UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

Size: px
Start display at page:

Download "UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics"

Transcription

1 La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae, he curren will ) If he upply volage of a chip increae, he maimum ranior curren will 4) If he wih of a ranior increae, i gae capaciance will 5) If he lengh of a ranior increae, i gae capaciance will 6) If he upply volage of a chip increae, he gae capaciance of each ranior will D. Z. Pan 1 D. Z. Pan DC epone DC epone: v. for a gae E: Inverer When = -> = When = -> = V In beween, epen on DD ranior ize an curren I V p in y KCL, mu ele uch ha = I p We coul olve equaion u graphical oluion give more inigh D. Z. Pan Tranior Operaion Curren epen on region of ranior behavior For wha an are nmos an pmos in Cuoff?? Sauraion? D. Z. Pan 4 nmos Operaion pmos Operaion Cuoff Saurae Cuoff Saurae V gn < V n V gn > V n V gn > V n V gp > V p V gp < V p V gp < V p < V n > V n V n < V gn V n < -V n > V n V n > V gn V n > -V n > + V p < + V p V p > V gp V p > -V p < + V p V p < V gp V p < -V p V gn = V n = I p V gp = - V p = - V p < I p D. Z. Pan 5 D. Z. Pan 6 1

2 I-V Characeriic Curren v., Make pmos wier han nmos uch ha β n = β p V gn5 5 V gn4 -V gp1 V gp -V p V gn V gn V gn1, I p V gp V n V gp4 -I p V gp5 D. Z. Pan 7 D. Z. Pan 8 For a given : Plo, I p v. mu be where curren are equal in = 5, I p, I p I p D. Z. Pan 9 D. Z. Pan 1 =. =.4 In, I p, I p D. Z. Pan 11 D. Z. Pan 1

3 =.6 =.8, I p, I p D. Z. Pan 1 D. Z. Pan 14 Loa Line Summary = 5 5, I p, I p D. Z. Pan 15 D. Z. Pan 16 DC Tranfer Curve Trancribe poin ono v. plo Operaing egion evii ranior operaing region 5 C D E V n / +V p egion nmos Cuoff Sauraion C Sauraion D E pmos Sauraion Sauraion Cuoff C D E V n / +V p D. Z. Pan 17 D. Z. Pan 18

4 ea aio If β p / β n 1, wiching poin will move from / Calle kewe gae Oher gae: collape ino equivalen inverer β p.1 β = n β p 1 β = n 1.5 D. Z. Pan 19 Noie Margin How much noie can a gae inpu ee before i oe no recognize he inpu? Logical High Oupu ange Logical Low Oupu ange Oupu Characeriic Inpu Characeriic V OH NM H V IH Ineerminae V egion IL NM L V OL GND Logical High Inpu ange Logical Low Inpu ange D. Z. Pan Logic Level To maimize noie margin, elec logic level a uniy gain poin of DC ranfer characeriic V OH Uniy Gain Poin Slope = -1 β p /β n > 1 Tranien epone DC analyi ell u if i conan Tranien analyi ell u () if () change equire olving ifferenial equaion Inpu i uually coniere o be a ep or ramp From o or vice vera V OL V n V IL V V IH DD - V p D. Z. Pan 1 D. Z. Pan Inverer Sep epone E: fin ep repone of inverer riving loa cap Vi n() = u ( ) VDD V Vou ( < ) = V in () DD Vo u ( ) I n () = () C I n loa β ( ) = ( VDD V) > VDD V ( ) β VDD V V ou () < VD D V () () C loa () Delay Definiion pr : riing propagaion elay Ma ime from inpu o riing oupu croing / pf : falling propagaion elay Ma ime from inpu o falling oupu croing / p : average propagaion elay p = ( pr + pf )/ r : rie ime From oupu croing. o.8 f : fall ime From oupu croing.8 o. D. Z. Pan D. Z. Pan 4 4

