he 0.5u ON process)

12 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading F ssume: all gaes sized for equal wors-case rise/fall imes all gaes sized o have rise and fall imes equal o ha of ref inverer when driving Observe: Propagaion delay of hese gaes will be scaled by he raio of he oal load capaciance on each gae o Wha loading will a gae see? Inpu capaciance o oher gaes ny load capaciors Parasiic inerconnec capacinaces

13 V IN Propagaion Delay wih Sage Loading =2R PDref = 4OX WMIN LMIN FI of a capacior FI of a gae (inpu k) FI of an inerconnec Overall FI FI = INk FI G= FI = INI FI I= + + INGi INi INIi Gaes apaciances Inerconnecs FI can be expressed eiher in unis of capaciance or normalized o Mos commonly FI is normalized bu mus deermine from conex If gaes sized o have same drive as ref inverer = FI prop-k LOD-k

14 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading Example F ssume all gaes sized for equal wors-case rise/fall imes ssume all gae drives are he same as ha of reference inverer Neglec inerconnec capaciance, assume load of 10 on F oupu Deermine propagaion delay from o F

15 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading F 3k+1 FI NOR= k FI NND= 4 ssume all gaes sized for equal wors-case rise/fall imes ssume all gae drives are he same as ha of reference inverer Neglec inerconnec capaciance, assume load of 10 on F oupu Deermine propagaion delay from o F Wha loading will a gae see? Derivaion: 6 FI = 4 2 FI = 7 4 FI = FI LOD =FI "5" =10

16 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading Example F 10 ssume all gaes sized for equal wors-case rise/fall imes ssume all gae drives are he same as ha of reference inverer Neglec inerconnec capaciance, assume load of 10 on F oupu DERIVTIONS 6 FI = 4 6 1= 4 2 Deermine propagaion delay from o F 7 FI = 4 7 2= FI = = 4 4 4=10 3 FI 4= 5 n n = k= FI (k+1) = = k=1 k=

17 Propagaion Delay Through Muliple Sages of Logic wih Sage Loading (assuming gae drives are all same as ha of reference inverer) G x2 G xx G 1 G 2 G 3 G n F F I2 F I3 F I4 F I(n+1) G x3 G x4 Idenify he gae pah from o F k = FI (k+1) Propagaion delay from o F: n = FI (k+1) k=1 This approach is analyically manageable, provides modes accuracy and is faihful

18 Digial ircui Design Hierarchical Design Basic Logic Gaes Properies of Logic Families haracerizaion of MOS Inverer Saic MOS Logic Gaes Raio Logic Propagaion Delay Simple analyical models Elmore Delay Sizing of Gaes Propagaion Delay wih Muliple Levels of Logic Opimal driving of Large apaciive Loads Power Dissipaion in Logic ircuis Oher Logic Syles rray Logic Ring Oscillaors done parial

19 Wha if he propagaion delay is oo long (or oo shor)? G x2 G xx G 1 G 2 G 3 G n F F I2 F I3 F I4 F I(n+1) G x3 G x4 Propagaion delay from o F: (k+1) k=1 n = FI k = FI (k+1)

20 Recall: Muliple Inpu Gaes: 2-inpu NOR VDD Device Sizing 2-inpu NND k-inpu NOR k-inpu NND VDD VDD VDD k M2k 1 2 k M21 M22 M2k VOUT B 2 1 M22 M21 k M1k B VOUT M11 M12 M1k 1 2 k 2 M2k 1 M1k Equal Wors ase Rise/Fall (and equal o ha of ref inverer when driving ) W n =? consider he fine prin! W p =? Fases response ( HL or LH ) =? Wors case response (, usually of mos ineres)? Inpu capaciance (FI) =? Minimum Sized (assume driving a load of ) W n =W min W p =W min Fases response ( HL or LH ) =? Slowes response ( HL or LH ) =? Wors case response (, usually of mos ineres)? Inpu capaciance (FI) =?