5 Delay Definiion cr : riing conaminaion elay Minimum ime from inpu o riing oupu croing / cf : falling conaminaion elay Minimum ime from inpu o falling oupu croing / c : average conaminaion elay p = ( cr + cf )/ Simulae Inverer Delay Solving ifferenial equaion by han oo har SPICE imulaor olve equaion numerically Ue more accurae I-V moel oo! u imulaion ake ime o wrie (V).5 pf = 66p pr = 8p.. p 4p 6p 8p 1n () D. Z. Pan 5 D. Z. Pan 6 Delay Eimaion We woul like o be able o eaily eimae elay No a accurae a imulaion u eaier o ak Wha if? The ep repone uually look like a 1 orer C repone wih a ecaying eponenial. Ue C elay moel o eimae elay C = oal capaciance on oupu noe Ue effecive reiance So ha p = C Characerize ranior by fining effecive Depen on average curren a gae wiche D. Z. Pan 7 C Delay Moel Ue equivalen circui for MOS ranior Ieal wich + capaciance an ON reiance Uni nmos ha reiance, capaciance C Uni pmos ha reiance, capaciance C Capaciance proporional o wih eiance inverely proporional o wih g k /k g /k g k g D. Z. Pan 8 Eample: -inpu NND Skech a -inpu NND wih ranior wih choen o achieve effecive rie an fall reiance equal o a uni inverer (). -inpu NND Cap nnoae he -inpu NND gae wih gae an iffuion capaciance. D. Z. Pan 9 D. Z. Pan 5

6 Elmore Delay ON ranior look like reior Pullup or pullown nework moele a C laer Elmore elay of C laer C p i o ource i noe i ( )... (... ) = C + + C C N N Eample: -inpu NND Eimae wor-cae riing an falling elay of -inpu NND riving h ienical 1 N C 1 C C C N D. Z. Pan 1 D. Z. Pan Eample: -inpu NND elay of a -inpu NND riving h ienical Eample: -inpu NND elay of a -inpu NND riving h ienical C C pr = D. Z. Pan D. Z. Pan 4 Eample: -inpu NND elay of a -inpu NND riving h ienical Eample: -inpu NND elay of a -inpu NND riving h ienical C C = ( 6+ 4 ) pr h C D. Z. Pan 5 D. Z. Pan 6 6

7 Eample: -inpu NND elay of a -inpu NND riving h ienical / / C C pf ( )( ) ( 6 4 ) ( ) ( 7 4h) C = C + + h C + = + Delay Componen Delay ha wo par Paraiic elay 6 or 7 C Inepenen of loa Effor elay 4h C Proporional o loa capaciance D. Z. Pan 7 D. Z. Pan 8 Conaminaion Delay e-cae (conaminaion) elay can be ubanially le han propagaion elay. E: If boh inpu fall imulaneouly C cr ( ) = + h C D. Z. Pan 9 Diffuion Capaciance ume conace iffuion on every / Goo layou minimize iffuion area E: NND layou hare one iffuion conac euce oupu capaciance by C Merge unconace iffuion migh help oo Share Conace Diffuion Merge Unconace Diffuion C C C C C Iolae Conace Diffuion 7C C C Noe. Thi picure from ebook aume ha unconace iffuion ha he ame uni capaciance C. cually, i can be le, e.g., C/. D. Z. Pan 4 7

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Single Phase Line Frequency Uncontrolled Rectifiers

Single Phase Line Frequency Uncontrolled Rectifiers Single Phae Line Frequency Unconrolle Recifier Kevin Gaughan 24-Nov-03 Single Phae Unconrolle Recifier 1 Topic Baic operaion an Waveform (nucive Loa) Power Facor Calculaion Supply curren Harmonic an Th

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

5. CMOS Gate Characteristics CS755

5. CMOS Gate Characteristics CS755 5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Design of Controller for Robot Position Control

Design of Controller for Robot Position Control eign of Conroller for Robo oiion Conrol Two imporan goal of conrol: 1. Reference inpu racking: The oupu mu follow he reference inpu rajecory a quickly a poible. Se-poin racking: Tracking when he reference

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13. Chaper 3 The Laplace Tranform in Circui Analyi 3. Circui Elemen in he Domain 3.-3 Circui Analyi in he Domain 3.4-5 The Tranfer Funcion and Naural Repone 3.6 The Tranfer Funcion and he Convoluion Inegral