21 Recall: Device Sizing Muliple Inpu Gaes: 2-inpu NOR W n =? W p =? Equal Wors ase Rise/Fall (and equal o ha of ref inverer when driving ) (n-channel devices sized same, p-channel devices sized he same) ssume L n =L p =Lmin and driving a load of Inpu capaciance =? FI=? DERIVTIONS B V DD =? (wors case) One degree of freedom was used o saisfy he consrain indicaed W n =W MIN W p =6W MIN 7 7 IN = INB=OX WMIN L MIN+6OX WMINL MIN=7OX WMINL MIN= 4OXWMIN L MIN= FI= 7 or FI= 4 4 Oher degree of freedom was used o achieve equal rise and fall imes = (wors case)

22 Overdrive Facors Ref Inv F Example: Deermine prop in 0.5u process if =10pF In 0.5u proc =20ps, =4fF,R PD =2.5K 10 pf = FI = = ff =20ps 2500 = 50nsec Noe his is unaccepably long!

23 Overdrive Facors V DD M 2 V IN M 1 Scaling widhs of LL devices by consan (W scaled =WxOD) will change drive capabiliy relaive o ha of he reference inverer bu no change relaive value of HL and LH L 1 R PD= PDOD μ W V -V n OX 1 DD Tn R = L1 RPD μ OD W V -V OD n OX 1 DD Tn = L 2 R PU= μ p OX W 2 V DD +V Tp W L +W L IN OX L2 R PUOD= μ OD W V +V p OX 2 DD Tp RPU OD Scaling widhs of LL devices by consan will change FI by OD = O D W L + O D W L O D INOD OX IN

24 Overdrive Facors Ref Inv Inv wih OD =1000 F F =50nsec =? Example: Deermine prop in 0.5u process if =10pF and OD= pf 1 = FI = = 2.5 OD 4 ff 1000 Noe sizing he inverer wih he OD improved delay by a facor of 1000!

25 Overdrive Facors 1000 F By definiion, he facor by which he W/L of all devices are scaled above hose of he reference inverer is ermed he overdrive facor, OD Scaling widhs by overdrive facor DERESES resisance by same facor Scaling all widhs by a consan does no compromise he symmery beween he rise and fall imes (i.e. HL = LH ) Judicious use of overdrive can dramaically improve he speed of digial circuis Large overdrive facors are ofen used Scaling widhs by overdrive facor INRESES inpu capaciance by same facor - So is here any ne gain in speed?

26 Propagaion Delay wih Over-drive apabiliy Overdrive V IN OD L R = = OD PD HL LH L symmeric Overdrive RPDL = HL+ LH=2 OD OD Define he symmeric Overdrive Facors of he sage o be he facor by which PU and PD resisors are scaled relaive o hose of he reference inverer. RPD RPU R PDEFF = R PUEFF = OD OD R HL PD HL= L OD HL R F IL LH PD LH= L OD LH R PD RPD = + = R F ODHL ODLH ODHL ODLH 2 ODHL ODLH HL LH L L PD L IL

27 Propagaion Delay wih Over-drive apabiliy Overdrive V IN OD L F IL If inverer wih OD is sized for equal rise/fall, OD HL =OD LH =OD =RPDL RPDL ODHL ODLH OD = FIL OD OD may be larger or smaller han 1

28 Propagaion Delay wih Over-drive apabiliy Example ompare he propagaion delays. ssume he OD is 900 in he hird case and 30 in he fourh case. Don worry abou he exra inversion a his ime. V IN =900 L =900 V IN L =900 = V IN 900 L =900 = V IN 30 L =900 = Dramaic reducion in is possible (inpu is driving same in las 3 cases) Will laer deermine wha opimal number of sages and sizing is

29 Propagaion Delay in Muliple- Levels of Logic wih Sage Loading G 1 G 2 G 3 G n F OD 1: F I2 OD 2: F I3 OD 3: F I4 OD n: F I(n+1) F Ik denoes he oal loading on sage k which is he sum of he F I of all loading on sage k Summary: Propagaion delay from o F: = F n I(k+1) k=1 OD k

30 Propagaion Delay in Muliple- Levels of Logic wih Sage Loading Will consider an example wih he five cases Equal rise/fall (no overdrive) Equal rise/fall wih overdrive symmeric Overdrive Minimum Sized ombinaion of equal rise/fall, minimum size and overdrive Will develop he analysis mehods as needed

31 Propagaion Delay in Muliple- Levels of Logic wih Sage Loading G x2 G xx G 1 G 2 G 3 G n F F I2 F I3 F I4 F I(n+1) Equal rise/fall (no overdrive) Equal rise/fall wih overdrive G x3 G x4 (k+1) k=1 n FI(k+1) k=1 OD k = n = FI symmeric overdrive =? Minimum Sized =? ombinaion of equal rise/fall, minimum size and overdrive =?

32 Driving Noaion Equal rise/fall (no overdrive) Equal rise/fall wih overdrive OD Minimum Sized M symmeric Overdrive OD HL OD LH Noaion will be used only if i is no clear from he conex wha sizing is being used

33 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading symmeric Overdrive V IN L Recall: Define he symmeric Overdrive Facors of he sage o be he facors by which PU and PD resisors are scaled relaive o hose of he reference inverer. R PDEFF R = OD PD HL R PUEFF R = OD PU LH

34 Propagaion Delay in Muliple-Levels of symmeric Overdrive Logic wih Sage Loading V IN V IN Gae L L Recall: If inverer is no equal rise/fall R 1 F = = OD 2 OD PD HL L HL PU LH L LH = HL+ LH= F IL + 2 ODHL OD IL HL R 1 F = = OD 2 OD IL LH = + = LH HL LH FIL OD

35 Propagaion Delay in Muliple-Levels of symmeric Overdrive Logic wih Sage Loading V IN V IN Gae L L = HL+ LH= F IL + 2 ODHL OD When propagaing hrough n sages: G 1 G 2 G 3 G n LH F OD HL1 OD LH1 F I2 OD HL2 OD LH2 F I3 OD HL3 OD LH3 F I4 F Ik denoes he oal loading on sage k which is he sum of he F I of all loading on sage k 1 1 n 1 FI(k+1) 2 OD OD k=1 HLk LHk OD HLn OD LHn F I(n+1)

36 Propagaion Delay in Muliple- Levels of Logic wih Sage Loading G x2 G xx G 1 G 2 G 3 G n F F I2 F I3 F I4 F I(n+1) Equal rise/fall (no overdrive) Equal rise/fall wih overdrive G x3 G x4 (k+1) k=1 n FI(k+1) k=1 OD k = n = FI symmeric overdrive 1 1 n 1 FI(k+1) 2 OD OD k=1 HLk LHk Minimum Sized =? ombinaion of equal rise/fall, minimum size and overdrive =?

37 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading and Overdrives Will now consider o F propagaion for his circui as an example wih differen overdrives F 50fF 20fF

38 Propagaion Delay in Muliple- Levels of Logic wih Sage Loading G x2 G xx G 1 G 2 G 3 G n F F I2 F I3 F I4 F I(n+1) Equal rise/fall (no overdrive) Equal rise/fall wih overdrive G x3 G x4 (k+1) k=1 n FI(k+1) k=1 OD k = n = FI symmeric overdrive 1 1 n 1 FI(k+1) 2 OD OD k=1 HLk LHk Minimum Sized =? ombinaion of equal rise/fall, minimum size and overdrive =?