More information

s-domain Circuit Analysis

s-domain Circuit Analysis Domain ircui Analyi Operae direcly in he domain wih capacior, inducor and reior Key feaure lineariy i preerved c decribed by ODE and heir I Order equal number of plu number of Elemenbyelemen and ource

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Chapter 8 Objectives

Chapter 8 Objectives haper 8 Engr8 ircui Analyi Dr uri Nelon haper 8 Objecive Be able o eermine he naural an he ep repone of parallel circui; Be able o eermine he naural an he ep repone of erie circui. Engr8 haper 8, Nilon

More information

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Switching Characteristics of Power Devices

Switching Characteristics of Power Devices Swiching Characeriic of Power Device Device uilizaion can be grealy improved by underanding he device wiching charcaeriic. he main performance wiching characeriic of power device: he ave operaing area

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

Chapter 8: Response of Linear Systems to Random Inputs

Chapter 8: Response of Linear Systems to Random Inputs Caper 8: epone of Linear yem o anom Inpu 8- Inroucion 8- nalyi in e ime Domain 8- Mean an Variance Value of yem Oupu 8-4 uocorrelaion Funcion of yem Oupu 8-5 Crocorrelaion beeen Inpu an Oupu 8-6 ample

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies Modeling he Overshooing Effec for CMOS Inverer in Nanomeer Technologies Zhangcai Huang, Hong Yu, Asushi Kurokawa and Yasuaki Inoue Graduae School of Informaion, Producion and Sysems, Waseda Universiy,

More information

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators EE 230 Lecure 28 Nonlinear Circuis using ioes ecifiers Precision ecifiers Nonlinear funcion generaors Quiz 8 f a ioe has a value of S =E-4A an he ioe volage is.65v, wha will be he ioe curren if operaing

More information

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS of 8 Decoder/ Demuliplexer High Performance Silicon Gae CMOS The is idenical in pinou o he LS8. The device inpus are compaible wih sandard CMOS oupus; wih pullup resisors, hey are compaible wih LSTTL oupus.

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

7. Capacitors and Inductors

7. Capacitors and Inductors 7. Capaciors and Inducors 7. The Capacior The ideal capacior is a passive elemen wih circui symbol The curren-volage relaion is i=c dv where v and i saisfy he convenions for a passive elemen The capacior

More information

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson 6.32 Feedback Syem Phae-locked loop are a foundaional building block for analog circui deign, paricularly for communicaion circui. They provide a good example yem for hi cla becaue hey are an excellen

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Introduction to Digital Circuits

Introduction to Digital Circuits The NMOS nerer The NMOS Depleion oad 50 [ D ] µ A GS.0 + 40 30 0 0 Resisance characerisic of Q 3 4 5 6 GS 0.5 GS 0 GS 0.5 GS.0 GS.5 [ ] DS GS i 0 Q Q Depleion load Enhancemen drier Drain characerisic of

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description PI53157 OINY M Low Volage PD nalog wich 2:1 Mux/Demux Bus wich Feaures CMO echnology for Bus and nalog pplicaions Low ON Resisance: 8-ohms a 3.0V Wide Range: 1.65V o 5.5V Rail-o-Rail ignal Range Conrol

More information

Lecture 12. Aperture and Noise. Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University

Lecture 12. Aperture and Noise. Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University Lecure. Aperure and Noie Analyi of locked omparaor Jaeha Kim Mixed-Signal I and Syem Group MIS Seoul Naional Univeriy jaeha@ieee.org locked omparaor a.k.a. regeneraive amplifier, ene-amplifier, flip-flop,

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

PHYSICS Solving Equations

PHYSICS Solving Equations Sepember 20, 2013 PHYSIS Solving Equaion Sepember 2013 www.njcl.org Solving for a Variable Our goal i o be able o olve any equaion for any variable ha appear in i. Le' look a a imple equaion fir. The variable

More information

6 December 2013 H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1

6 December 2013 H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1 Lecure Noe Fundamenal of Conrol Syem Inrucor: Aoc. Prof. Dr. Huynh Thai Hoang Deparmen of Auomaic Conrol Faculy of Elecrical & Elecronic Engineering Ho Chi Minh Ciy Univeriy of Technology Email: hhoang@hcmu.edu.vn