39 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading Equal rise-fall gaes, no overdrive F 50fF 20fF =2HL In 0.5u proc =20ps, =4fF,R PD =2.5K n = F I k=1 k+1

40 Propagaion Delay in Muliple-Levels of Logic wih Sage Loading Equal rise-fall gaes, no overdrive Equal Rise/Fall IN / Inverer NOR NND Overdrive Inverer HL LH NOR HL LH NND HL LH 1 3k k n F / 5 I(k+1) = FI k=1 k+1 k=1

41 Equal rise-fall gaes, no overdrive In 0.5u proc =20ps, =4fF,R PD =2.5K (Noe: This OX is somewha larger han ha in he 0.5u ON process) 1 1 3k fF fF =5 4fF 3k k k 1 4 F I2 =10.25 F I3 =4.25 F I4 =4.25 F I5 =1.25 F I6 = k = 3 k fF =12.5 4fF 5 I k+1 k=1 = F F 50fF =32.5

42 End of Lecure 41

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 0 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time Propagaion Delay in Saic MOS Family F Propagaion hrough k levels of logic + + + + HL HLn LH(n-1)

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Optimally driving large capacitive loads

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Optimally driving large capacitive loads EE 330 Lecure Digial Circuis Propagaion Delay Wih uliple Levels of Logic Opimally driving large capaciive loads Review from Las Time Propagaion Delay in uliple- Levels of Logic wih Sage Loading nalysis

More information

EE 330 Lecture 39. Digital Circuits. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

EE 330 Lecture 39. Digital Circuits. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) EE 330 Lecture 39 Digital ircuits Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) Review from last lecture Other MOS Logic Families Enhancement Load NMOS Enhancement

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling EE 330 Lecure 23 Small Signal Analysis Small Signal Modelling Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00 p.m. on Thursday March 8 in Room Sweeney 1116 Review from Las

More information

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) EE 330 Lecture 37 Digital Circuits Other Logic Families Static Power Dissipation Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) Review from Last Time Inverter

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

Chapter 2: Logical levels, timing and delay

Chapter 2: Logical levels, timing and delay 28.1.216 haper 2: Logical levels, iming and delay Dr.-ng. Sefan Werner Winersemeser 216/17 Table of conen haper 1: Swiching lgebra haper 2: Logical Levels, Timing & Delays haper 3: Karnaugh-Veich-Maps

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Introduction to Digital Circuits

Introduction to Digital Circuits The NMOS nerer The NMOS Depleion oad 50 [ D ] µ A GS.0 + 40 30 0 0 Resisance characerisic of Q 3 4 5 6 GS 0.5 GS 0 GS 0.5 GS.0 GS.5 [ ] DS GS i 0 Q Q Depleion load Enhancemen drier Drain characerisic of

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis EEC 118 Lecure #15: Inerconnec Rajeevan Amiraraja Universiy of California, Davis Ouline Review and Finis: Low Power Design Inerconnec Effecs: Rabaey C. 4 and C. 9 (Kang & Leblebici, 6.5-6.6) Amiraraja,

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Linear Circuit Elements

Linear Circuit Elements 1/25/2011 inear ircui Elemens.doc 1/6 inear ircui Elemens Mos microwave devices can be described or modeled in erms of he hree sandard circui elemens: 1. ESISTANE () 2. INDUTANE () 3. APAITANE () For he

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae,

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l, Comb Filers The simple filers discussed so far are characeried eiher by a single passband and/or a single sopband There are applicaions where filers wih muliple passbands and sopbands are required The

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

Lecture Notes 5: Investment

Lecture Notes 5: Investment Lecure Noes 5: Invesmen Zhiwei Xu (xuzhiwei@sju.edu.cn) Invesmen decisions made by rms are one of he mos imporan behaviors in he economy. As he invesmen deermines how he capials accumulae along he ime,

More information

EE 435 Lecture 42. Phased Locked Loops and VCOs

EE 435 Lecture 42. Phased Locked Loops and VCOs EE 435 Lecure 42 d Locked Loops and VCOs Basis PLL Archiecure Loop Filer (LF) Volage Conrolled Oscillaor (VCO) Frequency Divider N Applicaions include: Frequency Demodulaion Frequency Synhesis Clock Synchronizaion

More information

Longest Common Prefixes

Longest Common Prefixes Longes Common Prefixes The sandard ordering for srings is he lexicographical order. I is induced by an order over he alphabe. We will use he same symbols (,

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

Chapter 4 DC converter and DC switch

Chapter 4 DC converter and DC switch haper 4 D converer and D swich 4.1 Applicaion - Assumpion Applicaion: D swich: Replace mechanic swiches D converer: in racion drives Assumions: Ideal D sources Ideal Power emiconducor Devices 4.2 D swich

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 35 Absolue and Relaive Accuracy DAC Design The Sring DAC Makekup Lecures Rm 6 Sweeney 5:00 Rm 06 Coover 6:00 o 8:00 . Review from las lecure. Summary of ime and ampliude quanizaion assessmen

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS of 8 Decoder/ Demuliplexer High Performance Silicon Gae CMOS The is idenical in pinou o he LS8. The device inpus are compaible wih sandard CMOS oupus; wih pullup resisors, hey are compaible wih LSTTL oupus.

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Quad 2-Input OR Gate High-Performance Silicon-Gate CMOS

Quad 2-Input OR Gate High-Performance Silicon-Gate CMOS TECNICAL DATA Quad 2-Inpu OR ae igh-performance Silicon-ae CMOS The is idenical in pinou o he LS/ALS32. The device inpus are compaible wih sandard CMOS oupus; wih pullup resisors, hey are compaible wih

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation Mahcad Lecure #8 In-class Workshee Curve Fiing and Inerpolaion A he end of his lecure, you will be able o: explain he difference beween curve fiing and inerpolaion decide wheher curve fiing or inerpolaion

More information

MC74HC165A. 8 Bit Serial or Parallel Input/ Serial Output Shift Register. High Performance Silicon Gate CMOS

MC74HC165A. 8 Bit Serial or Parallel Input/ Serial Output Shift Register. High Performance Silicon Gate CMOS MC74CA 8 Bi Serial or Parallel Inpu/ Serial Oupu Shif Regiser igh Performance Silicon Gae CMOS The MC74CA is idenical in pinou o he S. The device inpus are compaible wih sandard CMOS oupus; wih pullup

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

CLOSED FORM SOLUTION FOR DELAY AND POWER FOR A CMOS INVERTER DRIVING RLC INTERCONNECT UNDER STEP INPUT

CLOSED FORM SOLUTION FOR DELAY AND POWER FOR A CMOS INVERTER DRIVING RLC INTERCONNECT UNDER STEP INPUT Journal of Elecron Devices, ol. 0, 0, pp. 464-470 JED [ISSN: 68-347 ] CLOSED FORM SOLUTION FOR DELAY AND POWER FOR A CMOS INERTER DRIING RLC INTERCONNECT UNDER STEP INPUT Susmia Sahoo, Madhumani Daa, Rajib

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Basic definitions and relations

Basic definitions and relations Basic definiions and relaions Lecurer: Dmiri A. Molchanov E-mail: molchan@cs.u.fi hp://www.cs.u.fi/kurssi/tlt-2716/ Kendall s noaion for queuing sysems: Arrival processes; Service ime disribuions; Examples.

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm apaciors An elecrical componen which sores charge E 2 2 d A 2 parallel plae capacior Scale in cm Leyden Jars I was invened independenly by German cleric Ewald Georg von Kleis on Ocober 745 and by Duch

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

( ) is the stretch factor, and x the

( ) is the stretch factor, and x the (Lecures 7-8) Liddle, Chaper 5 Simple cosmological models (i) Hubble s Law revisied Self-similar srech of he universe All universe models have his characerisic v r ; v = Hr since only his conserves homogeneiy

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS TECHNICAL DATA IW0B Analog Muliplexer Demuliplexer HighPerformance SiliconGae CMOS The IW0B analog muliplexer/demuliplexer is digially conrolled analog swiches having low ON impedance and very low OFF

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information