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE06 Embee Elecronics Le Le3 Le4 Le Ex Ex PI-block Documenaion, Seriecom Pulse sensors I, U, R, P, series an parallel K LAB Pulse sensors, Menu program Sar of programing ask Kirchhoffs laws Noe analysis

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 ECEG 351 Elecronic II Spring 017 Final Exam General Informaion Pleae review he Exam Policie ecion of he Exam page a he coure web ie. You hould epecially noe he following: 1. You will be allowed o ue a

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Optimally driving large capacitive loads

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Optimally driving large capacitive loads EE 330 Lecure Digial Circuis Propagaion Delay Wih uliple Levels of Logic Opimally driving large capaciive loads Review from Las Time Propagaion Delay in uliple- Levels of Logic wih Sage Loading nalysis

More information

Phase Noise in CMOS Differential LC Oscillators

Phase Noise in CMOS Differential LC Oscillators Phase Noise in CMOS Differenial LC Oscillaors Ali Hajimiri Thomas H. Lee Sanford Universiy, Sanford, CA 94305 Ouline Inroducion and Definiions Tank Volage Noise Sources Effec of Tail Curren Source Measuremen

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signal & Syem Prof. ark Fowler oe Se #34 C-T Tranfer Funcion and Frequency Repone /4 Finding he Tranfer Funcion from Differenial Eq. Recall: we found a DT yem Tranfer Funcion Hz y aking he ZT of

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 0 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time Propagaion Delay in Saic MOS Family F Propagaion hrough k levels of logic + + + + HL HLn LH(n-1)

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Study of simple inductive-capacitive series circuits using MATLAB software package

Study of simple inductive-capacitive series circuits using MATLAB software package ecen Advance in ircui, Syem and Auomaic onrol Sudy of imple inducive-capaciive erie circui uing MAAB ofware package NIUESU IU, PĂSUESU DAGOŞ Faculy of Mechanical and Elecrical Engineering Univeriy of Peroani

More information

Quad 2-Input OR Gate High-Performance Silicon-Gate CMOS

Quad 2-Input OR Gate High-Performance Silicon-Gate CMOS TECNICAL DATA Quad 2-Inpu OR ae igh-performance Silicon-ae CMOS The is idenical in pinou o he LS/ALS32. The device inpus are compaible wih sandard CMOS oupus; wih pullup resisors, hey are compaible wih

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

DC & Transient Responses

DC & Transient Responses ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = -> = When = -> = In between, depends on transistor size and current

More information

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out.

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out. Chaper The Derivaive Applie Calculus 107 Secion 4: Prouc an Quoien Rules The basic rules will le us ackle simple funcions. Bu wha happens if we nee he erivaive of a combinaion of hese funcions? Eample

More information

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics. 8/10/018 Course Insrucor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@uep.edu EE 4347 Applied Elecromagneics Topic 4a Transmission Line Equaions Transmission These Line noes

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra rimer And a video dicuion of linear algebra from EE263 i here (lecure 3 and 4): hp://ee.anford.edu/coure/ee263 lide from Sanford CS3 Ouline Vecor and marice Baic Mari Operaion Deerminan,

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

PI74STX1G126. SOTiny Gate STX Buffer with 3-State Output. Features. Descriptio n. Block Diagram. Pin Configuration

PI74STX1G126. SOTiny Gate STX Buffer with 3-State Output. Features. Descriptio n. Block Diagram. Pin Configuration PI74STXG6 4567890456789045678904567890456789045678904567890456789045678904567890456789045678904567890 4567890456789045678904567890456789045678904567890456789045678904567890456789045678904567890 SOTiny

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

N H. be the number of living fish outside area H, and let C be the cumulative catch of fish. The behavior of N H

N H. be the number of living fish outside area H, and let C be the cumulative catch of fish. The behavior of N H ALTRNATV MODLS FOR CPU AND ABUNDANC Fishing is funamenally a localize process. Tha is, fishing gear operaing in a paricular geographic area canno cach fish ha are no in ha area. Here we will evelop wo

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information